# ON THE DIOPHANTINE EQUATION $a x^{3}+b y+c=x y z$ 

Sivanarayanapandian Subburam, Ravindrananathan Thangadurai


#### Abstract

Consider the diophantine equation $a x^{3}+b y+c=x y z$, where $a, b$ and $c$ are positive integers such that $\operatorname{gcd}(a, c)=1$ and $c$ is square-free. Let $(x, y, z)$ be a positive integral solution of the equation. In this paper, we shall give an upper bound for $x, y$ and $z$ in terms of the given inputs $a, b$ and $c$. Also, we apply our results to investigate the divisors of the elements of the sequence $\left\{a n^{3}+c\right\}$ in residue classes.


Keywords: Diophantine equations, positive solutions, upper bound for solutions, divisors in residue classes.

## 1. Introduction

Consider the diophantine equation

$$
\begin{equation*}
a x^{3}+b y+c-x y z=0 \tag{1}
\end{equation*}
$$

where $x, y$ and $z$ are unknown positive integers and, $a, b$ and $c$ are fixed positive integers such that $\operatorname{gcd}(a, c)=1$ and $c$ is square-free. This equation has been studied by many authors including Mohanty [4], Utz [10], Mohanty-Ramasamy [5] and [6], Luca-Togbé [3], Togbé [9], Subburam [7], Subburam-Thangadurai [8], etc.. In 1996, Mohanty-Ramasamy in [6] proved that there are only finitely many integral solutions to (1).

Let $N(a, b, c)$ denotes the number of positive integral solutions $(x, y, z)$ of equation (1). By the result of Mohanty-Ramasamy in [6], it is known that $N(a, b, c)$ exists and it is finite. Recently, Subburam-Thangadurai [8] produced upper bounds for $x, y$ and $z$, where $(x, y, z)$ is a positive integral solution of equation 1 when $a=1=c$ and investigated the divisors of the element of the sequence $\left\{n^{3}+1\right\}$ in residue classes modulo $n$. In this paper, we give upper bounds for $x, y$ and $z$ of equation (1) in terms of $a, b$ and $c$. Also, by an application of this result, we study the divisors of the elements of the sequence $\left\{a n^{3}+c\right\}$ in residue classes modulo $n$.

[^0]Theorem 1. Any positive integral solution $(x, y, z)$ of (1) satisfies

$$
\begin{gathered}
x \leqslant a b c^{6}\left[a^{2} b^{3} c^{8}\left(a^{2} b^{2} c^{11}+a^{2} b c^{11}+1\right)^{3}+1\right]+c^{2}, \\
y \leqslant a c^{6}\left[a^{2} b^{3} c^{8}\left(a^{2} b^{2} c^{9}+a^{2} b c^{11}+1\right)^{3}+1\right]
\end{gathered}
$$

and

$$
z \leqslant a c^{3}\left\{a b c^{5}\left[a^{2} b^{3} c^{8}\left(a^{2} b^{2} c^{9}+a^{2} b c^{11}+1\right)^{3}+1\right]+c\right\}^{2}+b c+c^{2} .
$$

From Theorem 1, we write the following corollary.
Corollary 1. Let $M=\max \{a, b, c\}$. Then any positive integral solution $(x, y, z)$ of (1) satisfies

$$
\max \{x, y, z\} \leqslant 3^{9} M^{128}
$$

Theorem 2. We have

$$
\sum_{n=1}^{\infty} \sum_{\substack{d \mid a n^{3}+c \\ d \equiv-b\\}} 1=N(a, b, c) .
$$

In 1984, H. W. Lenstra [2] proved:
For every real number $\alpha>1 / 4$, there exists a constant $\kappa(\alpha)$ with the following property. If $r, s$ and $N$ are integers such that $0 \leqslant r<s<N, s>N^{\alpha}$ and $\operatorname{gcd}(r, s)=1$, then there are at most $\kappa(\alpha)$ positive divisors of $N$ which are congruent to $r$ modulo $s$.

Also, in the same paper, he showed that if $\alpha>1 / 3$, then $\kappa(\alpha)=11$. In 2007, Coppersmith et al [1] showed that if $\alpha>0.331$, then $\kappa(\alpha)=32$. From this result, we can prove that if $n>2^{48} \max \{a, b\}^{48}$ and $b$ are any positive integers, then

$$
\sum_{\substack{\left.d \mid a n^{3}+c \\ d \equiv-b \\ d \bmod n\right)}} 1 \leqslant 32 .
$$

As an immediate consequence of Theorems 1 and 2, we get the following corollary.
Corollary 2. Let $M=\max \{a, b, c\}$. Then we have

$$
\sum_{\substack{d \mid a n^{3}+c \\ d \equiv-b \quad(\bmod n)}} 1=0 \quad \text { and } \quad \sum_{m=1}^{\infty} \sum_{\substack{d \mid a m^{3}+c \\ d \equiv-b(\bmod m)}} 1 \leqslant 3^{8} M^{128},
$$

where $n$ is any integer with $n>3^{4} M^{66}$.

## 2. Preliminaries

Let $(x, y, z)$ be any positive integral solution of equation (1). In this section, we shall prove some lemmas which are useful to prove the main results.
Lemma 1. If $\operatorname{gcd}(c, x)=1$, then $\operatorname{gcd}(b, x)=1$.
Proof. If $\operatorname{gcd}(b, x)=d$ for some integer $d$, then, by equation (1), we see that $d \mid c$ and hence $d \mid \operatorname{gcd}(x, c)=1$. This proves the lemma.

Lemma 2. Let $\operatorname{gcd}(x, c)=d$. Then we get the positive integers $x_{1}=x / d, y_{1}=$ $\operatorname{gcd}(b, d) y / d$ and $z_{1}=z d / \operatorname{gcd}(b, d)$ with $\operatorname{gcd}\left(x_{1}, c / d\right)=\operatorname{gcd}\left(a d^{2}, c / d\right)=1$, such that $(X, Y, Z)=\left(x_{1}, y_{1}, z_{1}\right)$ satisfies the equation

$$
\begin{equation*}
a d^{2} X^{3}+\frac{b}{\operatorname{gcd}(b, d)} Y+\frac{c}{d}=X Y Z \tag{2}
\end{equation*}
$$

Proof. Let $d=\operatorname{gcd}(x, c)$. Then by letting

$$
x_{1}=\frac{x}{d} \quad \text { and } \quad c_{1}=\frac{c}{d},
$$

from (1), we get,

$$
a x_{1} x^{2}+\frac{b y}{d}+c_{1}=x_{1} y z .
$$

Therefore

$$
\frac{b y}{d}=x_{1} y z-a x_{1} x^{2}-c_{1} .
$$

Since $x_{1} y z-a x_{1} x^{2}-c_{1}$ is an integer, $b y / d$ is a positive integer. Therefore $d \mid b y$. This implies that

$$
\left.\frac{d}{\operatorname{gcd}(b, d)} \right\rvert\, y
$$

Let $d_{1}=\operatorname{gcd}(b, d)$ and $y_{1}=\operatorname{gcd}(b, d) y / d$. So, the tuple $\left(x_{1}, y_{1}, z_{1}\right)$ satisfies

$$
a d^{2} x_{1}^{3}+\frac{b}{d}_{1} y_{1}+c_{1}=x_{1} y_{1} z_{1}
$$

where $z_{1}=z d / \operatorname{gcd}(b, d)$. Since $\operatorname{gcd}(a, c)=1$ and $c$ is square-free, we have $\operatorname{gcd}\left(a d^{2}, c_{1}\right)=1$ and $c_{1}$ is square-free.

In the above lemma, if we include the condition $c \mid b$, then we have the following result. This gives the converse part also.
Lemma 3. Consider equation (1) with $c \mid b$. Let $\operatorname{gcd}(x, c)=d$. Then we get the positive integers $x_{1}, y$ and $z$ with $\operatorname{gcd}\left(a d^{2}, c / d\right)=\operatorname{gcd}\left(x_{1}, c / d\right)=1$, such that $(X, Y, Z)=\left(x_{1}, y, z\right)$ satisfy the equation

$$
\begin{equation*}
a d^{2} X^{3}+\frac{b}{d} Y+\frac{c}{d}=X Y Z \tag{3}
\end{equation*}
$$

Conversely, if $(x, y, z)$ is a positive integral solution of equation (3), for some divisor $d$ of $c$ such that $\operatorname{gcd}(x, c / d)=1$, then $(d x, y, z)$ is a positive solution of equation (1).

Remark 1. Lemma 2 suggests that we can always take a positive solution $(x, y, z)$ of equation (1) with $\operatorname{gcd}(x, c)=1$. In this case, if the solution $(x, y, z)$ satisfies $x \leqslant f_{1}(a, b, c), y \leqslant f_{2}(a, b, c)$ and $z \leqslant f_{3}(a, b, c)$ for some polynomial functions $f_{i}$ 's in $a, b$ and $c$ with positive coefficients, then, in the general case, the solution ( $x^{\prime}, y^{\prime}, z^{\prime}$ ) of equation (1) satisfies $x^{\prime} \leqslant c f_{1}\left(a c^{2}, b, c\right), y^{\prime} \leqslant c f_{2}\left(a c^{2}, b, c\right)$ and $z^{\prime} \leqslant$ $c f_{3}\left(a c^{2}, b, c\right)$.

Remark 2. Since $y \mid\left(a x^{3}+c\right)$ and $(x z-b) \mid\left(a x^{3}+c\right)$, an upper bound of $x$ gives immediately upper bounds for $y$ and $z$ via $y \leqslant a x^{3}+c$ and $z \leqslant a x^{2}+c+b$.
Lemma 4. Assume that $\operatorname{gcd}(x, c)=1$. Then there exist positive integers $l$ and $r$ with $x l=b y+c$, such that $(X, Y, Z)=(l, y, r)$ satisfy the equation

$$
\begin{equation*}
c X^{3}+a b c^{2} Y+a c^{3}=X Y Z \tag{4}
\end{equation*}
$$

Proof. Since $\operatorname{gcd}(x, c)=1$, by Lemma 1, we have $\operatorname{gcd}(x, b)=1$. As $a x^{3}+b y+c=$ $x y z$, we see that $x \mid(b y+c)$ and $y \mid\left(a x^{3}+c\right)$. Therefore, let $l=(b y+c) / x$. Then $y \mid(x l-c)$. As, $y \mid\left(a x^{3}+c\right)$, we have $y \mid\left(c l^{3}+a c^{3}\right)$. Therefore $y \mid\left(c l^{3}+a b c^{2} y+a c^{3}\right)$. Also, as $l \mid(b y+c)$, we conclude that $l \mid\left(c l^{3}+a b c^{2} y+a c^{3}\right)$.

Let $\lambda=\operatorname{gcd}(l, y)$. Then, as $y \mid(x l-c)$, we have $\lambda \mid c$ and hence $\lambda \mid \operatorname{gcd}(y, c)$. Since $\operatorname{gcd}(x, c)=1$ and $\lambda \mid \operatorname{gcd}(y, c)$, we get $\lambda \mid a$. Hence $\lambda \mid \operatorname{gcd}(a, c)=1$. Therefore $\operatorname{gcd}(l, y)=1$. Then there exists a positive integer $r$ such that

$$
c l^{3}+a b c^{2} y+a c^{3}=l y r .
$$

This proves the lemma.
Lemma 5. Assume that $\operatorname{gcd}(x, c)=1$. Then there exists a positive integral solution $(l(x), y, l(z))$ of equation (4) satisfying the following;
(i) $x l(x)=b y+c$.
(ii) If $c l(x) \geqslant x$, then $l(z)>b$.
(iii) If $a x \geqslant l(x)$, then $z>b$.
(iv) If $x \geqslant(a c+2) /(2 a-1)$ and $l(x) \geqslant x+2$, then $z \leqslant a b$.
(v) If $l(x) \geqslant c+2$ and $x \geqslant l(x)+2$, then $l(z) \leqslant a b c^{2}$.

Proof. By Lemma 4, there exist positive integers $l(x)$ and $l(z)$ such that

$$
c l(x)^{3}+a b c^{2} y+a c^{3}=l(x) y l(z)
$$

and

$$
x l(x)=b y+c .
$$

This proves $(i)$.
Since $x l(x)=b y+c$ and $x \leqslant c l(x)$, we have $c \leqslant c l(x)^{2}-b y$. Suppose that $l(z) \leqslant b$. Then we get,

$$
c \leqslant c l(x)^{2}-b y \leqslant c l(x)^{2}-l(z) y=-\left(a b c^{2} y+a c^{3}\right) / l(x)<0
$$

which is a contradiction. This proves (ii).

Since $x l(x)=b y+c$ and $a x \geqslant l(x)$, we have $c \leqslant a x^{2}-b y$. Suppose that $z \leqslant b$. Then we get

$$
c \leqslant a x^{2}-b y \leqslant a x^{2}-z y=-(b y+c) / x<0
$$

which is a contradiction. This proves (iii).
Now, we put $y=(x l(x)-c) / b$ in $a x^{3}+b y+c=x y z$. Then we get,

$$
z=\left(\frac{a x^{2}+l(x)}{x l(x)-c}\right) b
$$

Therefore, to prove (iv), it is enough to prove that if

$$
x \geqslant \frac{a c+2}{2 a-1} \quad \text { and } \quad l(x) \geqslant x+2
$$

then,

$$
\left(\frac{a x^{2}+l(x)}{x l(x)-c}\right) \leqslant a
$$

Suppose that $\left(a x^{2}+l(x)\right) /(x l(x)-c)>a$. Then $l(x)<\left(a x^{2}+a c\right) /(a x-1)$. Since $x \geqslant(a c+2) /(2 a-1)$, we have $\left(a x^{2}+a c\right) /(a x-1) \leqslant x+2$. Hence, $l(x)<x+2$ which is a contradiction. Therefore,

$$
\left(\frac{a x^{2}+l(x)}{x l(x)-c}\right) \leqslant a
$$

Now, we shall assume that

$$
l(x) \geqslant c+2 \text { and } x \geqslant l(x)+2
$$

We prove that $l(z) \leqslant a b c^{2}$. Putting by $=l(x) x-c$ in

$$
c l(x)^{3}+a b c^{2} y+a c^{3}=l(x) y l(z)
$$

we get,

$$
l(z)=\left(\frac{l(x)^{2}+a c x}{x l(x)-c}\right) b c
$$

Therefore, to prove $(v)$, it is enough to prove that

$$
\left(\frac{l(x)^{2}+a c x}{x l(x)-c}\right) \leqslant a c
$$

Assume that $\left(l(x)^{2}+a c x\right) /(x l(x)-c)>a c$. Then, we get,

$$
x<\left(l(x)^{2}+c\right) /(l(x)-1) .
$$

Since $x \geqslant l(x)+2$, we get

$$
l(x)+2<\left(l(x)^{2}+c\right) /(l(x)-1)
$$

and hence

$$
l(x)<c+2
$$

a contradiction. Hence $(v)$ follows. This proves the lemma.

Lemma 6. For any non-zero integers $x, a$ and $c$, we have

$$
\operatorname{gcd}\left(a x^{2}+x-1, x^{2}-x-c\right) \quad \text { divides } \quad\left|a^{2} c^{2}-3 a c-a-c\right|
$$

and

$$
\operatorname{gcd}\left(a x^{2}+x+1, x^{2}+x-c\right) \quad \text { divides } \quad\left|a^{2} c^{2}+3 a c+a-c\right|
$$

Proof. Let $d=\operatorname{gcd}\left(a x^{2}+x-1, x^{2}-x-c\right)$. Then $d \mid\left(a x^{2}+x-1\right)$ and $d \mid\left(x^{2}-x-c\right)$. It is clear that if $q \mid A$ and $q \mid B$ for any integers $q, A$ and $B$, then $q \mid A-B$. From this argument, we have the first assertion. To get the second assertion, replace $x$ by $-x$ and $a$ by $-a$ in the first assertion and get the result.

## 3. Proof of Theorem 1

Proof. Let $(x, y, z)$ be any positive integral solution of equation (1). By Remark 1, it is enough to assume that $\operatorname{gcd}(x, c)=1$. Therefore, by Lemma 1, we have $\operatorname{gcd}(x, b)=1$.

Case 1: $z \leqslant a b$. Since $a x^{3}+c=(x z-b) y$, we get $(x z-b) \mid\left(a x^{3}+c\right)$. Since

$$
z^{3}\left(a x^{3}+c\right)=(x z-b)\left(a z^{2} x^{2}+a b x z+a b^{2}\right)+\left(c z^{3}+a b^{3}\right)
$$

we see that $(x z-b) \mid\left(c z^{3}+a b^{3}\right)$. Therefore

$$
(x z-b) \leqslant\left(c z^{3}+a b^{3}\right)
$$

From this, we observe that

$$
\begin{equation*}
x \leqslant c z^{2}+a b^{3}+b \leqslant a b^{3}+c a^{2} b^{2}+b . \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
y \leqslant a\left(a b^{3}+c a^{2} b^{2}+b\right)^{3}+c \tag{6}
\end{equation*}
$$

Case 2: $z>a b, l(x) \geqslant c+2$ and $x \geqslant l(x)+2$. Then, by Lemma 5, we have $l(z) \leqslant a b c^{2}$. Therefore, by replacing $a$ by $c, b$ by $a b c^{2}$ and $c$ by $a c^{3}$ in Case 1, we get,

$$
y<c\left(c\left(a b c^{2}\right)^{3}+a c^{5}\left(a b c^{2}\right)^{2}+a b c^{2}\right)^{3}+a c^{3}
$$

Thus, we get,

$$
\begin{equation*}
y \leqslant a c^{3}\left[a^{2} b^{3} c^{4}\left(a^{2} b^{2} c^{5}+a^{2} b c^{7}+1\right)^{3}+1\right] \tag{7}
\end{equation*}
$$

Since $x l(x)=b y+c$, we get,

$$
\begin{equation*}
x \leqslant a b c^{3}\left[a^{2} b^{3} c^{4}\left(a^{2} b^{2} c^{5}+a^{2} b c^{7}+1\right)^{3}+1\right]+c . \tag{8}
\end{equation*}
$$

Therefore, by Remark 2, we get

$$
\begin{equation*}
z \leqslant a\left\{a b c^{3}\left[a^{2} b^{3} c^{4}\left(a^{2} b^{2} c^{5}+a^{2} b c^{7}+1\right)^{3}+1\right]+c\right\}^{2}+b+c \tag{9}
\end{equation*}
$$

Case 3: $z>a b$ and, $l(x)<c+2$ or $x<l(x)+2$. Suppose that

$$
l(x)<c+2 .
$$

Then, by Remark 2, we have

$$
y \leqslant c(c+2)^{3}+a c^{3}
$$

Since $x \leqslant b y+c$, we have

$$
x \leqslant b\left[c(c+2)^{3}+a c^{3}\right]+c
$$

Next we shall assume that $x<l(x)+2$. By Lemma 4, there exists a positive integral solution $(l(x), y, l(z))$ of equation (4) satisfying $x l(x)=b y+c$. Since $z>a b$, by Lemma 5, we conclude that either

$$
x<\frac{a c+2}{2 a-1} \quad \text { or } \quad l(x)<x+2 .
$$

Consider the case $l(x)-2<x<l(x)+2$. Suppose that $x=l(x)$. Since $x l(x)=b y+c$, we get $x^{2}=b y+c$. Hence, $y=\left(x^{2}-c\right) / b$. Put this $y$ in $a x^{3}+b y+c=x y z$. Then we have

$$
z=\frac{b x(a x+1)}{x^{2}-c} .
$$

Since $\operatorname{gcd}(x, c)=1, \operatorname{gcd}\left(x, x^{2}-c\right)=1$. Hence $x^{2}-c \leqslant b(a x+1)$. That is, $x(x-a b) \leqslant b+c$. If $x>a b$, then $x \leqslant b+c$. Otherwise $x \leqslant a b$. Hence, $x \leqslant \max \{b+c, a b\}$.

Suppose that $x=l(x)+1$. Since $x l(x)=b y+c, b y+c=x(x-1)$ and so $y=\left(x^{2}-x-c\right) / b$ and putting this value in equation (1), we get

$$
\begin{equation*}
z=\frac{b\left(a x^{2}+x-1\right)}{x^{2}-x-c} \tag{10}
\end{equation*}
$$

By Lemma 6, we see that

$$
\operatorname{gcd}\left(a x^{2}+x-1, x^{2}-x-c\right) \quad \text { divides } \quad\left|a^{2} c^{2}-3 a c-a-c\right|
$$

Therefore, by equation (10), we get,

$$
x^{2}-x-c \leqslant b\left|a^{2} c^{2}-3 a c-a-c\right| .
$$

Thus, we get,

$$
x^{2}-x-c \leqslant\left|a^{2} b c^{2}-3 a b c-a b-c b\right| .
$$

Hence, we arrive at,

$$
x \leqslant\left|a^{2} b c^{2}-3 a b c-a b-c b\right|+c .
$$

Suppose that $l(x)=x+1$. Since $x l(x)=b y+c, b y+c=x(x+1)$ and so $y=\left(x^{2}+x-c\right) / b$. Put this value of $y$ in equation (1), we get

$$
z=\frac{b\left(a x^{2}+x+1\right)}{x^{2}+x-c}
$$

By Lemma 6, we get,

$$
x^{2}+x-c \leqslant b\left|a^{2} c^{2}+3 a c+a-c\right| .
$$

Therefore, we get

$$
x \leqslant\left[b\left|a^{2} c^{2}+3 a c+a-c\right|+c\right]^{1 / 2}
$$

By Remarks 1 and 2, and equations (10), (11) and (12), we get the bounds. This proves the theorem.

## 4. Proof of Theorem 2

Let $n$ be any positive integer. Let $d$ be a positive divisor of $a n^{3}+c$ such that $d \equiv-b(\bmod n)$. Then there exists a positive integer $m$ such that $d=m n-b$. Since $(m n-b) \mid\left(a n^{3}+c\right)$, there is a positive integer $y$ such that $a n^{3}+c=(m n-b) y$ which in turn satisfies $a n^{3}+b y+c=m y n$. That is, for a positive divisor $d$ of $a n^{3}+c$ with $d \equiv-b(\bmod n)$, we get a positive integral solution $(n, y, m)$ of (1). Indeed, for any two distinct positive divisors $d_{1}$ and $d_{2}, d_{1} \equiv-b(\bmod n)$ and $d_{2} \equiv-b(\bmod n)$, of $a n^{3}+c$, we get distinct positive integral solutions of (1). Therefore, we get,

$$
\sum_{n=1}^{\infty} \sum_{\substack{d \mid a n^{3}+c \\ d \equiv-b \\(\bmod n)}} 1 \leqslant N(a, b, c)
$$

For the other inequality, let $(n, y, z)$ be a positive integral solution of (1). Then we see that $(n z-b)$ divides $a n^{3}+c$ and $n z-b$ is positive as $y$ and $a n^{3}+c$ are positive. By letting $d=n z-b$, we get a positive divisor of $a n^{3}+c$ which is $\equiv-b$ $(\bmod n)$. Thus, we get,

$$
N(a, b, c) \leqslant \sum_{n=1}^{\infty} \sum_{d \mid a n^{3}+c} 1
$$

These inequalities prove the theorem.

## References

[1] D. Coppersmith, N. Howgrave-Graham, S.V. Nagaraj, Divisors in residue classes, constructively, Math. Comp. 77 (261) (2008), 531-545.
[2] H.W. Lenstra, Divisors in residue classes, Math. Comp. 42 (165) (1984), 331-340.
[3] F. Luca, A. Togbé, On the positive integral solution of the diophantine equation $x^{3}+b y+1-x y z=0$, Bull. Malays. Math. Sci. Soc. 31(2) (2008), 129-134.
[4] S.P. Mohanty, On the diophantine equation $x^{3}+y+1-x y z=0$, Math. Student 45 (1977), no. 4, (1979) 13-16.
[5] S.P. Mohanty, A.M.S. Ramasamy, On the positive solution of the diophantine equation $x^{3}+b y+1-x y z=0$, Bull. Malays. Math. Sci. Soc. 7(2) (1984), 23-28.
[6] S.P. Mohanty, A.M.S. Ramasamy, On the positive solution of the diophantine equation $a x^{3}+b y+c-x y z=0$, J. Indian Math. Soc. (N.S.) 62 (1996), 210-214.
[7] S. Subburam, On the positive integral solutions of the diophantine equation $x^{3}+b y+1-x y z=0$, Ramanujan J. 32(2) (2013), 203-219.
[8] S. Subburam, R. Thangadurai, On the diophantine equation $x^{3}+b y+1=x y z$, C. R. Math. Rep. Acad. Sci. Canada 36(1), (2014), 15-19.
[9] A. Togbé, On the positive integral solutions of the diophantine equation $x^{3}+$ $b y+4-x y z=0$, Afr. Diaspora J. Math. 8(1) (2009), 81-89.
[10] W.R. Utz, Positive solutions of the diophantine equation $x^{3}+2 y+1-x y z=0$, Internat. J. Math. Math. Sci. 5(2) (1982), 311-314.

Addresses: Sivanarayanapandian Subburam: Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai, 600 113, India;
Ravindrananathan Thangadurai: Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019, India.
E-mail: ssubburam@imsc.res.in, thanga@hri.res.in
Received: 7 November 2014; revised: 4 March 2015


[^0]:    2010 Mathematics Subject Classification: primary: 11D25; secondary: 11D45

