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SET OF UNIQUENESS OF SHIFTED GAUSSIAN PRIMES

Jay Mehta, G.K. Viswanadham

Abstract: In this paper, we show that any additive complex valued function over non-zero
Gaussian integers which vanishes on the shifted Gaussian primes is necessarily identically zero.
Keywords: additive functions, shifted Gaussian primes, set of uniqueness.

1. Introduction

A function f : N→ R is said to be additive if

f(mn) = f(m) + f(n) (1)

for all m,n ∈ N with (m,n) = 1 and is said to be completely additive if (1) holds
for all m,n ∈ N. Let A and A∗ denote the set of all such additive and completely
additive functions respectively.

A set A ⊂ N is said to be a set of uniqueness for additive (or completely
additive) functions if for all f ∈ A (or A∗), we have

f(A) = {0} ⇒ f(N) = {0} i.e. f ≡ 0.

The notion of the set of uniqueness was introduced by I. Kátai (see [10]).
A set A ⊂ N is said to be a set of quasi-uniqueness if there exists a suitable finite

set B ⊂ N such that A∪B is a set of uniqueness. Let P denote the set of rational
primes. I. Kátai [10] proved that the set P + 1 := {p+ 1 | p ∈ P} is a set of quasi-
uniqueness assuming validity of the Riemann-Piltz conjecture. In [11], he again
proved the same result without using any unproven hypothesis and conjectured
that P + 1 is in fact a set of uniqueness. Using sieve methods, P.D.T.A. Elliott
proved a stronger result ([1], Theorem 2) that settled the conjecture of Kátai
completely.

D. Wolke [16] proved that, in the case of completely additive functions, every
n ∈ N can be expressed as a finite product of rational powers of elements of a set
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of uniqueness A. More precisely, a set A ⊂ N is a set of uniqueness with respect to
completely additive functions if and only if each positive integer n can be written
as

n = ar11 · · · akrk ; (ai ∈ A, ri ∈ Q, 1 6 i 6 k, k ∈ N0).

Many other interesting results related to behaviour of arithmetical functions
at shifted primes can be found in the literature, for example Hildebrand [7],
Elliott [2, 3], Wirsing [15], etc.

J. Mehta and G. K. Viswanadham [12] extended the notion of the set of unique-
ness for completely additive complex valued functions over non-zero Gaussian in-
tegers. The authors proved the set P [i]+1 := {p+1 | p ∈ P[i]}, where P[i] denote
the set of all Gaussian primes, is a set of quasi-uniqueness for completely additive
complex valued functions over the set of Gaussian integers. However their proof
can be made to work for any shift k, k ∈ Z[i], by choosing the finite set of Gaussian
primes appropriately.

In this paper, we prove a stronger result which would imply that the set of
shifted Gaussian primes is a set of uniqueness for additive functions. More pre-
cisely, we have the following theorem:

Theorem 1. Let N ∈ N and let f : Z[i]∗ → C be an additive function such that
f(p+1) = 0 for all Gaussian primes p with N(p) > N , then f ≡ 0 (f is identically
zero).

The basic idea of the proof of the above theorem comes from Elliott [1]. Note
that the above theorem is very strong in the sense that here we consider just
additive functions instead of completely additive functions. Further, we assume
that f vanishes only on Gaussian primes with sufficiently large norm rather than
assuming on all shifted primes.

Corollary 1. The set P[i] + 1 is a set of uniqueness for additive functions over
Z[i]∗.

As a consequence of Theorem 1, along the lines of D. Wolke’s result mentioned
earlier, we have the following corollary:

Corollary 2. Every α ∈ Z[i]∗ can be written in the following form:

α =

k∏
j=1

(pj + 1)lj ,

where pj ∈ P[i] and lj ∈ Q.

2. Preliminaries

In this section, we will state some lemmas which will be used in the proof of the
main theorem.
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Let Φ denote the Euler’s phi function for the ring of Gaussian integers, defined by
Φ(α) := # (Z[i]/(α))

∗, for α ∈ Z[i]∗. One can see that

Φ(α) = N(α)
∏
p|α

p∈P[i]

(
1− 1

N(p)

)
.

Throughout this paper, we assume that for any additive function f over Z[i]∗ and
for any unit ε in Z[i], f(ε) = 0. Let µ denote the Möbius function on Gaussian
integers defined in the same way as the standard Möbius function µ. Let πQ[i](x)
denote the number of Gaussian primes p with N(p) 6 x and we have

πQ[i](x) = 1 + 2π(x, 1, 4) + π(

√
x,−1, 4) ∼ x

log x
, (2)

where π(x, a, q) denotes the number of rational primes p 6 x such that p ≡ a
(mod q). For d, l ∈ Z[i] such that (d, l) = 1 and x ∈ R, let

πQ[i](x, d, l) :=
∑

p∈P[i],N(p)6x
p≡d (mod l)

1.

Then for each non-zero Gaussian integer d, clearly

πQ[i](x, d, l)� 1 +
x

d
. (3)

Let E∗(x, d) := sup(l,d)=1 supy6x

∣∣∣πQ[i](y, d, l)− Li(y)
Φ(d)

∣∣∣. Then clearly,

E∗(x, d)� 1 +
x

Φ(d)
. (4)

Lemma 1.
∑

N(d)6x
1
5 (log x)3

E∗(x, d)� x(log x)−5.

Proof. The proof follows from the corollary of Theorem 3 in [9]. �

Lemma 2. Let M(x, k) denote the number of pairs of primes (p, q) satisfying the
conditions p+ 1 = kq, N(p) 6 x. Then

M(x, k)� x

Φ(k) log2 x
.

Proof. See Lemma 2.1. of [12]. �

Lemma 3. Let 0 < δ < 1. Then for any d ∈ Z[i] with N(d) 6 x1−δ,

πQ[i](x, d,−1)�δ
x

Φ(d) log x
.

Proof. The proof is a particular case of Theorem 4 in [8]. �
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Let x be a sufficiently large positive real number and let d be a non-zero
Gaussian integer. Let

N(d, x) = #

{
(p, q) ∈ P[i]× P[i]

∣∣∣∣ p+1=d(q+1),
(d,q+1)=1

N(p)6x, x
1
6<N(q)<x

1
5

}
. (5)

Lemma 4. For all Gaussian integers d with N(d) 6 x
5
6 , we have

N(d, x)� x

N(d)(log x)2

∏
p|d(d−1)

(
1− 1

N(p)

)−1

.

Proof. By using the Selberg sieve for algebraic number fields in [13], one can
easily deduce the lemma along the lines of Theorem 2.3 in [6]. �

3. Proof of Theorem 1

Let N(d, x) be as in (5). Before we begin the proof of the theorem we obtain the
following estimate.

Lemma 5. ∑
x

3
5<N(d)<x

5
6

N(d,x)>0

1

N(d)
� log x.

Proof. We have∑
x

3
5<N(d)<x

5
6

N(d, x) >
∑

x
1
6<N(q)<x

1
5

∑
x

4
5<N(p)<x

p≡−1 (mod q+1)

( p+1
q+1 ,q+1)=1

1

>
∑

x
1
6<N(q)<x

1
5

∑
N(p)<x

p≡−1 (mod q+1)

∑
r|( p+1

q+1 ,q+1)

µ(r)

− πQ[i](x
1
5 )πQ[i](x

4
5 )

>
∑

x
1
6<N(q)<x

1
5

∑
r|(q+1)

µ(r) Li(x)

Φ(r(q + 1))

−
∑

x
1
6<N(q)<x

1
5

∑
r|(q+1)

E∗(x, r(q + 1)) +O(x(log x)−2)

=
∑′

−
∑′′

+O(x(log x)−2).
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Now, we determine lower bound and upper bound for
∑′

and
∑′′

respectively.

∑′

= Li(x)
∑

x
1
6<N(q)<x

1
5

∑
r|(q+1)

1

N(r) N(q + 1)
∏
p|r(q+1)

(
1− 1

N(p)

)
= Li(x)

∑
x

1
6<N(q)<x

1
5

1

N(q + 1)

∑
r|(q+1)

µ(r)

N(r)
∏
p|(q+1)

(
1− 1

N(p)

)
> Li(x)

∑
x

1
6<N(q)<x

1
5

1

N(q + 1)

= Li(x) log
6

5
+O

(
x

(log x)2

)
. (6)

By using Lemma 1 and (4), we have

∑′′

=
∑

N(r)<(log x)3

∑
x

1
6<N(q)<x

1
5

E∗(x, r(q + 1))

+
∑

N(rs)<x
1
5

N(r)>(log x)3

(
1 +

x

Φ(r2s)

)
+

x

(log x)2

� x

(log x)2
+ x(log log x)2

∑
N(s)<x

1
5

1

N(s)

∑
y>N(s)>(log x)3

1

N(r2)

� x(log x)−
3
2 , (7)

since Φ(m)� m
(log logm)2 for m with sufficiently large norm. Hence,

∑
x

3
5<N(d)<x

5
6

N(d, x)� x

log x
. (8)

Applying Cauchy-Schwarz inequality we have,

∑
x

3
5<N(d)<x

5
6

N(d, x) 6

 ∑
x

3
5<N(d)<x

5
6

N(d,x)>0

1

N(d)


1
2  ∑

26N(d)6x
5
6

N(d)N2(d, x)


1
2

.

If we assume that ∑
26N(d)6x

5
6

N(d)N2(d, x)� x2

(log x)3
, (9)
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then we have

x

(log x)
�

∑
x

3
5<N(d)<x

5
6

N(d, x)�

 ∑
x

3
5<N(d)<x

5
6

N(d,x)>0

1

N(d)


1
2

x

(log x)
3
2

.

Hence, the lemma. So it suffices to prove (9). Define

η(d) = N(d)
1
2

∏
p|d

(
1− 1

N(p)

)−1

.

Then by Lemma 4, we have

∑
2<N(d)6x

5
6

N(d)N2(d, x)� x2

(log x)4

∑
26N(d)6x

5
6

η(d)η(d− 1).

Applying Cauchy-Schwarz inequality again and since η(d) is multiplicative, we
have

∑
2<N(d)6x

η(d)η(d− 1) 6

 ∑
N(d)6x

η2(d)

 1
2
 ∑

26N(d)6x

η2(d− 1)

 1
2

6
∏

N(p)6x

(1 + η2(p) + η2(p2) + · · · )

=
∏

N(p)6x

(
1 +

1

N(p)

(
1− 1

N(p)

)−5
)

�

 ∏
p∈P, p6x

p≡1 (mod 4)

(
1 +

1

p

)2


1
2 ∏

p∈P, p6x
p≡3 (mod 4)

(
1 +

1

p2

)

�
(
log2 x

) 1
2 = log x. �

Now, we give the proof of Theorem 1. Define

D(u) =
∑

x
3
5<N(d)6y
N(d,x)>0

1, β = sup
x

3
5<y6x

5
6

D(y)

y
. (10)
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Now, using Lemma 5 and integration by parts, we have

log x�
∑

x
3
5<N(d)<x

5
6

N(d,x)>0

1

N(d)
=

∑
x

3
5<n<x

5
6

N(d,x)>0
N(d)=n

an
n

=

∫ x
5
6

x
3
5

y−1dD(y)

= x−
5
6D(x−

5
6 ) +

∫ x
5
6

x
3
5

D(y)y−2dy

6 β + β

∫ x
5
6

x
3
5

y−1dy = β

(
1 +

(
5

6
− 3

5

)
log x

)
,

where an denotes the number of d with x
3
5 < N(d) < x

5
6 , N(d) = n. From the

definition of β it follows that there exists a constant c1 > 0 such that in each
interval (x

3
5 , x

5
6 ], there is a y0 such that D(y0) > c1y0. Choosing x aptly, we can

find a sequence {y}n such that D(yn) > c1yn. For each real number z and integer
n, define

Fn(z) =
1

πN(n)

∑
N(m)6n
|f(m)|6z

1.

Lemma 6. If
∑
f(p)6=0

1
N(p) diverges, then for each z we have

lim sup
δ→0+

lim sup
n→∞

(Fn(z + δ)− Fn(z − δ)) = 0.

Note: One can see that the converse is also true (see [4] for the classical case).
Before we prove the lemma, we state the following theorem.

Proposition 1. Let f : Z[i]∗ → C be an additive function such that
∑
f(p) 6=0
p∈P[i]

1
N(p)

diverges. Then to every ε > 0, there exists a 0 < δ < 1 such that if {ai}xi=1

is a sequence of Gaussian integers with N(a1) < N(a2) < · · · < N(ax) 6 n and
|f(ai)− f(aj)| < δ, then x < επn for sufficiently large n.

The proof of the above proposition for the functions f : N → C was given by
Erdös in [5]. The proof for the functions on non-zero Gaussian integers can be
found in [14].

Proof of Lemma 6. Assume that

lim sup
δ→0+

lim sup
n→∞

(Fn(z + δ)− Fn(z − δ)) > 0. (11)

Then we have to show that
∑
f(p)6=0

1
N(p) is convergent. Suppose on the contrary∑

f(p)6=0
1

N(p) diverges. Since (11) holds, there exists a decreasing sequence δ1 >
δ2 > · · · > 0 and a sequence z1(δ1), z2(δ2), . . . such that

lim sup
n→∞

(Fn(zk + δk)− Fn(zk − δk)) > γ > 0.
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Thus, we obtain a further sequence of integers n1 < n2 < · · · so that nl is suffi-
ciently large and Fnl(zk)− Fnl(zk) > γ

2 . Thus, the discs 1 6 N(m) 6 nl contains
at least π γ2nl Gaussian integers ai for which

|f(ai)− f(aj)| 6 δk,

which is a contradiction to Proposition 1 if we take ε = γ
2 . �

Now, we continue the proof of our theorem. In our case we take z = 0, so for
every δ > 0,

lim sup
n→∞

(Fn(δ)− Fm(−δ)) > lim sup
y0→∞

y−1
0 D(y0) > c1 > 0.

Thus from Lemma 6, it follows that f(p) = 0 for almost all Gaussian primes p.
Let N(q1) 6 N(q2) 6 · · · denote the Gaussian primes q with N(q) odd and for
which f(q) 6= 0. Let d be a fixed Gaussian integer. Let P be a sufficiently large
positive integer and let T (x) be the number of Gaussian primes p with N(p) 6 x
such that

p+ 1 = (1 + i)dk, (k, d(1 + i)) = 1

qi - k, ∀i
q - k, ∀q, N(q) 6 P

q2 - (p+ 1), ∀q, N(q) > P. (12)

Now, we obtain a lower bound for T (x). Let r be a positive integer. Define

Q = (1 + i)d

r∏
i=1

qi
∏

N(p)6P

p.

Let α be a real number such that 3
4 < α < 1. Then

T (x) >
∑

N(p)6x
p≡−1 (mod (1+i)d)

( p+1
(i+i)d

,Q)=1

1−
∑
i>r

∑
N(p)6x

p≡−1 (mod (1+i)dqi)

1−
∑

N(q)>P

∑
N(p)6x

p≡−1 (mod q2)

1

=
∑

N(p)6x
p≡−1 (mod (1+i)d)

∑
s|( p+1

(i+i)d
,Q)

µ(s)−
∑
i>r

N((1+i)dqi)6x
α

∑
N(p)6x

p≡−1 (mod (1+i)dqi)

1

−
∑
i>r

N((1+i)dqi)>x
α

∑
N(p)6x

p≡−1 (mod (1+i)dqi)

1−
∑

N(q)>P

∑
N(p)6x

p≡−1 (mod q2)

1

=
∑

1
−
∑

2
−
∑

3
−
∑

4
.
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Now, we estimate the above four sums.∑
1

=
∑

N(p)6x
p≡−1 (mod (1+i)d)

∑
s|( p+1

(i+i)d
,Q)

µ(s)

=
∑
s|Q

µ(s)
∑

N(p)6x
p≡−1 (mod (1+i)ds)

1

=
x

log x

∑
s|Q

µ(s)

Φ((1 + i)ds)
+ o

(
x

log x

)

> (1 + o(1))
x

log x

1

2 N(d)

∏
q-d(1+i)
q|Q

(
1− 1

N(q)

)
.

By Lemma 3,
∑

2
6 c3(α) x

log x

∑
i>r

1
Φ(qi)

.

An application of Lemma 2 gives∑
3
6

∑
N(p)6x

p+1=(1+i)dqim
N((1+i)dqi)>x

α

1 6
∑

N(m)6x1−α

∑
p+1=(1+i)dmq

N(p),N(q)6x

1

6
∑

N(D)6x2(1−α)

∑
p+1=Dq

N(p),N(q)6x

1� x

(log x)2

∑
N(D)6x2(1−α)

1

Φ(D)

� (1− α)
x

log x
.

Finally, ∑
4

=
∑

N(p)>P

∑
N(p)6x

p≡−1 (mod q2)

1

6
∑

P<N(q)6x
1
4

∑
N(p)6x

p≡−1 (mod q2)

1 +
∑

N(q)>x
1
4

∑
N(m)6x+1

m≡0 (mod q2)

1

� x

log x

∑
N(q)>P

1

N(q2)
+

∑
N(q)>x

1
4

x

N(q2)

� x

P log x
+O(x

3
4 ).

Let λ := lim infx→∞
T (x) log x

x . Using the above estimates and choosing P suffi-
ciently large, we get

λ >
∏

q-(1+i)d
q|Q

(
1− 1

N(q)

)
+O

(∑
i>r

1

N(qi)

)
+O(1− α) +O(P−1).
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Letting r →∞ and α→ 1−, it follows that

λ >
1

2 N(d)

∏
36N(q)6P

(
1− 1

N(q)

) ∞∏
i=1

(
1− 1

N(qi)

)
+O(P−1)

> c(logP )−1 +O(P−1) > 0.

Since we can find infinitely many Gaussian primes which satisfies all the con-
ditions of (12), we can choose a sufficiently large p ∈ P[i] such that

f((1 + i)d) + f(k) = f(p+ 1) = 0.

Since k is square free and has no prime factor of the form qi for which f(qi) 6= 0,
we have f(k) = 0 and hence f((1 + i)d) = 0 for every non-zero Gaussian integer d.
Taking d = (1+ i)n, n = 0, 1, 2, . . ., we have f((1+ i)n) = 0 for all n. Next, taking
d = qv for any Gaussian prime q with odd norm and any positive integer v, we get
f(d) = 0 by additivity of f .
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