Functiones et Approximatio 51.1 (2014), 167–179 doi: 10.7169/facm/2014.51.1.9

ON THE IWASAWA λ -INVARIANT OF THE CYCLOTOMIC \mathbb{Z}_2 -EXTENSION OF $\mathbb{Q}(\sqrt{p})$ II

Takashi Fukuda, Keiichi Komatsu

Abstract: In the preceding papers, we studied the Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_2 extension of $\mathbb{Q}(\sqrt{p})$ for an odd prime number p using certain units and the invariants $n_0^{(r)}$ and n_2 .
In the present paper, we develop new criteria for Greenberg conjecture using $n_0^{(r)}$ and n_2 .

Keywords: Iwasawa invariant, cyclotomic unit, real quadratic field.

1. Introduction

We start with reviewing Iwasawa invariants and Greenberg conjecture. Let k be a finite algebraic number field, ℓ a prime number and

$$k = k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_\infty$$

the cyclotomic \mathbb{Z}_{ℓ} -extension of k with $G(k_n/k) \cong \mathbb{Z}/\ell^n \mathbb{Z}$. Let ℓ^{e_n} be the highest power of ℓ dividing the class number of k_n . Then Iwasawa [8, 9] proved that there exist rational integers $\mu_{\ell}(k) \ge 0$, $\lambda_{\ell}(k) \ge 0$ and $\nu_{\ell}(k)$ which realize the equality

$$e_n = \mu_\ell(k)\ell^n + \lambda_\ell(k)n + \nu_\ell(k)$$

for all sufficiently large n. Greenberg conjecture, which is still open, predicts that both $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish for any totally real number field k and for any prime number ℓ .

It is most fundamental to study Greenberg conjecture when k is a real quadratic field and $\ell = 2$. In this situation, $\mu_2(k)$ is known to be zero by Ferrero--Washington [1]. So we are interested in $\lambda_2(k)$. It is especially important to consider $\lambda_2(k)$ for $k = \mathbb{Q}(\sqrt{p})$ with prime number p. In the preceding paper [4],

²⁰¹⁰ Mathematics Subject Classification: primary: 11R23; secondary: 11Y40

we gave a sufficient condition for $\lambda_2(\mathbb{Q}(\sqrt{p})) = 0$ based on a property of units in k_n and verified that $\lambda_2(\mathbb{Q}(\sqrt{p})) = 0$ for all prime number p less than 10000. In the paper [3] following [4], one of the authors introduced the invariants $n_0^{(r)}$ and n_2 , which are analogous to those defined in [5], and verified that $\lambda_2(\mathbb{Q}(\sqrt{p})) = 0$ for all prime number p satisfying 10000 except <math>p = 13841.

In this paper, we develop new criteria for $\lambda_2(\mathbb{Q}(\sqrt{p})) = 0$ using $n_0^{(r)}$ and n_2 , which are deeply based on the structure of the unit group of k_n and show numerically $\lambda_2(k) = 0$ faster than known criteria.

2. Main Results

Let $k = \mathbb{Q}(\sqrt{p})$ be a real quadratic field with prime number p. If $p \not\equiv 1 \pmod{16}$, then it is known that $\lambda_2(k) = 0$ by [10]. So we assume hereafter that $p \equiv 1 \pmod{16}$.

We briefly recall the definitions of $n_0^{(r)}$ and n_2 . Let k_r be the *r*-th layer of the cyclotomic \mathbb{Z}_2 -extension of k, E_r the unit group of k_r , A_r the 2-part of the ideal class group of k_r and 2^{e_r} the order of A_r . Let \mathfrak{p} and \mathfrak{p}' be the prime ideals of k lying over 2 and \mathfrak{p}_r (resp. \mathfrak{p}'_r) the prime ideal of k_r lying over \mathfrak{p} (resp. \mathfrak{p}'). We define the subgroup D_r of A_r by $D_r = \langle \operatorname{cl}(\mathfrak{p}_r) \rangle \cap A_r$. Namely $D_r = \langle \operatorname{cl}(\mathfrak{p}_r^{h_k}) \rangle$, where h_k is the class number of k. For an element ε of E_0 which is not a root of unity, we define m_{ε} to be the maximal integer satisfying $\varepsilon^2 \equiv 1 \pmod{\mathfrak{p}^{m_{\varepsilon}+1}}$ and put

$$n_2 = \min\{ m_{\varepsilon} \mid \varepsilon \in E_0, \ \varepsilon \neq \pm 1 \}.$$

We note that n_2 is the maximal integer satisfying $\varepsilon_0^2 \equiv 1 \pmod{\mathfrak{p}^{n_2+1}}$, where ε_0 is the fundamental unit of k. Let d be the order of D_r and fix an element β of k_r such that

$$\mathfrak{p}_r^{\prime h_k d} = (\beta).$$

Then we define $m_{\beta,\varepsilon}$ to be the maximal integer satisfying $N_{k_r/k}(\beta^2 \varepsilon^2) \equiv 1 \pmod{\mathfrak{p}^{m_{\beta,\varepsilon}+1}}$ for an element ε in E_r and put

$$n_0^{(r)} = \min\{ m_{\beta,\varepsilon} \mid \varepsilon \in E_r \}.$$

We also put $n_0 = n_0^{(0)}$. We note that $n_0 \leq n_2$ and $n_0^{(r)} \geq r+2$ for all $r \geq 0$. Then our main results are stated in the following form.

Theorem 2.1. Assume that $e_1 = 1$ and $e_2 = 2$. If $n_0 < n_2$, then $\lambda_2(k) = 0$.

Theorem 2.2. Assume that $e_1 = 1$ and $e_2 = 2$. If $n_0^{(r-1)} = n_0^{(r)}$ for some $r \ge 1$, then $\lambda_2(k) = 0$.

Theorems 2.1 and 2.2 have the advantage of proving $\lambda_2(k) = 0$ numerically faster than Theorem 2.1 in [3]. We show numerical data for $k = \mathbb{Q}(\sqrt{p})$ with

prime number p satisfying $p \equiv 1 \pmod{16}$ and $2^{(p-1)/4} \equiv 1 \pmod{p}$. In [3], we showed a table for $10000 and verified that <math>\lambda_2(k) = 0$ except p = 13841. We now show data for 20000 .

Example 2.3. In the range $20000 , there are 73 k's which satisfy <math>e_1 = 1$, $e_2 = 2$ and $n_0 < n_2$. For these k's, we have $\lambda_2(k) = 0$ from Theorem 2.1.

Example 2.4. In the range 20000 $, there are 45 k's which satisfy <math>e_1 = 1$, $e_2 = 2$ and $n_0 = n_2$. For these k's we verified that the equality $n_0^{(r-1)} = n_0^{(r)}$ holds with some $r \leq 7$. Hence we conclude that $\lambda_2(k) = 0$ for these 45 k's from Theorem 2.2. We show two typical examples.

Let $k = \mathbb{Q}(\sqrt{20353})$. Then $e_1 = 1$, $e_2 = 2$, $n_0 = n_2 = 6$ and $n_0^{(1)} = 6$. Hence we can conclude $\lambda_2(k) = 0$ with calculation in k_1 . Theorem 2.1 in [3] needs calculation in k_4 .

Let $k = \mathbb{Q}(\sqrt{61297})$. Then $e_1 = 1$, $e_2 = 2$, $n_0 = n_2 = 4$ and $n_0^{(6)} = n_0^{(7)} = 10$. Hence we can conclude $\lambda_2(k) = 0$ with calculation in k_7 . Theorem 2.1 in [3] needs calculation in k_8 .

The proofs of Theorems 2.1 and 2.2 depend essentially on the structure of E_r . We start with explaining properties of E_r which are needed for our proof.

3. Cyclotomic Units

We study the relation between class numbers and cyclotomic units in the intermediate fields of the cyclotomic \mathbb{Z}_2 -extension of $k = \mathbb{Q}(\sqrt{p})$. Let $\zeta_n = \exp(2\pi\sqrt{-1}/n)$ and $\alpha_n = \zeta_{2^{n+2}} + \zeta_{2^{n+2}}^{-1}$. Then $\mathbb{Q}_n = \mathbb{Q}(\alpha_n)$ is a cyclic extension of \mathbb{Q} of degree 2^n and $k_n = k\mathbb{Q}_n$. Let $\mathbb{Q}_{\infty} = \bigcup_{n=0}^{\infty} \mathbb{Q}_n$, $k_{\infty} = \bigcup_{n=0}^{\infty} k_n$ and $G(k_{\infty}/\mathbb{Q}_{\infty}) = \langle \tau \rangle$. We fix the topological generator γ of $G(k_{\infty}/k)$ induced by $\zeta_{2^{n+2}} + \zeta_{2^{n+2}}^{-1} \mapsto \zeta_{2^{n+2}}^{-5} + \zeta_{2^{n+2}}^{-5}$. Let C_n be the unit group of \mathbb{Q}_n and E_n the unit group of k_n . We define the cyclotomic unit group S_n of k_n according to [11]. Let T_n be the subgroup of k_n^{\times} generated by -1 and $\{N_{\mathbb{Q}(\zeta_m)/k_n \cap \mathbb{Q}(\zeta_m)}(1-\zeta_m^a) \mid m, a \in \mathbb{Z}, m > 1, m \not| a\}$. Then S_n is defined to be $E_n \cap T_n$. An easy argument shows that T_n is equal to the subgroup of k_n^{\times} generated by -1 and $\{N_{\mathbb{Q}(\zeta_m)/k_n \cap \mathbb{Q}(\zeta_m)}(1-\zeta_m^a) \mid m, a \in \mathbb{Z}, m > 1, (a, m) = 1\}$. We are able to describe generators of S_n explicitly. Let ρ be the fundamental unit of $k = k_0$ and h_k the class number of k. Then [11, Theorem 4.1 and Theorem 5.1] implies $S_0 = \langle -1, \rho^{2h_k} \rangle$. Next let $c_n = 1 + \alpha_n$. It is straightforward to see that

$$N_{\mathbb{Q}_n/\mathbb{Q}_{n-1}}(c_n) = -c_{n-1} \qquad (n \ge 1) \tag{3.1}$$

and c_n is contained in C_n . We use the equality

$$\begin{split} c_n^2 &= (1+\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1})\zeta_{2^{n+2}}\zeta_{2^{n+2}}^{-1}(1+\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1}) \\ &= (1+\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{2})(1+\zeta_{2^{n+2}}^{-1}+\zeta_{2^{n+2}}^{-2}) \\ &= \frac{1-\zeta_{2^{n+2}}^3}{1-\zeta_{2^{n+2}}} \cdot \frac{1-\zeta_{2^{n+2}}^{-3}}{1-\zeta_{2^{n+2}}^{-1}} = \frac{N_{\mathbb{Q}(\zeta_{2^{n+2}})/\mathbb{Q}_n}(1-\zeta_{2^{n+2}}^{3})}{N_{\mathbb{Q}(\zeta_{2^{n+2}})/\mathbb{Q}_n}(1-\zeta_{2^{n+2}})} \end{split}$$

to see that $c_n^2 \in S_n$. Finally we let

$$\xi_n = N_{\mathbb{Q}(\zeta_{2^{n+2}p})/k_n} (1 - \zeta_{2^{n+2}} \zeta_p)$$

Then ξ_n is an integer of k_n satisfying $N_{k_n/\mathbb{Q}}(\xi_n) = 1$ and clearly contained in S_n . We define an element η_n of $\mathbb{Q}(\zeta_{2^{n+2}}\zeta_p)$ by

$$\eta_n = \zeta_{2^{n+2}}^{(p-1)/4} \prod_{x \in H} (\zeta_{2^{n+2}}^{-1} - \zeta_p^x),$$

where *H* is the subgroup of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ with index 2. Since the product running over $x \in H$ is the norm from $\mathbb{Q}(\zeta_{2^{n+2}}\zeta_p)$ to $k(\zeta_{2^{n+2}})$, η_n is contained in $k(\zeta_{2^{n+2}})$.

Lemma 3.1. One has $\eta_n \in E_n$ and $\xi_n = \eta_n^2$.

Proof. We write $\omega = \zeta_{2^{n+2}}$ and $\zeta = \zeta_p$. Note that $\prod_{x \in H} \zeta^x = N_{\mathbb{Q}(\zeta)/k}(\zeta)$ is a real *p*-th root of unity, hence is equal to 1. The complex conjugate of η_n is

$$\omega^{-(p-1)/4} \prod_{x \in H} (\omega - \zeta^{-x}) = \omega^{-(p-1)/4} \prod_{x \in H} \omega \zeta^{-x} (\zeta^x - \omega^{-1})$$
$$= \omega^{(p-1)/4} \prod_{x \in H} (\omega^{-1} - \zeta^x) = \eta_n,$$

implying $\eta_n \in k(\omega) \cap \mathbb{R} = k_n$. Next we have

$$\xi_n = N_{k(\omega)/k_n} N_{\mathbb{Q}(\omega,\zeta)/k(\omega)} (1 - \omega\zeta)$$

= $N_{k(\omega)/k_n} \left(\prod_{x \in H} (1 - \omega\zeta^x) \right)$
= $\prod_{x \in H} (1 - \omega\zeta^x) (1 - \omega^{-1}\zeta^{-x})$
= $\prod_{x \in H} \omega (\omega^{-1} - \zeta^x) \zeta^{-x} (\zeta^x - \omega^{-1})$
= $\omega^{\frac{p-1}{2}} \prod_{x \in H} (\omega^{-1} - \zeta^x)^2 = \eta_n^2.$

The straightforward calculation shows

$$N_{k_n/k_{n-1}}(\eta_n) = \eta_{n-1} \quad (n \ge 1)$$
(3.2)

because the assumption $p \equiv 1 \pmod{16}$ leads to $2 + p\mathbb{Z} \in H$. Now we get three cyclotomic units ρ^{2h} , c_n^2 and η_n^2 . In order to prove that conjugates of these units generate S_n , we need the following lemmas.

Lemma 3.2. Let e, f and m be positive integers with (m, 2p) = 1. Then, for any non-negative integer n, we have

$$k_n \cap \mathbb{Q}(\zeta_{2^e}) = k_n \cap \mathbb{Q}(\zeta_{2^e}, \zeta_m), \tag{3.3}$$

$$k_n \cap \mathbb{Q}(\zeta_p) = k_n \cap \mathbb{Q}(\zeta_{p^f}, \zeta_m), \tag{3.4}$$

$$k_n \cap \mathbb{Q}(\zeta_{2^e p}) = k_n \cap \mathbb{Q}(\zeta_{2^e p^f}, \zeta_m). \tag{3.5}$$

Proof. We put $K = \mathbb{Q}(\zeta_{2^e p^f})$ and $K' = \mathbb{Q}(\zeta_m)$ and show (3.5). The remaining assertions are proved similarly. Since $k_n K \cap K' = \mathbb{Q}$, we have

$$[k_n K K' : K'] = [k_n K : k_n K \cap K'] = [k_n K : \mathbb{Q}]$$
$$= [k_n K : K][K : \mathbb{Q}] = [k_n : k_n \cap K][K : \mathbb{Q}]$$

and

$$[k_n KK' : K'] = [k_n KK' : KK'][KK' : K'] = [k_n : k_n \cap KK'][K : \mathbb{Q}].$$

Hence we have $[k_n : k_n \cap K] = [k_n : k_n \cap KK']$, which implies $k_n \cap K = k_n \cap KK'$ by $k_n \cap K \subset k_n \cap KK'$. The equality $k_n \cap \mathbb{Q}(\zeta_{2^e p}) = k_n \cap \mathbb{Q}(\zeta_{2^e p^f})$ is a direct consequence of $[\mathbb{Q}(\zeta_{2^e p^f}) : \mathbb{Q}(\zeta_{2^e p})] = p^{f-1}$.

Lemma 3.3. Let ℓ be a prime number and m a positive integer prime to ℓ . For a positive integer e, we have

$$N_{\mathbb{Q}(\zeta_{\ell^e m})/\mathbb{Q}(\zeta_{\ell^{e-1}m})}(1-\zeta_{\ell^e}\zeta_m) = 1-\zeta_{\ell^e}^\ell \zeta_m^\ell \qquad (e \ge 2), \tag{3.6}$$

$$N_{\mathbb{Q}(\zeta_{\ell m})/\mathbb{Q}(\zeta_m)}(1-\zeta_{\ell}\zeta_m) = \frac{1-\zeta_m^c}{1-\zeta_m}.$$
(3.7)

Proof. We prove when ℓ is an odd prime number. The case $\ell = 2$ is proved in a similar manner. Since

$$X^{\ell} - \zeta_{\ell^e}^{\ell} = \prod_{\sigma \in G(\mathbb{Q}(\zeta_{\ell^e m})/\mathbb{Q}(\zeta_{\ell^{e-1}m}))} (X - \zeta_{\ell^e}^{\sigma})$$

is the minimal polynomial of ζ_{ℓ^e} over $\mathbb{Q}(\zeta_{\ell^{e-1}m})$, we have

$$\begin{split} \zeta_m^{-\ell} - \zeta_{\ell^e}^\ell &= N_{\mathbb{Q}(\zeta_{\ell^e m})/\mathbb{Q}(\zeta_{\ell^{e-1}m})}(\zeta_m^{-1} - \zeta_{\ell^e}) \\ &= N_{\mathbb{Q}(\zeta_{\ell^e m})/\mathbb{Q}(\zeta_{\ell^{e-1}m})}\zeta_m^{-1}(1 - \zeta_{\ell^e}\zeta_m) \\ &= \zeta_m^{-\ell}N_{\mathbb{Q}(\zeta_{\ell^e m})/\mathbb{Q}(\zeta_{\ell^{e-1}m})}(1 - \zeta_{\ell^e}\zeta_m), \end{split}$$

from which (3.6) follows. Similarly we have (3.7) from the minimal polynomial

$$\frac{X^{\ell}-1}{X-1} = \prod_{\sigma \in G(\mathbb{Q}(\zeta_{\ell m})/\mathbb{Q}(\zeta_m))} (X - \zeta_{\ell}^{\sigma})$$

of ζ_{ℓ} over $\mathbb{Q}(\zeta_m)$.

Proposition 3.4. The cyclotomic unit group S_n is generated by

$$\{-1, \rho^{2h_k}\} \cup \{c_n^{2\gamma^i} \mid 0 \le i \le 2^n - 2\} \cup \{\eta_n^{2\gamma^i} \mid 0 \le i \le 2^n - 2\}.$$

Proof. For a positive integer m, let

$$T'_{n,m} = \{ N_{\mathbb{Q}(\zeta_m)/k_n \cap \mathbb{Q}(\zeta_m)} (1 - \zeta_m^a) \mid a \in \mathbb{Z}, \ (a,m) = 1 \}$$

We define T'_n to be the subgroup of k_n^{\times} generated by

$$\{-1\} \cup T'_{n,p} \cup T'_{n,2^{n+2}} \cup T'_{n,2^{n+2}p}.$$

Let S'_n be the subgroup of S_n generated by the set stated in the proposition. Then $S'_n = E_n \cap T'_n$ and $T'_n \subset T_n$. Let m be any positive integer and $a \in \mathbb{Z}$ with (a,m) = 1. Then we factorize m and apply Lemmas 3.2 and 3.3 repeatedly for $N_{\mathbb{Q}(\zeta_m)/k_n \cap \mathbb{Q}(\zeta_m)}(1-\zeta_m^a)$. Finally we use the relations (3.1) and (3.2) and conclude that $T_n \subset T'_n$. This completes the proof.

We start with the subgroup

$$E'_n = \langle -1, \rho, c_n, c_n^{\gamma}, \cdots, c_n^{\gamma^{2^n-2}}, \eta_n, \eta_n^{\gamma}, \cdots, \eta_n^{\gamma^{2^n-2}} \rangle$$

of E_n and enlarge E'_n by finding square roots contained in E_n . Owing to the relations (3.1) and (3.2), E'_n is written also as

$$E'_{n} = \langle -1, \rho, c_{1}, \eta_{1}, c_{2}, c_{2}^{\gamma}, \eta_{2}, \eta_{2}^{\gamma}, \cdots, c_{n}, c_{n}^{\gamma}, \cdots, c_{n}^{\gamma^{2^{n-1}-1}}, \eta_{n}, \eta_{n}^{\gamma}, \cdots, \eta_{n}^{\gamma^{2^{n-1}-1}} \rangle.$$

We define E''_n to be the subgroup of E_n containing E'_n such that $(E_n : E''_n)$ is prime to 2 and $(E''_n : E'_n)$ is 2-power. Since $(E'_n : S_n) = 2^{2^{n+1}-1}h_k$ and h_k is odd, Proposition 3.4 and [11, Theorem 4.1 and Theorem 5.1] leads us to the following proposition, on which our proof deeply depends.

Proposition 3.5. We have $|A_n| = (E''_n : E'_n)$ for $n \ge 1$.

Proposition 3.5 has a straightforward application. Namely, Conjecture 4.1 in [3] immediately follows from Proposition 3.5 and a_r in the table of [3] actually satisfies the equality $|A_r| = 2^{a_r}$.

We need to study $N_{k_n/k}(E''_n)$ later on. It is clear that $N_{k_n/k}(c_n) = -1$ from (3.1). We note that η_n has a similar property. Though the following lemma may be well known, we give a proof here for the completeness.

Lemma 3.6. Let m be a positive integer which has at least two prime divisors and ζ_m any primitive m-th root of unity in \mathbb{C} . Let ℓ be a prime divisor of m and M_ℓ the decomposition field of ℓ with respect to $\mathbb{Q}(\zeta_m)/\mathbb{Q}$. Then we have

$$N_{\mathbb{Q}(\zeta_m)/M_\ell}(1-\zeta_m) = 1.$$

Proof. Let $m = \ell^e d$ with $(\ell, d) = 1$. Then $\zeta_m = \zeta_{\ell^e} \zeta_d$ for appropriate ℓ^e -th root of unity ζ_{ℓ^e} and appropriate d-th root of unity ζ_d . First we have, by repeating use of Lemma 3.3,

$$N_{\mathbb{Q}(\zeta_m)/\mathbb{Q}(\zeta_d)}(1-\zeta_m) = N_{\mathbb{Q}(\zeta_m)/\mathbb{Q}(\zeta_d)}(1-\zeta_{\ell^e}\zeta_d) = \frac{1-\zeta^\ell}{1-\zeta},$$

where $\zeta = \zeta_d^{\ell^{e^{-1}}}$. Since every prime ideal of $\mathbb{Q}(\zeta_d)$ lying over ℓ is totally ramified in $\mathbb{Q}(\zeta_m)$, M_ℓ is contained in $\mathbb{Q}(\zeta_d)$ and $G(\mathbb{Q}(\zeta_d)/M_\ell)$ corresponds to the subgroup of $(\mathbb{Z}/d\mathbb{Z})^{\times}$ generated by $\ell + d\mathbb{Z}$. Let f be the order of $\ell + d\mathbb{Z}$. Then we have

$$N_{\mathbb{Q}(\zeta_m)/M_{\ell}}(1-\zeta_m) = N_{\mathbb{Q}(\zeta_d)/M_{\ell}}\left(\frac{1-\zeta^{\ell}}{1-\zeta}\right)$$
$$= \frac{1-\zeta^{\ell}}{1-\zeta} \cdot \frac{1-\zeta^{\ell^2}}{1-\zeta^{\ell}} \cdot \dots \cdot \frac{1-\zeta^{\ell^f}}{1-\zeta^{\ell^{f-1}}} = 1.$$

Since the prime number 2 splits in k/\mathbb{Q} , we see $N_{k_n/k}(\eta_n)^2 = N_{k_n/k}(\xi_n) = 1$. We summarize properties of c_n and η_n in the following lemma.

Lemma 3.7. One has $N_{k_n/k}(c_n) = -1$ and $N_{k_n/k}(\eta_n) = \pm 1$.

We need one more lemma to prove Theorems 2.1 and 2.2.

Lemma 3.8. Let ε be an element of E_n with $\varepsilon \notin E_n^2$. Then we have $\varepsilon \notin E_{n+1}^2$.

Proof. Suppose that there exists a unit v of E_{n+1} with $\varepsilon = v^2$. Since $k_{n+1} = k_n(\sqrt{2+\alpha_n})$, we have $v^{-1}(2+\alpha_n) \in k_n^2$, which is a contradiction because $(2+\alpha_n)$ is a prime ideal of k_n .

4. Structure of Unit Group

In [10], Ozaki and Taya showed $\lambda_2(k) = 0$ if $2^{(p-1)/4} \equiv -1 \pmod{p}$. From now on, we assume $2^{(p-1)/4} \equiv 1 \pmod{p}$ and describe E''_n explicitly. We define the subgroup V_n of E_n by

$$V_n = \langle E_{n-1}'' \cup \{ c_n, c_n^{\gamma}, \cdots, c_n^{\gamma^{2^{n-1}}-1}, \eta_n, \eta_n^{\gamma}, \cdots, \eta_n^{\gamma^{2^{n-1}}-1} \} \rangle.$$

Then Lemma 3.7 implies

$$N_{k_n/k}(V_n) = \langle -1, N_{k_{n-1}/k}(E_{n-1}'')^2 \rangle.$$
(4.1)

We know $N_{k_n/k}(\eta_n) = \pm 1$ by Lemma 3.7 and get now $N_{k_n/k}(\eta_n)$ explicitly by the assumption $2^{(p-1)/4} \equiv 1 \pmod{p}$.

Lemma 4.1. One has $N_{k_1/k}(\eta_1) = 1$ and $\eta_1 \in \mathbb{Q}(\sqrt{2p})$.

Proof. Let g be a primitive root modulo p. Then we have

$$\eta_1^{1+\gamma} = \prod_{i=1}^{(p-1)/2} (\zeta_8^{-1} - \zeta_p^{g^{2i}})(\zeta_8^{-\gamma} - \zeta_p^{g^{2i}}) = \prod_{i=1}^{(p-1)/2} (\zeta_p^{g^{2i}} + \sqrt{-1})$$
$$\equiv \prod_{i=1}^{(p-1)/2} (1 + \sqrt{-1}) = 2^{(p-1)/4} \equiv 1 \pmod{\zeta_p - 1},$$

which shows $\eta_1^{1+\gamma} = N_{k_1/k}(\eta_1) = 1$ because $N_{k_1/k}(\eta_1) = \pm 1$. We see now that $\eta_1 \in \mathbb{Q}(\sqrt{2p})$ follows from $N_{k_1/\mathbb{Q}_1}(\eta_1) = 1$.

The following lemma enables us to restrict the form of an element of V_n whose square root lies in E''_n .

Lemma 4.2. If $(E''_n : V_n) > 1$, then there exists an element v of V_n which satisfies

$$\sqrt{v} \notin V_n, \qquad \sqrt{v} \in E''_n \qquad and \qquad \sqrt{v^{1+\gamma}} \in V_n$$

Proof. Since E''_n/V_n is a non-trivial $G(k_n/k)$ -module, there exists a non-trivial fixed point. Namely, there exists $\overline{\varepsilon} = \varepsilon V_n$ with $\varepsilon \in E''_n$ such that

$$\overline{\varepsilon} \neq 1, \qquad \overline{\varepsilon}^2 = 1, \qquad \overline{\varepsilon}^\gamma = \overline{\varepsilon},$$

which means

$$\varepsilon \notin V_n, \qquad \varepsilon^2 \in V_n, \qquad \varepsilon^{\gamma-1} \in V_n.$$

Then $v = \varepsilon^2$ has a desired property because $\sqrt{v} = \pm \varepsilon \in E_n''$ and

$$\sqrt{v^{1+\gamma}} = \sqrt{\left(\varepsilon^{1+\gamma}\right)^2} = \pm \varepsilon^{1+\gamma} = \pm \varepsilon^{\gamma-1}\varepsilon^2 \in V_n.$$

Now recall that A_n is the 2-part of the ideal class group of k_n and $|A_n| = 2^{e_n}$. We describe our main result in the following form, which will be used in §5 to prove Lemma 5.2.

Theorem 4.3. Assume that $e_n = e_{n-1} + 1$ for some $n \ge 2$. Then the following assertions hold:

- (1) We have $E''_n = \langle V_n \cup \{\sqrt{v_n}\} \rangle$, where $v_n = \xi \eta_n^{(1+\gamma)^{2^{n-1}-1}}$ with appropriate $\xi \in E''_{n-1}$.
- $\xi \in E_{n-1}''.$ (2) If $e_{n+1} > e_n$, then we have $e_{n+1} = e_n + 1$ and $E_{n+1}'' = \langle V_{n+1} \cup \{\sqrt{v_{n+1}}\} \rangle,$ where $v_{n+1} = \xi' \sqrt{v_n} \eta_{n+1}^{(1+\gamma)^{2^{n-1}}}$ with appropriate $\xi' \in V_n$.

Proof. First we note that

$$(E_n'':E_n')=2(E_{n-1}'':E_{n-1}')$$

by Proposition 3.5. On the other hand, we have $(E''_n : E'_n) = (E''_n : V_n)(V_n : E'_n)$ and

$$(V_n:E'_n) = (E''_{n-1}E'_n:E'_n) = (E''_{n-1}:E''_{n-1} \cap E'_n) = (E''_{n-1}:E'_{n-1})$$

by Proposition 3.4. Moreover, we have $(E''_n : V_n) = 2$.

(1) There exist $v_n \in V_n$, $\varepsilon \in E_n \setminus V_n$, $\xi \in E_{n-1}''$ and $x_i, y_i \in \{0, 1\}$ such that

$$\varepsilon^{2} = v_{n} = \xi c_{n}^{x_{0} + x_{1}(1+\gamma) + \dots + x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \eta_{n}^{y_{0} + y_{1}(1+\gamma) + \dots + y_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}}$$

and $v_n^{1+\gamma} \equiv 1 \pmod{V_n^2}$ by Lemma 4.2. From the relations

$$\eta_n^{(1+\gamma)^{2^{n-1}}} \equiv \eta_n^{1+\gamma^{2^{n-1}}} \equiv \eta_{n-1} \pmod{V_n^2}$$

and

$$c_n^{(1+\gamma)^{2^{n-1}}} \equiv c_n^{1+\gamma^{2^{n-1}}} \equiv -c_{n-1} \pmod{V_n^2},$$

we have

$$\begin{split} v_n^{1+\gamma} &= \xi^{1+\gamma} c_n^{x_0(1+\gamma)+x_1(1+\gamma)^2+\dots+x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}}} \\ &\times \eta_n^{y_0(1+\gamma)+y_1(1+\gamma)^2+\dots+y_{2^{n-1}-1}(1+\gamma)^{2^{n-1}}} \\ &\equiv c_n^{x_0(1+\gamma)+x_1(1+\gamma)^2+\dots+x_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1}} \\ &\times \eta_n^{y_0(1+\gamma)+y_1(1+\gamma)^2+\dots+y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1}} \pmod{E_{n-1}''V_n^2}, \end{split}$$

which implies

$$x_0 = x_1 = \dots = x_{2^{n-1}-2} = y_0 = y_1 = \dots = y_{2^{n-1}-2} = 0$$

by Propositions 3.4 and 3.5. Hence we have

$$v_n = \xi c_n^{x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \eta_n^{y_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}}$$

From the congruences

$$(1+\gamma)^{2^{n-1}-1}(1+\gamma) \equiv 1+\gamma^{2^{n-1}} \pmod{2},$$

$$(1+\gamma)^{2^{n-1}-1} \equiv 1+\gamma+\dots+\gamma^{2^{n-1}-1} \pmod{2}$$

and Lemma 4.1,

we have

$$v_n^{1+\gamma^{2^{n-1}}} = \xi^2 (-c_{n-1})^{x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \eta_{n-1}^{y_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \equiv \xi^2 (-1)^{x_{2^{n-1}-1}} \equiv 1 \pmod{V_n^2},$$

which implies $x_{2^{n-1}-1} = 0$. Since $e_n = e_{n-1} + 1$, we have $y_{2^{n-1}-1} = 1$ and $E''_n = \langle V_n \cup \{\sqrt{v_n}\} \rangle$. (2) There exists $v_{n+1} \in V_{n+1}$ such that $v_{n+1}^{1+\gamma} \equiv 1 \pmod{V_{n+1}^2}$ with $\sqrt{v_{n+1}} \in E''_{n+1} \setminus V_{n+1}$ by Lemma 4.2. We may write

$$\begin{aligned} v_{n+1} &= \xi' c_n^{x_0 + x_1(1+\gamma) + \dots + x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \eta_n^{y_0 + y_1(1+\gamma) + \dots + y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-2}} \\ &\times \sqrt{v_n} \, y_{2^{n-1}-1} c_{n+1}^{x'_0 + x'_1(1+\gamma) + \dots + x'_{2^n-1}(1+\gamma)^{2^{n-1}}} \eta_{n+1}^{y'_0 + y'_1(1+\gamma) + \dots + y'_{2^n-1}(1+\gamma)^{2^{n-1}-2}} \end{aligned}$$

with appropriate $\xi' \in E_{n-1}''$ and $x_i, y_i, x'_i, y'_i \in \{0, 1\}$. Since $(1 + \gamma)^{2^{n-1}} \equiv 1 + 2\gamma^{2^{n-2}} + \gamma^{2^{n-1}} \pmod{4}$, we have

$$v_n^{1+\gamma} \equiv \xi^{1+\gamma} \eta_{n-1} \eta_n^{2\gamma^{2^{n-2}}} \equiv \xi^{1+\gamma} \eta_{n-1} \eta_n^{2((1+\gamma)^{2^{n-2}}+1)} \pmod{V_n^4}.$$

This means $\sqrt{v_n}^{1+\gamma} \equiv \eta_n^{1+(1+\gamma)^{2^{n-2}}} \pmod{E_{n-1}''V_n^2}$ by Lemma 3.8. Hence we have

$$\begin{split} v_{n+1}^{1+\gamma} &\equiv c_n^{x_0(1+\gamma)+x_1(1+\gamma)^2+\dots+x_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1}} \\ &\times \eta_n^{y_0(1+\gamma)+y_1(1+\gamma)^2+\dots+y_{2^{n-1}-3}(1+\gamma)^{2^{n-1}-2}} (\eta_n^{1+(1+\gamma)^{2^{n-2}}})^{y_{2^{n-1}-1}} \\ &\times c_n^{x'_{2^n-1}} c_{n+1}^{x'_0(1+\gamma)+x'_1(1+\gamma)^2+\dots+x'_{2^n-2}(1+\gamma)^{2^{n-1}}} \\ &\times \eta_n^{y'_{2^n-1}} \eta_{n+1}^{y'_0(1+\gamma)+y'_1(1+\gamma)^2+\dots+y'_{2^n-2}(1+\gamma)^{2^{n-1}}} \\ &\equiv 1 \pmod{E_{n-1}''} V_{n+1}^2), \end{split}$$

which shows

$$x_0 = \dots = x_{2^{n-1}-2} = x'_0 = \dots = x'_{2^n-1} = y'_0 = \dots = y'_{2^n-2} = 0$$

and $y'_{2^n-1} = y_{2^{n-1}-1} = 1$ by $\sqrt{v_{n+1}} \in E''_{n+1}$ and $\sqrt{v_{n+1}} \notin V_{n+1}$. Hence we have

$$v_{n+1} = \xi c_n^{x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \eta_n^{y_0+y_1(1+\gamma)+\dots+y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-2}} \sqrt{v_n} \eta_{n+1}^{(1+\gamma)^{2^{n-1}}}.$$

We put $V'_{n+1} = \langle V_{n+1} \cup \{ \sqrt{v_{n+1}} \} \rangle$. Then $V'_{n+1} \subset E''_{n+1}$ and $V'_{n+1} \subsetneq E''_{n+1}$ is equivalent to $e_{n+1} > e_n + 1$. Now we assume $e_{n+1} > e_n + 1$ and derive a contradiction. There exists an element v'_{n+1} in V'_{n+1} satisfying $(v'_{n+1})^{1+\gamma} \equiv 1 \pmod{(V'_{n+1})^2}$ and $\sqrt{v'_{n+1}} \in E''_{n+1} \setminus V'_{n+1}$. Since

$$v_{n+1}^{1+\gamma} = \xi^{1+\gamma} c_n^{x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}}} \eta_n^{y_0(1+\gamma)+y_1(1+\gamma)^2+\dots+y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1}} \\ \times \sqrt{v_n}^{1+\gamma} \eta_{n+1}^{(1+\gamma)^{2^n}} \\ \equiv \xi^{1+\gamma} c_n^{x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}}} \eta_n^{y_0(1+\gamma)+y_1(1+\gamma)^2+\dots+y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1}} \\ \times \sqrt{v_n}^{1+\gamma} \eta_n \eta_{n+1}^{2(1+(1+\gamma)^{2^{n-1}})} \pmod{V_{n+1}^4}$$

and since $v_{n+1}^{1+\gamma} \equiv 1 \pmod{V_{n+1}^2}$, we have $\sqrt{v_{n+1}}^{1+\gamma} \equiv \eta_{n+1}^{1+(1+\gamma)^{2^{n-1}}} \pmod{E''_n V_{n+1}^2}$, which means $v'_{n+1} \in V_{n+1}$ and

$$(v_{n+1}')^{1+\gamma} \in \langle V_n \cup \{ c_{n+1}^{\gamma^i}, \eta_{n+1}^{\gamma^i} \mid i \in \mathbb{Z} \} \rangle.$$
(4.2)

Since $(v'_{n+1})^{1+\gamma} \neq 1 \pmod{V_{n+1}^2}$ by $e_n = e_{n-1} + 1$, we have $(v'_{n+1})^{1+\gamma} \equiv v_{n+1} \pmod{V_{n+1}^2}$. (mod V_{n+1}^2). This contradicts (4.2). Hence we conclude $e_{n+1} = e_n + 1$ and $V'_{n+1} = E''_{n+1}$.

Corollary 4.4. Assume that $e_n \leq e_{n-1} + 1$ for some $n \geq 2$. Then we have $e_m \leq e_{m-1} + 1$ for all $m \geq n$.

Proof. If $e_n = e_{n-1}$, then $e_m = e_{m-1}$ for all $m \ge n$ by [2, Theorem 1]. Otherwise, $e_{n+1} = e_n$ or $e_{n+1} = e_n + 1$ by (2) of Theorem 4.3. If $e_{n+1} = e_n$, then $e_m = e_{m-1}$ for all $m \ge n+1$. Otherwise, $e_{n+2} = e_{n+1}$ or $e_{n+2} = e_{n+1} + 1$ again by (2) of Theorem 4.3. Repeating this procedure, we reach the conclusion.

5. The Proofs of Theorems 2.1 and 2.2

We assume $2^{(p-1)/4} \equiv 1 \pmod{p}$ continuously. In order to prove Theorems 2.1 and 2.2, We need some more lemmas. We first recall that the equality

$$|D_r| = \frac{2^r}{(E_0 : N_{k_r/k}(E_r))}$$
(5.1)

is a direct consequence of genus formula (cf. (4) in [3]). Note that E_r in the right hand side of (5.1) may be replaced by E''_r .

The following two lemmas depend on the property of η_1 .

Lemma 5.1. If $|A_1| = 2$, then $|D_1| = 1$.

Proof. We abbreviate $G(k_1/\mathbb{Q}_1) = \langle \tau \rangle$ and $G(k_1/k) = \langle \gamma \rangle$. We also recall that $E'_1 = \langle -1, \rho, c_1, \eta_1 \rangle$. We define $S(\alpha)$ for non-zero element α in k_1 by

$$S(\alpha) = \left(\frac{\alpha}{|\alpha|}, \frac{\alpha^{\tau}}{|\alpha^{\tau}|}, \frac{\alpha^{\gamma}}{|\alpha^{\gamma}|}, \frac{\alpha^{\tau\gamma}}{|\alpha^{\tau\gamma}|}\right).$$

Then we have

$$S(\rho) = (1, -1, 1, -1), \ S(c_1) = (1, 1, -1, -1), \ S(\eta_1) = \pm (1, 1, 1, 1)$$
 (5.2)

by $p \equiv 1 \pmod{16}$, $c_1 = 1 + \sqrt{2}$ and Lemma 4.1. From Proposition 3.5 and the assumption $|A_1| = 2$, we have

$$E_1'' = \langle -1, \rho, c_1, \eta_1, \sqrt{\varepsilon} \rangle,$$

where $\varepsilon = \pm \rho^{x_1} c_1^{x_2} \eta_1^{x_3}$ with $x_i \in \{0, 1\}$. The equalities (5.2) imply $\varepsilon = \pm \eta_1$ and so $N_{k_1/k}(E_1) = \langle -1, \rho^2 \rangle$, which means $|D_1| = 1$ by (5.1).

Lemma 5.2. Assume that $e_1 = 1$ and $e_2 = 2$. If $|D_r| > 1$ for some $r \ge 1$, then $\lambda_2(k) = 0$.

Proof. We may assume that $|D_{r-1}| = 1$ and $|D_r| = 2$ with $r \ge 2$ by Lemma 5.1. Then we see that

$$N_{k_r/k}(V_r) = \langle -1, N_{k_{r-1}/k}(E_{r-1}'')^2 \rangle = \langle -1, \rho^{2^r} \rangle,$$
$$N_{k_r/k}(E_r'') = \langle -1, \rho^{2^{r-1}} \rangle$$

from (4.1) and (5.1). We have $e_r \leq e_{r-1} + 1$ by Corollary 4.4. If $e_r = e_{r-1}$, then $\lambda_2(k) = 0$ by [2, Theorem 1]. So we may assume $e_r = e_{r-1} + 1$. Then v_r in (1) of Theorem 4.3 has the property

$$\langle -1, N_{k_r/k}(\rho), N_{k_r/k}(\sqrt{v_r}) \rangle = \langle -1, \rho^{2^{r-1}} \rangle.$$

By Corollary 4.4, there are two possibilities for e_{r+1} , namely $e_{r+1} = e_r$ and $e_{r+1} = e_r + 1$. If $e_{r+1} = e_r + 1$, then we have

$$N_{k_{r+1}/k}(E_{r+1}'') = \langle N_{k_{r+1}/k}(V_{r+1}), N_{k_{r+1}/k}(\sqrt{v_{r+1}}) \rangle = \langle -1, \rho^{2^{r-1}} \rangle$$

by (2) of Theorem 4.3 and hence $|D_{r+1}| = 4$ by (5.1). Namely, either $e_{r+1} = e_r$ or $|D_{r+1}| = 2|D_r|$ holds. Repeating this procedure, we reach *n* satisfying $e_{n+1} = e_n$ or $|D_n| = 2^{n_2-2}$, which means $\lambda_2(k) = 0$ by [6, Theorem 2] or [3, Theorem 2.1].

Now we are able to prove Theorems 2.1 and 2.2. For an integer α in k, we write $\mathfrak{p}^e \mid\mid \alpha$ if $\alpha \equiv 0 \pmod{\mathfrak{p}^e}$ and $\alpha \not\equiv 0 \pmod{\mathfrak{p}^{e+1}}$.

Proof of Theorem 2.1. Put $r = n_0 - 1$ and assume that $|D_r| = 1$. Then there exist $\beta \in k$ and $\beta_r \in k_r$ which satisfy

$$\begin{aligned} \mathbf{\mathfrak{p}}^{\prime h_k} &= (\beta), \qquad \mathbf{\mathfrak{p}}^{n_0} \mid\mid \beta - 1, \\ \mathbf{\mathfrak{p}}_r^{\prime h_k} &= (\beta_r), \qquad \mathbf{\mathfrak{p}}^{n_0^{(r)}} \mid\mid N_{k_r/k}(\beta_r) - 1. \end{aligned}$$

Then we have $\beta_r^{2^r} = \beta \varepsilon_r$ for some $\varepsilon_r \in E_r$ and

$$N_{k_r/k}(\beta_r)^{2^r} = \beta^{2^r} N_{k_r/k}(\varepsilon_r).$$

We see that

$$\mathfrak{p}^{n_0^{(r)}+r} \parallel N_{k_r/k}(\beta_r)^{2^r} - 1, \qquad \mathfrak{p}^{n_0+r} \parallel \beta^{2^r} - 1, \qquad \mathfrak{p}^{n_2+r} \mid N_{k_r/k}(\varepsilon_r) - 1$$

from (5.1), so $n_0^{(r)} + r = n_0 + r$ by the assumption $n_0 < n_2$. It means $n_0 = n_0^{(r)} \ge r + 2 = n_0 + 1$, which is a contradiction. Hence we have $|D_r| > 1$ and so $\lambda_2(k) = 0$ from Lemma 5.2.

Proof of Theorem 2.2. Since $n_0^{(s)} \leq n_0^{(s-1)} + 1$ in general, we may assume that

$$n_0^{(r)} = n_0^{(r-1)} = n_0 + r - 1.$$

Put $s = n_0 - 2$ and assume that $|D_{r+s}| = 1$. Then there exist $\beta_r \in k_r$ and $\beta_{r+s} \in k_{r+s}$ which satisfy

$$\mathbf{p}_{r}^{\prime h_{k}} = (\beta_{r}), \qquad \mathbf{p}_{0}^{n_{0}^{(r)}} \parallel N_{k_{r}/k}(\beta_{r}) - 1,$$

$$\mathbf{p}_{r+s}^{\prime h_{k}} = (\beta_{r+s}).$$

Then we have $\beta_{r+s}^{2^s} = \beta_r \varepsilon_{r+s}$ for some $\varepsilon_{r+s} \in E_{r+s}$ and

$$N_{k_{r+s}/k}(\beta_{r+s})^{2^{s}} = N_{k_{r}/k}(\beta_{r})^{2^{s}}N_{k_{r+s}/k}(\varepsilon_{r+s}).$$

We see that

$$\mathfrak{p}^{n_0^{(r)}+s} \mid\mid N_{k_r/k}(\beta_r)^{2^s} - 1, \ \mathfrak{p}^{n_2+r+s} \mid N_{k_{r+s}/k}(\varepsilon_{r+s}) - 1$$

from (5.1). Since $n_0^{(r)} + s = n_0 + r + s - 1 < n_2 + r + s$, we see that

$$\mathfrak{p}^{n_0^{(r)}} \parallel N_{k_{r+s}/k}(\beta_{r+s}) - 1.$$

Since $\mathfrak{p}^{n_2+r+s} \mid N_{k_{r+s}/k}(\varepsilon'_{r+s}) - 1$ for any $\varepsilon'_{r+s} \in E_{r+s}$ and since $n_2 + r + s - n_0^{(r)} = n_2 - 1 > 0$, it follows that $n_0^{(r+s)} = n_0^{(r)} = n_0 + r - 1$, which contradicts $n_0^{(r+s)} \ge r + s + 2 = n_0 + r$. Hence we have $|D_{r+s}| > 1$ and so $\lambda_2(k) = 0$ from Lemma 5.2.

References

- [1] B. Ferrero and L.C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. **109** (1979), no. 2, 377–395.
- [2] T. Fukuda, Remarks on Z_p-extensions of number fields, Proc. Japan Acad. Ser. A 65 (1989), 260–262.
- [3] T. Fukuda, Greenberg conjecture for the cyclotomic \mathbb{Z}_2 -extension of $\mathbb{Q}(\sqrt{p})$, Interdisciplinary Information Sciences **16-1** (2010), 21–32.
- [4] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic Z₂-extension of Q(√p), Math. Comp. 78 (2009), 1797–1808.
- [5] T. Fukuda and H. Taya, The Iwasawa λ-invariants of Z_p-extensions of real quadratic fields, Acta. Arith. 69 (1995), 277–292.
- [6] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263–284.
- [7] H. Hasse, Uber die Klassenzahl abelscher Zahlkörper, Akademie Verlag, Berlin, 1952.
- [8] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183–226.
- [9] K. Iwasawa, On Z_ℓ-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326.
- [10] M. Ozaki and H. Taya, On the Iwasawa λ_2 -invariants of certain families of real quadratic fields, Manuscripta Math. **94** (1997), no. 4, 437–444.
- [11] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181–234.
- Addresses: Takashi Fukuda: Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan; Keiichi Komatsu: Department of Mathematical Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

E-mail: fukuda.takashi@nihon-u.ac.jp, kkomatsu@waseda.jp

Received: 8 February 2013