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TAME KERNELS OF NON-ABELIAN GALOIS EXTENSIONS OF
NUMBER FIELDS OF DEGREE q3

Qianqian Cui, Haiyan Zhou

Abstract: Let E/F be a non-abelian Galois extension of number fields of degree q3. We give
some expressions for the order of the Sylow p-subgroup of tame kernel of E and some of its
subfields containing F , where p is a prime, q is an odd prime, p 6= q. As applications, we give
some results about the orders of the Sylow p-subgroups of tame kernels when E/Q(ζ3) is a Galois
extension of number fields with non-abelian Galois group of order 27.
Keywords: Tame kernels, non-abelian extensions of number fields.

1. Introduction

Let F be a number field, OF the ring of integers in F , K2(F ) the Milnor K-group
of F . The tame kernel of F is the kernel of the following map

τ = ⊕τp : K2(F )→
⊕

p−finite

k∗p,

where for every finite prime ideal p, kp is the residue field modulo p and
τp : K2(F )→ k∗p defined by

τp{a, b} ≡ (−1)vp(a)vp(b) a
vp(b)

bvp(a)
(mod p).

It is well-known that K2(OF ) called the tame kernel of F , is a finite abelian
group. The 2-primary part of the tame kernel K2(OF ) for number field F has
been intensively studied (See [3], [10]-[12]). There are also some results concerning
the p-primary part of the tame kernel when p is odd (See [1], [2], [15]-[17]).

There are various conjectures about the order of K2(OF ). Birch-Tate Conjec-
ture states that if F is a totally real number field, then

|K2(OF )| = ω2(F )|ζF (−1)|, (1.1)
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where ω2(F ) is the maximal order of the root of unity belonging to the compositum
of all quadratic extensions of F , and ζF (s) denotes the Dedekind zeta function of
F . By work on the main conjecture of Iwasawa theory (See [8]), the Birch-Tate
Conjecture was confirmed up to 2-torsion, and was confirmed for abelian extensions
F over Q (See [7], [14]).

Let E/F be a Galois extension of number fields with Galois group G. For every
cyclic subgroup H of G denote

cG(H) =
1

(G : H)

∑
H∗ cyclic, H⊆H∗⊆G

µ((H∗ : H)), (1.2)

where µ is the Möbius function. R. Brauer and S. Kuroda have independently
given the following multiplicative relations (See [4]):

ζF (s) =
∏

H cyclic, H⊆G

ζ
cG(H)

EH
(s). (1.3)

Throughout the paper we use the following notation:

• p is a prime, q is an odd prime.
• Cq is a cyclic group of order q.
• A(p) denotes the Sylow p-subgroup of a finite group A.
• |A| denotes the order of a finite group A.
• x =p y means vp(x) = vp(y), where x, y ∈ Z.
• 〈a〉 denotes the cyclic group generated by a.
• G1 = G1(q) = 〈g1, g2, g3|gq1 = gq2 = gq3 = 1, g2g1 = g1g2g3, g1g3 = g3g1, g2g3 =
g3g2〉.

• G2 = G2(q) = 〈g1, g2|gq
2

1 = 1, gq2 = 1, g2g1 = g1+q
1 g2〉.

Let E/Q be a Galois extension of number fields with Galois group Cq × Cq ×
· · · × Cq. In [15], Wu proved that (K2(OE))p =

⊕
(K2(Ok))p, where k runs over

all cyclic subfields of E, q is the degree of k over Q, and p 6= q is an odd prime. Let
E/F be a Galois extension of number fields with Galois group Cq × Cq. Denote
by K2(E/F ) the kernel of the map trE/F : K2(OE) → K2(OF ). In Section 2, by
the same approach as in [16], we prove that for every prime p (p 6= q),

K2(E/F )(p) ∼= K2(k0/F )(p)×K2(k1/F )(p)× · · · ×K2(kq/F )(p),

where ki/F (i = 0, 1, · · · , q) are all cyclic subextensions of E/F . This generalizes
Wu’s results when F 6= Q and the Galois group Gal(E/F ) is Cq × Cq.

From [5], we know that up to isomorphism the two non-abelian groups of order
q3 are G1 and G2, where q is an odd prime. In 1937, A. Scholz and H. Reichardt
proved the following results: For an odd prime q, every finite q−group occurs as
a Galois group over Q. In [9], Ivo M. Michailov and Nikola P. Ziapkov surveyed
the realizability of q−groups as Galois groups over arbitrary fields containing the
primitive q-th roots of unity. Furthermore, C. Jensen, A. Ledet and N. Yui exam-
ined the realizability of G1 as Galois group over arbitrary field in [6]. Let E/F
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be a Galois extension of number fields with Galois group G1 or G2. In Section 3,
we prove some relations between the order of the Sylow p-subgroup of tame kernel
of E and of some of its subfields. In particular, let E/Q be a Galois extension
of number fields with Galois group G1 or G2. Then E is a totally real number
field. Assuming the Birch-Tate Conjecture (1.1) and applying the Brauer-Kuroda
relations (1.3), we give some expressions for the order of tame kernel of E and
of some of its subfields. As applications, in section 4, we give some results about
the orders of the Sylow p-subgroups of tame kernels when E/Q(ζ3) is a Galois
extension of number fields with Galois group G1(3) or G2(3).

2. The tame kernels of bi-cyclic extensions of number fields

We begin with some preliminary results.
Let E/F be a finite extension of number fields. There exists a group homomor-

phism, called the transfer map and denoted by trE/F , mapping K2(E) into K2(F ).
An explicit description of this map is hard, but we list here some well-known facts
which will be the basis in this paper (See [16]).

(1) Let j : K2F → K2E denote the canonical map, which is induced by F ⊂ E,
then

trE/F (j(α)) = α[E:F ], for all α ∈ K2(F ).

(2) If L is an intermediate field of E/F , then trE/F = trL/F · trE/L.
(3) If E/F is a Galois extension with Galois group G, then

j(trE/F (α)) = NE/F (α) = α

∑
σ∈G

σ

, for all α ∈ K2(E).

(4) If j : K2F → K2E and trE/F : K2E → K2F are restricted to the groups
K2(OE), K2(OF ), then the analogues of (1), (2) and (3) hold for these
groups as well.

Obviously, the Sylow p-subgroup K2(E/F )(p) of K2(E/F ) is the kernel of the
map trE/F : K2(OE)(p)→ K2(OF )(p).

Lemma 1 ([16]). Let E/F be a Galois extension of number fields, then for ev-
ery prime p - (E : F ), j : K2(OF )(p) → K2(OE)(p) is injective, the transfer
trE/F : K2(OE)(p) → K2(OF )(p) is surjective, and K2(OE)(p) ∼= K2(E/F )(p) ×
K2(OF )(p).

Theorem 1. Let E/F be a Galois extension of number fields with Galois group
Cq × Cq = 〈a〉 × 〈b〉. Its non-trivial subgroups are: 〈a〉, 〈ab〉, 〈a2b〉, · · · , 〈aq−1b〉,
〈b〉, and the corresponding fixed subfields are k0, k1, k2, · · · , kq−1, kq. Then for
every prime p, p 6= q,

K2(E/F )(p) ∼= K2(k0/F )(p)×K2(k1/F )(p)× · · · ×K2(kq/F )(p), (2.1)

and
|K2(OE)||K2(OF )|q =p |K2(Ok0)||K2(Ok1)| · · · |K2(Okq )|. (2.2)
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Proof. For every prime p, p 6= q, raising to the power q is an automorphism of
the p−part of any finite abelian group. So for every c ∈ K2(E/F )(p), there is an
unique element d ∈ K2(E/F )(p), such that c = dq.

From trE/F = trki/F · trE/ki , i = 0, 1, · · · , q, it follows that trE/ki(ker(trE/F )) ⊆
ker(trki/F ), hence trE/ki(K2(E/F )(p)) ⊆ K2(ki/F )(p).

From d ∈ K2(E/F )(p), we get

1 = trE/F (d) = d1+a+a2+···+aq−1+ab+a2b2+···+aq−1bq−1+···+bq−1

,

and

trE/k0(d) = d1+a+a2+···+aq−1

∈ K2(k0/F )(p),

trE/ki(d) = d1+aib+(aib)2+···+(aib)q−1

∈ K2(ki/F )(p), i = 1, 2, · · · , q.

We define

ϕ : K2(E/F )(p)→ K2(k0/F )(p)×K2(k1/F )(p)× · · · ×K2(kq/F )(p)

by

ϕ(c) = (d1+a+a2+···+aq−1

, d1+ab+a2b2+···+aq−1bq−1

, · · · , d1+b+b2+···+bq−1

).

Obviously, ϕ is a homomorphism.
If ϕ(c) = 1, then

d1+a+a2+···+aq−1

= d1+aib+(aib)2+···+(aib)q−1

= 1, i = 1, 2, · · · , q.

Hence

c = dq = dq · trE/F (d)

= d1+a+a2+···+aq−1

· d1+ab+a2b2+···+aq−1bq−1

· · · d1+b+b2+···+bq−1

= 1,

so ϕ is injective.
For every bi ∈ K2(ki/F )(p), i = 0, 1, · · · , q, there exists di ∈ K2(ki/F )(p) such

that bi = dqi . Since d0 is fixed by a, di is fixed by aib, i = 1, 2, · · · , q, we get

d1+a+a2+···+aq−1

0 = dq0 = b0,

d
1+aib+(aib)2+···+(aib)q−1

i = dqi = bi, i = 1, 2, · · · , q.

Hence taking d := d0d1 · · · dq and c := dq, we have

ϕ(c) =
(
d1+a+a2+···+aq−1

, d1+ab+a2b2+···+aq−1bq−1

, · · · , d1+b+b2+···+bq−1
)

=
(
d1+a+a2+···+aq−1

0 , d1+ab+a2b2+···+aq−1bq−1

1 , · · · , d1+b+b2+···+bq−1

q

)
=
(
b0, b1, · · · , bq

)
,

so ϕ is surjective.



Tame kernels of non-abelian Galois extensions of number fields of degree q3 339

Therefore we have proved (2.1). By (2.1), we have

|K2(E/F )| =p |K2(k0/F )||K2(k1/F )| · · · |K2(kq/F )| (2.3)

By Lemma 1, we have |K2(OE)| =p |K2(E/F )||K2(OF )|, and

|K2(Oki)| =p |K2(ki/F )||K2(OF )|, i = 0, 1, · · · , q.

Substituting this in (2.3) proves (2.2). �

Remark. When F = Q in Theorem 1, E is a totally real abelian number field of
degree q2. We assume that

ω2(E) = ω2(Q) = ω2(ki) = 24, i = 0, 1, · · · , q.

By the Birch-Tate Conjecture (1.1) and the Brauer-Kuroda relations (1.3), one
has

|K2(OE)| =
|K2(Ok0)||K2(Ok1)| · · · |K2(Okq )|

2q
.

3. The tame kernels of non-abelian extensions of number fields
of degree q3

Let E/F be a Galois extension of number fields with Galois group G1 or G2. In
this section, we give some expressions for the order of the Sylow p-subgroup of
tame kernel of E and of some of its subfields containing F .

Applying the standard methods of group theory (See [5]), we firstly get the
following basis information about G1.

G1 has q2 + q+ 1 subgroups of order q which belong to q+ 2 conjugate classes,
and every conjugate class has q subgroups except the third class:

• 〈g1〉, 〈g1g3〉, · · · , 〈g1g
q−1
3 〉;

• 〈g2〉, 〈g2g3〉, · · · , 〈g2g
q−1
3 〉;

• 〈g3〉 is a normal subgroup;
• 〈g1g

i
2〉, 〈g2

1g
2i
2 〉, · · · , 〈g

q−1
1 g

(q−1)i
2 〉, 〈g1g

i
2g3〉, i = 1, 2, · · · , q − 1.

G1 has q + 1 subgroups of order q2: 〈g1〉 × 〈g3〉, 〈g2〉 × 〈g3〉, 〈g1g
i
2〉 × 〈g3〉,

i = 1, 2, · · · , q − 1, and all of them are isomorphic to Cq × Cq.
We denote by EH the subfield of E fixed by the subgroup H.

Theorem 2. Let E/F be a Galois extension of number fields with Galois group
G1, its subgroups as stated above. Then for every prime p, p 6= q,

|K2(OE)|q+1|K2(OF )|q
2

=p

 ∏
j=1,2

|K2(OE〈gj〉)|
q

 |K2(OE〈g3〉)|

×
∏

i=1,2,··· ,q−1

|K2(OE〈g1gi2〉)|
q. (3.1)
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Proof. Since E/F is a Galois extension, by Galois theory, E/E〈g1〉×〈g3〉,
E/E〈g2〉×〈g3〉, E/E〈g1gi2〉×〈g3〉 and E〈g3〉/F are Galois extensions with Galois group
Cq × Cq, where i = 1, 2, · · · , q − 1.
〈g1〉, 〈g1g3〉, · · · , 〈g1g

q−1
3 〉 are conjugate subgroups, so they have isomorphic

fixed fields. From Theorem 1, it is clear that

|K2(OE)||K2(OE〈g1〉×〈g3〉)|
q =p |K2(OE〈g1〉)|

q|K2(OE〈g3〉)|. (3.2)

Similarly,

|K2(OE)||K2(OE〈g2〉×〈g3〉)|
q =p |K2(OE〈g2〉)|

q|K2(OE〈g3〉)|, (3.3)

|K2(OE)||K2(OE〈g1gi2〉×〈g3〉)|
q =p |K2(OE〈g1gi2〉)|

q|K2(OE〈g3〉)|,

i = 1, 2, · · · , q − 1, (3.4)

|K2(OE〈g3〉)||K2(OF )|q =p

 ∏
j=1,2

|K2(OE〈gj〉×〈g3〉)|


×

∏
i=1,2,··· ,q−1

|K2(OE〈g1gi2〉×〈g3〉)|. (3.5)

We can get (3.1) easily by raising both sides of (3.5) to the power q and com-
paring it with (3.2), (3.3), (3.4). This completes the proof. �

Next, we consider the other non-abelian group of order q3, and give the follow-
ing basis information.

G2 has q + 1 subgroups of order q which belong to 2 conjugate classes:

(1) 〈gq1〉 is a normal subgroup;

(2) 〈g2〉, 〈gq1g2〉, 〈g2q
1 g2〉, · · · , 〈g(q−1)q

1 g2〉 are conjugate subgroups.

G2 has q+1 subgroups of order q2: 〈g1〉, 〈g1g2〉, 〈g2
1g2〉, · · · , 〈gq−1

1 g2〉 and 〈gq1〉×
〈g2〉, where 〈gq1〉 × 〈g2〉 is isomorphic to Cq × Cq.

Theorem 3. Let E/F be a Galois extension with Galois group G2, its subgroups
as stated above. Then for every prime p, p 6= q,

|K2(OE)||K2(OF )|q
2

|K2(OE〈gq1〉)|
q−1 =p

 ∏
j=1,2

|K2(OE〈gj〉)|
q

 (3.6)

×
∏

i=1,2,··· ,q−1

|K2(OE〈gi1g2〉)|
q.

Proof. Since E/F is a Galois extension, by Galois theory, E/E〈gq1〉×〈g2〉 and
E〈gq1〉/F are Galois extensions with Galois group Cq × Cq.
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From Theorem 1, it is clear that

|K2(OE)||K2(OE〈gq1〉×〈g2〉)|
q =p |K2(OE〈g2〉)|

q|K2(OE〈gq1〉)|, (3.7)

|K2(OE〈gq1〉)||K2(OF )|q =p |K2(OE〈g1〉)||K2(OE〈gq1〉×〈g2〉)|

×
∏

i=1,··· ,q−1

|K2(OE〈gi1g2〉)|. (3.8)

We can get (3.6) easily by raising both sides of (3.8) to the power q and com-
paring it with (3.7). This completes the proof. �

Remark. When F = Q in Theorem 2 and Theorem 3, E is a totally real non-
abelian number field of degree q3. One has the Brauer-Kuroda relations

ζq+1
E (s)ζq

2

Q (s) = ζqE〈g1〉
(s)ζqE〈g2〉

(s)ζE〈g3〉(s)
∏

i=1,··· ,q−1

ζqE〈g1gi2〉
(s), (3.9)

where Gal(E/Q) = G1, and

ζE(s)ζq
2

Q (s)ζq−1
E〈gq1〉

(s) = ζqE〈g1〉
(s)ζqE〈g2〉

(s)
∏

i=1,··· ,q−1

ζqE〈gi1g2〉
(s), (3.10)

where Gal(E/Q) = G2. We assume that ω2(•) is equal to 24, where • runs over
all fields in (3.9) and (3.10). Applying the Birch-Tate Conjecture (1.1), by (3.9)
and (3.10), one has, for every prime p 6= 2,

|K2(OE)|q+1 =p |K2(OE〈g1〉)|
q|K2(OE〈g2〉)|

q|K2(OE〈g3〉)|

×
∏

i=1,2,··· ,q−1

|K2(OE〈g1gi2〉)|
q, (3.11)

where Gal(E/Q) = G1. And

|K2(OE)||K2(OE〈gq1〉)|
q−1 =p |K2(OE〈g1〉)|

q|K2(OE〈g2〉)|
q

×
∏

i=1,2,··· ,q−1

|K2(OE〈gi1g2〉)|
q, (3.12)

where Gal(E/Q) = G2.

Combining (3.11) (3.12) with (3.1) (3.6), we have

|K2(OE)|q+1|K2(OQ)|q
2

=

 ∏
j=1,2

|K2(OE〈gj〉)|
q

 |K2(OE〈g3〉)|

×
∏

i=1,2,··· ,q−1

|K2(OE〈g1gi2〉)|
q,
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where Gal(E/Q) = G1. And

|K2(OE)||K2(OQ)|q
2

|K2(OE〈gq1〉)|
q−1 =

 ∏
j=1,2

|K2(OE〈gj〉)|
q


×

∏
i=1,2,··· ,q−1

|K2(OE〈gi1g2〉)|
q,

where Gal(E/Q) = G2.

4. Applications

Let σ and τ be generators for Cq × Cq. Then G1 (or G2) maps onto Cq × Cq
by π : g1 7→ σ, g2 7→ τ , and we can consider G1-extension (or G2-extension) by
looking at embeddings along π.

Let M/F be a Galois extension of number fields with Galois group Cq ×Cq. If
the primitive q-th roots of unity µq are contained in F ∗, then by Kummer Theory,
we have

M = F ( q
√
a,

q
√
b),

where a, b ∈ F ∗ are q-independent, i.e., the classes of a and b are linearly indepen-
dent in F ∗/(F ∗)q. We pick a primitive q-th root of unity ζ, and define σ and τ in
Cq × Cq = Gal(M/F ) by

σ : q
√
a 7→ ζ q

√
a, q
√
b 7→ q

√
b,

τ : q
√
a 7→ q

√
a, q

√
b 7→ ζ q

√
b.

Lemma 2 ([6]). Let M/F be a Cq × Cq-extension as above. Then
(1) M/F can be embedded into a G1-extension along π if and only if b is a norm

in F ( q
√
a)/F . Furthermore, if b = NF ( q

√
a)/F (z) for some z ∈ F ( q

√
a),

the embeddings along π are M/F ⊆ F ( q
√
rω, q
√
b)/F for r ∈ F ∗, where

ω = zq−1σzq−2 · · ·σq−2z;
(2) M/F can be embedded into a G2-extension along π if and only if bζ is a norm

in F ( q
√
a)/F . Furthermore, if bζ = NF ( q

√
a)/F (z) for some z ∈ F ( q

√
a), the

embeddings along π areM/F ⊆ F ( q
√
a, q
√
b,

q

√
r q
√
a
−1
ω)/F for r ∈ F ∗, where

ω = zq−1σzq−2 · · ·σq−2z.

Example 1. Let F = Q(ζ3). Take a = ζ3, then Q(ζ3, 3
√
a) is the ninth cyclotomic

field Q(ζ9). Next we take z = ζ9 + 2 ∈ Q(ζ9), and get

b = z · σz · σ2z = ζ3 + 8.

From Lemma 2 (1), we know Gal(Q(ζ9,
3
√
ζ3 + 8, 3

√
ω)/Q(ζ3)) = G1(3), where

w = z2σz = ζ6
9 + 4ζ5

9 + 4ζ4
9 + 2ζ2

9 + 8ζ9 + 8, and

g1 : ζ9 7→ ζ4
9 ,

3
√
ζ3 + 8 7→ 3

√
ζ3 + 8, 3

√
ω 7→

3
√
ζ3+8
ζ9+2

3
√
ω,

g2 : ζ9 7→ ζ9,
3
√
ζ3 + 8 7→ ζ3

3
√
ζ3 + 8, 3

√
ω 7→ 3

√
ω,

g3 : ζ9 7→ ζ9,
3
√
ζ3 + 8 7→ 3

√
ζ3 + 8, 3

√
ω 7→ ζ3 3

√
ω.
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Let E = Q(ζ9,
3
√
ζ3 + 8, 3

√
ω), we have

E〈g1〉×〈g3〉 = F (
3
√
b) = Q(ζ3,

3
√
ζ3 + 8) := F1,

E〈g2〉×〈g3〉 = F ( 3
√
a) = Q(ζ9) := F2,

E〈g1g2〉×〈g3〉 = F (
3
√
a2b) = Q(ζ3,

3

√
1 + 8ζ2

3 ) := F3,

E〈g1g22〉×〈g3〉 = F (
3
√
ab) = Q(ζ3,

3

√
ζ2
3 + 8ζ3) := F4,

E〈g3〉 = F ( 3
√
a,

3
√
b) = Q(ζ9,

3
√
ζ3 + 8) := F5.

{1, g2, g
2
2}, {1, g2g3, g

2
2g

2
3} and {1, g2g

2
3 , g

2
2g3} are conjugate subgroups, so they

have isomorphic fixed fields

E〈g2〉
∼= E〈g2g3〉

∼= E〈g2g23〉 = F ( 3
√
a, 3
√
w) = Q(ζ9,

3
√
ω) := F6.

From lemma 2 (1), F ( 3
√
a, 3
√
b)/F can be embedded into an G1(3)-extension

E/F , we can get a is a norm in F ( 3
√
b)/F , i.e., there is an element z1 ∈ F ( 3

√
b)

such that a = NF (
3√
b)/F (z1). Take ω1 = z2

1τz1, then

E〈g1〉
∼= E〈g1g3〉

∼= E〈g1g23〉 = F (
3
√
b, 3
√
w1) = Q(ζ3,

3
√
ζ3 + 8, 3

√
ω1) := F7.

Similarly, a = N
F (

3√
a2b)/F

(z2)(z2 ∈ F (
3
√
a2b)), ω2 = z2

2τz2,

E〈g1g2〉
∼= E〈g1g2g3〉

∼= E〈g1g2g23〉 = F (
3
√
a2b, 3
√
w2) = Q(ζ3,

3

√
1 + 8ζ2

3 ,
3
√
ω2) := F8.

And a = NF (
3√
ab)/F (z3)(z3 ∈ F ( 3

√
ab)), ω3 = z2

3τz3,

E〈g1g22〉
∼= E〈g1g22g3〉

∼= E〈g1g22g23〉 = F (
3
√
ab, 3
√
w3) = Q(ζ3,

3

√
ζ2
3 + 8ζ3, 3

√
ω3) := F9.

It is well-known that K2(OQ(ζ3)) is trivial ([3] and [13]). From Theorem 2, we
get, for every prime p 6= 3,

|K2(OE)||K2(OF1
)|3 =p |K2(OF7

)|3|K2(OF5
)|,

|K2(OE)||K2(OF2
)|3 =p |K2(OF6

)|3|K2(OF5
)|,

|K2(OE)||K2(OF3
)|3 =p |K2(OF8

)|3|K2(OF5
)|,

|K2(OE)||K2(OF4)|3 =p |K2(OF9)|3|K2(OF5)|,
|K2(OF5)| =p |K2(OF1)||K2(OF2)||K2(OF3)||K2(OF4)|,

and

|K2(OE)|4 =p |K2(OF7)|3|K2(OF6)|3|K2(OF5)||K2(OF8)|3|K2(OF9)|3.
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Example 2. Let F = Q(ζ3). Take a = ζ3, then Q(ζ3, 3
√
a) = Q(ζ9). Next we take

z = ζ9 + 2 ∈ Q(ζ9), and get

b = ζ−1
3 zσzσ2z = 1 + 8ζ2

3 .

From Lemma 2 (2), we knowGal(Q(ζ9,
3
√

1 + 8ζ2
3 ,

3

√
ζ−1
9 ω)/Q(ζ3)) = G2(3), where

w = z2σz = ζ6
9 + 4ζ5

9 + 4ζ4
9 + 2ζ2

9 + 8ζ9 + 8, and

g1 : ζ9 7→ ζ4
9 ,

3
√

1 + 8ζ2
3 7→ 3

√
1 + 8ζ2

3 ,
3

√
ζ−1
9 ω 7→

3
√

1+8ζ23
ζ9+2

3

√
ζ−1
9 ω,

g2 : ζ9 7→ ζ9,
3
√

1 + 8ζ2
3 7→ ζ3

3
√

1 + 8ζ2
3 ,

3

√
ζ−1
9 ω 7→ 3

√
ζ−1
9 ω.

Let E = Q(ζ9,
3
√

1 + 8ζ2
3 ,

3

√
ζ−1
9 ω), we have

E〈g1〉 = F (
3
√
b) = Q(ζ3,

3

√
1 + 8ζ2

3 ) := F1,

E〈g31〉×〈g2〉 = F ( 3
√
a) = Q(ζ9) := F2,

E〈g1g2〉 = F (
3
√
a2b) = Q(ζ3,

3

√
ζ2
3 + 8ζ3) := F3,

E〈g21g2〉 = F (
3
√
ab) = Q(ζ3,

3
√
ζ3 + 8) := F4,

E〈g31〉 = F ( 3
√
a,

3
√
b) = Q(ζ9,

3

√
1 + 8ζ2

3 ) := F5,

and

E〈g2〉
∼= E〈g31g2〉

∼= E〈g61g2〉 = F (ζ9,
3

√
ζ−1
9 ω) = Q(ζ9,

3

√
ζ−1
9 ω) := F6.

From Theorem 3, we get, for every prime p 6= 3,

|K2(OE)||K2(OF2
)|3 =p |K2(OF6

)|3|K2(OF5
)|,

|K2(OF5
)| =p |K2(OF1

)||K2(OF2
)||K2(OF3

)||K2(OF4
)|,

and

|K2(OE)||K2(OF5
)|2 =p |K2(OF1

)|3|K2(OF6
)|3|K2(OF3

)|3|K2(OF4
)|3.
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