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TAME KERNELS OF NON-ABELIAN GALOIS EXTENSIONS OF
NUMBER FIELDS OF DEGREE ¢3

QIANQIAN Cul, HAIYAN ZHOU

Abstract: Let E/F be a non-abelian Galois extension of number fields of degree ¢3. We give
some expressions for the order of the Sylow p-subgroup of tame kernel of E and some of its
subfields containing F', where p is a prime, ¢ is an odd prime, p # ¢. As applications, we give
some results about the orders of the Sylow p-subgroups of tame kernels when E/Q(¢3) is a Galois
extension of number fields with non-abelian Galois group of order 27.
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1. Introduction

Let F be a number field, O the ring of integers in F', K5(F') the Milnor K-group
of F. The tame kernel of F is the kernel of the following map

T =71, K3(F) — @ k,

p—finite

where for every finite prime ideal p, k, is the residue field modulo p and
7 ¢ Ka(F) — ky defined by

a’r (b)

= (—1)v»(@)vp(b)
TP{avb} = ( 1) " " poe (@)

(mod p).

It is well-known that K5(Op) called the tame kernel of F, is a finite abelian
group. The 2-primary part of the tame kernel K5(Op) for number field F' has
been intensively studied (See [3], [10]-[12]). There are also some results concerning
the p-primary part of the tame kernel when p is odd (See [1], [2], [15]-[17]).

There are various conjectures about the order of Ko(Op). Birch-Tate Conjec-
ture states that if F'is a totally real number field, then

[K2(0p)| = w2 (F)[¢r(—1)], (1.1)
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where wy (F') is the maximal order of the root of unity belonging to the compositum
of all quadratic extensions of F', and (r(s) denotes the Dedekind zeta function of
F. By work on the main conjecture of Iwasawa theory (See [8]), the Birch-Tate
Conjecture was confirmed up to 2-torsion, and was confirmed for abelian extensions
F over Q (See [7], [14]).

Let E/F be a Galois extension of number fields with Galois group G. For every
cyclic subgroup H of G denote

ca(H) = S ), (12)

(G : H) H* cyclic, HCH*CG

where p is the Mdbius function. R. Brauer and S. Kuroda have independently
given the following multiplicative relations (See [4]):

)= I ™). (1.3)

H cyclic, HCG

Throughout the paper we use the following notation:

p is a prime, ¢ is an odd prime.
C, is a cyclic group of order q.
A(p) denotes the Sylow p-subgroup of a finite group A.
|A| denotes the order of a finite group A.
x =, y means vp(z) = v,(y), where z,y € Z.
(a) denotes the cyclic group generated by a.
G1=G1(q) = (91,92, 93l91 = 95 = 95 = 1, 9201 = 919293, 9193 = 9391, 9293 =
g392)- )

o Gy =Ga(q) = (91,02l97 = 1,98 = 1,9001 = 91 "g0).

Let E/Q be a Galois extension of number fields with Galois group Cy x Cy x

. In [15], Wu proved that (K2(Og)), = @(K2(Ok))p, where k runs over

all cychc subfields of E, ¢ is the degree of k over Q, and p # ¢ is an odd prime. Let
E/F be a Galois extension of number fields with Galois group C, x C,. Denote
by K»(£/F') the kernel of the map trg,p : K2(Op) — K2(OF). In Section 2, by
the same approach as in [16], we prove that for every prime p (p # q),

Ky(E/F)(p) = Ka(ko/F)(p) x Ko(k1/F)(p) % - -+ x Ka(kq/F)(p),

where k;/F (i =0,1,--- ,q) are all cyclic subextensions of E/F. This generalizes
Wu’s results when F' # Q and the Galois group Gal(E/F) is Cy x Cy.

From [5], we know that up to isomorphism the two non-abelian groups of order
q® are G and Gy, where ¢ is an odd prime. In 1937, A. Scholz and H. Reichardt
proved the following results: For an odd prime ¢, every finite g—group occurs as
a Galois group over Q. In [9], Ivo M. Michailov and Nikola P. Ziapkov surveyed
the realizability of ¢g—groups as Galois groups over arbitrary fields containing the
primitive ¢-th roots of unity. Furthermore, C. Jensen, A. Ledet and N. Yui exam-
ined the realizability of G; as Galois group over arbitrary field in [6]. Let E/F
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be a Galois extension of number fields with Galois group G or G. In Section 3,
we prove some relations between the order of the Sylow p-subgroup of tame kernel
of E and of some of its subfields. In particular, let E/Q be a Galois extension
of number fields with Galois group G1 or G2. Then E is a totally real number
field. Assuming the Birch-Tate Conjecture (1.1) and applying the Brauer-Kuroda
relations (1.3), we give some expressions for the order of tame kernel of E and
of some of its subfields. As applications, in section 4, we give some results about
the orders of the Sylow p-subgroups of tame kernels when E/Q((3) is a Galois
extension of number fields with Galois group G1(3) or G2(3).

2. The tame kernels of bi-cyclic extensions of number fields

We begin with some preliminary results.

Let E/F be a finite extension of number fields. There exists a group homomor-
phism, called the transfer map and denoted by trg,r, mapping K(E) into Ky (F).
An explicit description of this map is hard, but we list here some well-known facts
which will be the basis in this paper (See [16]).

(1) Let j : KoF — K5 F denote the canonical map, which is induced by F C E,
then
trg/r(j(a)) = B Fl for all @ € Ko(F).
(2) If L is an intermediate field of E/F, then trg,p = tr/p-trg, L.
(3) If E/F is a Galois extension with Galois group G, then

S o
Jj(trg p(a)) = Ng p(a) = asc¢ | for all a € Ky(E).

(4) If j : KoF — KoF and trg/p : KoFE — KoF are restricted to the groups
K5(Og), K2(Op), then the analogues of (1), (2) and (3) hold for these
groups as well.

Obviously, the Sylow p-subgroup Ko(E/F)(p) of K3(E/F) is the kernel of the
map trg/r : K2(Ogp)(p) = K2(OF)(p).
Lemma 1 ([16]). Let E/F be a Galois extension of number fields, then for ev-
ery prime p ¥ (E : F), j : K2(Op)(p) — K2(Og)(p) is injective, the transfer
trp/p : Ka(Op)(p) = Ka(Or)(p) is surjective, and K>(Op)(p) = K(E/F)(p) %
K2(OF)(p)-
Theorem 1. Let E/F be a Galois extension of number fields with Galois group
Cy x Cy = (a) x (b). Its non-trivial subgroups are: (a), {ab), (a?b), ---, (a?"'D),
(by, and the corresponding fived subfields are ko, k1, ko, -+, kq—1, kq. Then for
every prime p, p # q,

Ky(E/F)(p) = Ka(ko/F)(p) x Ka(k1/F)(p) x -+ x Ka(kq/F)(p), (2.1)

and
|K2(Op)||K2(OF)|* =p [K2(Ok,)|[K2(Ok, )| - - - | K2(Ok, )| (2.2)
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Proof. For every prime p, p # g, raising to the power ¢ is an automorphism of
the p—part of any finite abelian group. So for every ¢ € Ky(FE/F)(p), there is an
unique element d € Ky(E/F)(p), such that ¢ = d?.
From trg,p = trg, ) p - trg/p,, 1 =0,1,--- , g, it follows that trg ), (ker(trg,r)) C
ker(try, /r), hence trg i, (K2(E/F)(p)) € Ka(ki/F)(p).
From d € Ko(E/F)(p), we get
1= trE/F(d) _ d1+a+a2+.~+aq*1+ab+a2b2+~.+a‘1*1b‘1*1+~-+b‘1*1

)

and
0k (d) = dHF 0 € K (ko [ F) (),
trp, (d) = dHHOVTEDTE @O @ g (kR (p),  i=1,2,-- 4.
We define
¢ Ko(E/F)(p) — Ka(ko/F)(p) x Ko(ki/F)(p) x - x Ka(ke/F)(p)
by

)

o(c) = (dl-ira-s-az+~~+a‘?*1 gitabta®b?otaT T d1+b+b2+~~~+bq*1)
) ) *

Obviously, ¢ is a homomorphism.
If p(c) =1, then

dirata’tetat™h _ glaab(ath) he (@t T g 1=1,2,--

Hence

Cc = dq = dq . tI‘E/F(d)
_ d1+a+a2+---+a‘1*1 _d1+ab+a2b2+~-+a‘1*1bq*1 ._.d1+b+b2+-~+bq*1 -1

)

so @ is injective.
For every b; € Ka(k;/F)(p),i=0,1,--- ,q, there exists d; € K5(k;/F)(p) such
that b; = d. Since dy is fixed by a, d; is fixed by a'b, i = 1,2,--- , ¢, we get

It+ata®+-+a®"" _ jq _
dO a+a a — dO — bo,

14+a’d+(a’b) 4+ +(a’b) 27! .
d; (a’t) (a’b) =d! =, i=1,2,---,q.
Hence taking d := dod; - - - dq and ¢ := d?, we have
2, ... qg—1 232, ... g—1l3q9—1 2, ... qg—1
o(c) = (d1+a+a +ta ’d1+ab+a b24-4a?1p o i )

_ (d(1)+a+a2+m+a%1 d%+ab+a2b2+~~+aq’1b“’l d1+b+b2+---+bq4)
) 7 q

)

Z(bo,b1,---,bq),

So  is surjective.
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Therefore we have proved (2.1). By (2.1), we have
[ (E/F)| =p [Ka(ko/F)|[Ka(k1/F)|- - | K2(ke/ F))| (2.3)
By Lemma 1, we have |K2(Og)| =, |K2(E/F)||K2(OF)|, and

|K2(Ok1)

=p [Ka(ki/ F)||K2(OF)[,  i=0,1,---q.
Substituting this in (2.3) proves (2.2). |

Remark. When F = Q in Theorem 1, F is a totally real abelian number field of
degree ¢?. We assume that

wa(E) = wa(Q) = walks) = 24, i=0,1,---,q.

By the Birch-Tate Conjecture (1.1) and the Brauer-Kuroda relations (1.3), one

has
K Or(J K O 1 M K O q
‘P.’Q(O )| | 2( k )|| 2( 2/2)| | 2( k )|

3. The tame kernels of non-abelian extensions of number fields
of degree ¢

Let E/F be a Galois extension of number fields with Galois group G; or G2. In
this section, we give some expressions for the order of the Sylow p-subgroup of
tame kernel of E and of some of its subfields containing F'.

Applying the standard methods of group theory (See [5]), we firstly get the
following basis information about Gj.

G1 has g% + g+ 1 subgroups of order ¢ which belong to g+ 2 conjugate classes,
and every conjugate class has g subgroups except the third class:

* (91); (9193), -+, <glg§:>;
b <g2>7 <9293>a Ty <929;(31 >;
e (g3) is a normal subgroup;
i i — —1)7 i .
L4 <9192>a<g%g% >7 ﬂ<g(11 1g§q ) >7<919293>7Z:1727"' 7q_1

G4 has ¢ + 1 subgroups of order ¢%: (g1) x (g3), (g2) x (g3}, (9165) x {(g3),
t=1,2,---,q9—1, and all of them are isomorphic to C; x C,.
We denote by Ep the subfield of E fixed by the subgroup H.

Theorem 2. Let E/F be a Galois extension of number fields with Galois group
Gy, its subgroups as stated above. Then for every prime p, p # q,

K2(Op) " E(0R)” =, | [] 1K2(Or,,,)I" | 1K2(On,,,,)l

7j=1,2

X H ‘KQ(OE

i=1,2, ,q—1

) (3.1)

(919%)
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Proof. Since E/F is a Galois extension, by Galois theory, E/E(gyx (g:);
E/E (g, (g5): B/ E(g,giyx (gs) and (g /F are Galois extensions with Galois group
Cy x Cy, wherei =1,2,--- ,¢—1.

(91), {g193), -, <g1g§71> are conjugate subgroups, so they have isomorphic
fixed fields. From Theorem 1, it is clear that

|K2(0E)||K2(OE<QI>><<Q3> )|q ~p ‘K2(0E<gl> )|q|K2(OE<g3> )| (32)
Similarly,

|K2(Op)|[K2(0F ), ()| =p [K2(OF,,,, || K2(OF,,,)l, (3.3)
| K2(Ogp)||K2(Or )N =y |K2(Op N K2(Og,,, ),

i=1,2,--,q—1, (3.4)

(919%)%x(g3) (919%)

|K2(Op,,, 1 K2(OR) =, | ] 1K2(08,, .0,

7j=1,2

X H |K2(OE

=12, ,q—1

)|- (3.5)

(919%) x (g3)

We can get (3.1) easily by raising both sides of (3.5) to the power ¢ and com-
paring it with (3.2), (3.3), (3.4). This completes the proof. |

Next, we consider the other non-abelian group of order ¢*, and give the follow-
ing basis information.
G2 has ¢ 4+ 1 subgroups of order g which belong to 2 conjugate classes:

(1) (g%) is a normal subgroup;
(2) (g2), (9792), (97%g2), -+ (ggq_l)qgg) are conjugate subgroups.
G has g+ 1 subgroups of order ¢*: {g1), (g192), (g3g2), " - , (gf_lgg> and (g7) x
o), where (g?) x (gs) is isomorphic to C, x C,.
9 91 g 4 g

Theorem 3. Let E/F be a Galois extension with Galois group Ga, its subgroups
as stated above. Then for every prime p, p # q,

K208 |[K2(OR) [ K205, I = | [T 1K2(O, I (3.6)
j=1,2
X H |K2(OE<gigz>)‘q'
=12, -1

Proof. Since E/F is a Galois extension, by Galois theory, E/E,,,) and
E<gg)/F are Galois extensions with Galois group Cy x Cy.
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From Theorem 1, it is clear that

|Ka(Op)|[K>(On,yy, )T =5 |Ka(O,
K2 (O, MIK2(Op)|" =, |K2(O,

11>(O ), (3.7)
||K2(OE<9;’> X (g2) )l
x 11 [K2(Op,, )l (3.8)

92))

91>)

)

We can get (3.6) easily by raising both sides of (3.8) to the power ¢ and com-
paring it with (3.7). This completes the proof. |

Remark. When F' = Q in Theorem 2 and Theorem 3, F is a totally real non-
abelian number field of degree ¢*. One has the Brauer-Kuroda relations

F)CE (5) = b, (5)Ch, (e () T G (), (39)

. (919%)
i=1,,q—
where Gal(E/Q) = Gy, and
Co(8)CE (5)CE (5 = Ch, , (5)CE, () 1H 14%@1.92) (), (3.10)
=1 g

where Gal(E/Q) = G3. We assume that ws(e) is equal to 24, where e runs over
all fields in (3.9) and (3.10). Applying the Birch-Tate Conjecture (1.1), by (3.9)
and (3.10), one has, for every prime p # 2,

‘KQ(OE”(]JA =p |K2(OE<g1> )‘q‘KQ(OEQm) )|q|K2(OE<y3>)|
X H |[K2(0g, )Y, (3.11)

=12, q—1

(9195)

where Gal(E/Q) = G;. And
| K2(0p)[|K2(Op,,)|" " =p [K2(Ok,,,) )| K2(O,

x I K208,

1=1,2,---,q—1

92>)|q

) (3.12)

(af)

9i92)

where Gal(E/Q) = Gs.
Combining (3.11) (3.12) with (3.1) (3.6), we have

|K2(0p)|"K2(00)|" = | ] [K2(Og,, )" | [K2(0g,,, )l

7j=1,2

X H |K2(OE

=12, ,q—1

)|,

(919%)
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where Gal(E/Q) = G;. And

[K2(0) 1K2(00) | KO )7 = | [T 1K2(Os,, )

§=1,2

S |

1=1,2,---,9-1

where Gal(E/Q) = Ga.

4. Applications

Let o and 7 be generators for Cy x Cy. Then Gi (or G2) maps onto Cy x Cy
by 7 : g1 — 0,92 — 7, and we can consider Gi-extension (or Ga-extension) by
looking at embeddings along .

Let M/F be a Galois extension of number fields with Galois group C, x C,. If
the primitive g-th roots of unity p, are contained in F™*, then by Kummer Theory,
we have

M = F(\q/a7 \LI/Z;)?
where a,b € F* are g-independent, i.e., the classes of a and b are linearly indepen-
dent in F*/(F*)?. We pick a primitive g-th root of unity ¢, and define o and 7 in
Cyq x Cqy = Gal(M/F) by

o:far CYa, Vb Vb,
T a Ya, Vb (Vb
Lemma 2 ([6]). Let M/F be a Cyq x Cy-extension as above. Then

(1) M/F can be embedded into a G1-extension along 7 if and only if b is a norm
in F(a)/F. Furthermore, if b = Np(ggy/p(2) for some z € F({/a),

the embeddings along © are M/F C F({/rw,¥/b)/F for r € F*, where
w=20"1g2172. .. 00172;

(2) M/F can be embedded into a Ga-extension along w if and only if b¢ is a norm
in F(/a)/F. Furthermore, if b( = Np(gay/p(2) for some z € F(/a), the

embeddings along 7 are M/F C F(/a, /b, /74 a_lw)/F forr € F*, where
w=21"tgz172... 0172,
Example 1. Let F = Q((3). Take a = (3, then Q((3, ¥/a) is the ninth cyclotomic
field Q(C9). Next we take z = (g + 2 € Q({y), and get

b=z -0z-0%2=(3+8.

From Lemma 2 (1), we know Gal(Q({o, ¥/Cs + 8, Jw)/Q(¢3)) = G1(3), where
w= 2202 = (§ + 45 +4¢5 +2¢2 + 8(o + 8, and

- - 3 9
GGG, VT8 VG +8,  we Y,

g2:C =G, VE+8— V(3 +8 Yw— Y,
g3:C—Co, VG+8— VG+8,  Yw— (Yw.
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Let E = Q(¢o, v/C3 + 8, Jw), we have

Elgyx(ge) = F(V) = Q(Cs, /3 + 8) = I,
E<92)><<93> = F(\g/a) = Q({o) := Fy,
E<9192>X<93> = F( v a2b) Q(C?n M) - F37
E(glg§> X(gs) — F( v ab) = Q(G3, M) = Fy,
= F(Ya, Vb) = Q(Co, /s + 8) := Fs.

{1, 92,93}, {1, 9293, 9393} and {1, 9293, g5g3} are conjugate subgroups, so they
have isomorphic fixed fields

Elgy) = Elgygs) = Elg,g2) = F(Va, Vw) = Q(lg, Vw) := Fs.
From lemma 2 (1), F(/a, V/b)/F can be embedded into an G(3)-extension

E/F, we can get a is a norm in F(v/b)/F, i.e., there is an element z; € F(/b)
such that a = NF({”/E)/F(Zl)' Take wy = 2721, then

Elg) = Elgigs) = Elgig2y = F(Vb, Y/w1) = Q(Gs, ¥/Cs + 8, wn)

Similarly, @ = Np g/a, p(22) (22 € F(Va?b)), wy = 2372,

Il

E( E<919293> = E(gu}zg%) = F( 3” a2b7 \/3 w2) = (C37 v 1 + SC \/3 w )

g192)

And a = Ny g5,/ p(23)(23 € F(Vab)), wg = 23723,

I

Ey Elgi0205) = Etgrage2) = F(Vab, §/ws) = Q(Cs, {/ 3 + 8Cs, {fws) =

It is well-known that K5(Og(c,)) is trivial ([3] and [13]). From Theorem 2, we
get, for every prime p # 3,

9193)

|K2(Op)|| K2 (Or, )|* =p [K2(O,) [’ | K2(OF, )],
|Ka(Op)||K2(OR,)|* =p [K2(Or,)|*[K2(OF,)],
|K2(Op)||K2(Or,)|* = [ Ka(OR) P | K2 (O, ),
|K2(Op)||Ka(O,)|* =p [K2(OR,)[’|K2(OF, )|,

|K2(OF;)| =p |K2(OF,)||K2(OF, )| | K2(OR,) || K2(OF,)|,

and

|K2(0p)[* =, [ K2(0F) | K2(Or, ) P K2 (O, ) || K2(OF,) P K2(OR,) .
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Example 2. Let F' = Q((3). Take a = (3, then Q({s, ¢/a) = Q((9). Next we take
2= Go +2 € Q(Co), and get

b= (3 2020%2 =1+ 8¢

From Lemma 2 (2), we know Gal(Q(Co, ¥/1+8(3, {/¢y 'w)/Q((3)) = Go(3), where
w=z%0z = (§ + 4¢3 + 4¢5 + 2¢2 + 8(y + 8, and

_ 3/1+8¢2 _
G G YTHSG o VT8, (G e LG/,
921G G, V1483 = GY1+83, /G lwr {/Glw

Let E = Q(o, ¥/1+8C3, {/¢y 'w), we have

o = F(V5) = Q6. /1 +8¢3) = A,
E<q1 2 = F(Va) = Q() = F,
Eggy = F(Va2b) = Q(Gs, § VG +8G) = F,
EM = F(Vab) = Q((s, /s +8) := Fu,
5y = F(/a, Vb) = Q(Co, {/1+8¢3) := Fs,

and

Eigy) = Elg3g0) = E(gog,) = F(Co, \3/ o 'w) = Q(Co, \3/ (¢ 'w) = Fg.

From Theorem 3, we get, for every prime p # 3,

|K2(Op)||K2(OR,)|* =p |K2(OF,) |’ | K2(OR, )|,
|K2(OR,)| =p |K2(Or,)||K2(0F,) || K2(OF,) || K2(OF,)l,

and

|K2(Op)||K2(O,)|? =p |K2(Or, )’ | K2(OF,) P K2 (OF,)|*| K2 (OF, ) .
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