ON THE IWASAWA λ-INVARIANT OF THE CYCLOTOMIC \mathbb{Z}_{2}-EXTENSION OF $\mathbb{Q}(\sqrt{p})$ II

Takashi Fukuda, Keiichi Komatsu

Abstract

In the preceding papers, we studied the Iwasawa λ-invariant of the cyclotomic $\mathbb{Z}_{2^{-}}$ extension of $\mathbb{Q}(\sqrt{p})$ for an odd prime number p using certain units and the invariants $n_{0}^{(r)}$ and n_{2}. In the present paper, we develop new criteria for Greenberg conjecture using $n_{0}^{(r)}$ and n_{2}.

Keywords: Iwasawa invariant, cyclotomic unit, real quadratic field.

1. Introduction

We start with reviewing Iwasawa invariants and Greenberg conjecture. Let k be a finite algebraic number field, ℓ a prime number and

$$
k=k_{0} \subset k_{1} \subset k_{2} \subset \cdots \subset k_{\infty}
$$

the cyclotomic \mathbb{Z}_{ℓ}-extension of k with $G\left(k_{n} / k\right) \cong \mathbb{Z} / \ell^{n} \mathbb{Z}$. Let $\ell^{e_{n}}$ be the highest power of ℓ dividing the class number of k_{n}. Then Iwasawa [8, 9] proved that there exist rational integers $\mu_{\ell}(k) \geqslant 0, \lambda_{\ell}(k) \geqslant 0$ and $\nu_{\ell}(k)$ which realize the equality

$$
e_{n}=\mu_{\ell}(k) \ell^{n}+\lambda_{\ell}(k) n+\nu_{\ell}(k)
$$

for all sufficiently large n. Greenberg conjecture, which is still open, predicts that both $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish for any totally real number field k and for any prime number ℓ.

It is most fundamental to study Greenberg conjecture when k is a real quadratic field and $\ell=2$. In this situation, $\mu_{2}(k)$ is known to be zero by Ferrero--Washington [1]. So we are interested in $\lambda_{2}(k)$. It is especially important to consider $\lambda_{2}(k)$ for $k=\mathbb{Q}(\sqrt{p})$ with prime number p. In the preceding paper [4],
we gave a sufficient condition for $\lambda_{2}(\mathbb{Q}(\sqrt{p}))=0$ based on a property of units in k_{n} and verified that $\lambda_{2}(\mathbb{Q}(\sqrt{p}))=0$ for all prime number p less than 10000 . In the paper [3] following [4], one of the authors introduced the invariants $n_{0}^{(r)}$ and n_{2}, which are analogous to those defined in [5], and verified that $\lambda_{2}(\mathbb{Q}(\sqrt{p}))=0$ for all prime number p satisfying $10000<p<20000$ except $p=13841$.

In this paper, we develop new criteria for $\lambda_{2}(\mathbb{Q}(\sqrt{p}))=0$ using $n_{0}^{(r)}$ and n_{2}, which are deeply based on the structure of the unit group of k_{n} and show numerically $\lambda_{2}(k)=0$ faster than known criteria.

2. Main Results

Let $k=\mathbb{Q}(\sqrt{p})$ be a real quadratic field with prime number p. If $p \not \equiv 1(\bmod 16)$, then it is known that $\lambda_{2}(k)=0$ by [10]. So we assume hereafter that $p \equiv 1$ $(\bmod 16)$.

We briefly recall the definitions of $n_{0}^{(r)}$ and n_{2}. Let k_{r} be the r-th layer of the cyclotomic \mathbb{Z}_{2}-extension of k, E_{r} the unit group of k_{r}, A_{r} the 2-part of the ideal class group of k_{r} and $2^{e_{r}}$ the order of A_{r}. Let \mathfrak{p} and \mathfrak{p}^{\prime} be the prime ideals of k lying over 2 and $\mathfrak{p}_{r}\left(\right.$ resp. $\left.\mathfrak{p}_{r}^{\prime}\right)$ the prime ideal of k_{r} lying over \mathfrak{p} (resp. \mathfrak{p}^{\prime}). We define the subgroup D_{r} of A_{r} by $D_{r}=\left\langle\operatorname{cl}\left(\mathfrak{p}_{r}\right)\right\rangle \cap A_{r}$. Namely $D_{r}=\left\langle\operatorname{cl}\left(\mathfrak{p}_{r}^{h_{k}}\right)\right\rangle$, where h_{k} is the class number of k. For an element ε of E_{0} which is not a root of unity, we define m_{ε} to be the maximal integer satisfying $\varepsilon^{2} \equiv 1\left(\bmod \mathfrak{p}^{m_{\varepsilon}+1}\right)$ and put

$$
n_{2}=\min \left\{m_{\varepsilon} \mid \varepsilon \in E_{0}, \varepsilon \neq \pm 1\right\}
$$

We note that n_{2} is the maximal integer satisfying $\varepsilon_{0}^{2} \equiv 1\left(\bmod \mathfrak{p}^{n_{2}+1}\right)$, where ε_{0} is the fundamental unit of k. Let d be the order of D_{r} and fix an element β of k_{r} such that

$$
\mathfrak{p}_{r}^{\prime h_{k} d}=(\beta) .
$$

Then we define $m_{\beta, \varepsilon}$ to be the maximal integer satisfying $N_{k_{r} / k}\left(\beta^{2} \varepsilon^{2}\right) \equiv 1$ $\left(\bmod \mathfrak{p}^{m_{\beta, \varepsilon}+1}\right)$ for an element ε in E_{r} and put

$$
n_{0}^{(r)}=\min \left\{m_{\beta, \varepsilon} \mid \varepsilon \in E_{r}\right\} .
$$

We also put $n_{0}=n_{0}^{(0)}$. We note that $n_{0} \leqslant n_{2}$ and $n_{0}^{(r)} \geqslant r+2$ for all $r \geqslant 0$. Then our main results are stated in the following form.

Theorem 2.1. Assume that $e_{1}=1$ and $e_{2}=2$. If $n_{0}<n_{2}$, then $\lambda_{2}(k)=0$.
Theorem 2.2. Assume that $e_{1}=1$ and $e_{2}=2$. If $n_{0}^{(r-1)}=n_{0}^{(r)}$ for some $r \geqslant 1$, then $\lambda_{2}(k)=0$.

Theorems 2.1 and 2.2 have the advantage of proving $\lambda_{2}(k)=0$ numerically faster than Theorem 2.1 in [3]. We show numerical data for $k=\mathbb{Q}(\sqrt{p})$ with
prime number p satisfying $p \equiv 1(\bmod 16)$ and $2^{(p-1) / 4} \equiv 1(\bmod p)$. In [3], we showed a table for $10000<p<20000$ and verified that $\lambda_{2}(k)=0$ except $p=13841$. We now show data for $20000<p<100000$.

Example 2.3. In the range $20000<p<100000$, there are $73 k$'s which satisfy $e_{1}=1, e_{2}=2$ and $n_{0}<n_{2}$. For these k 's, we have $\lambda_{2}(k)=0$ from Theorem 2.1.

Example 2.4. In the range $20000<p<100000$, there are $45 k$'s which satisfy $e_{1}=1, e_{2}=2$ and $n_{0}=n_{2}$. For these k 's we verified that the equality $n_{0}^{(r-1)}=$ $n_{0}^{(r)}$ holds with some $r \leqslant 7$. Hence we conclude that $\lambda_{2}(k)=0$ for these $45 k$'s from Theorem 2.2. We show two typical examples.

Let $k=\mathbb{Q}(\sqrt{20353})$. Then $e_{1}=1, e_{2}=2, n_{0}=n_{2}=6$ and $n_{0}^{(1)}=6$. Hence we can conclude $\lambda_{2}(k)=0$ with calculation in k_{1}. Theorem 2.1 in [3] needs calculation in k_{4}.

Let $k=\mathbb{Q}(\sqrt{61297})$. Then $e_{1}=1, e_{2}=2, n_{0}=n_{2}=4$ and $n_{0}^{(6)}=n_{0}^{(7)}=10$. Hence we can conclude $\lambda_{2}(k)=0$ with calculation in k_{7}. Theorem 2.1 in [3] needs calculation in k_{8}.

The proofs of Theorems 2.1 and 2.2 depend essentially on the structure of E_{r}. We start with explaining properties of E_{r} which are needed for our proof.

3. Cyclotomic Units

We study the relation between class numbers and cyclotomic units in the intermediate fields of the cyclotomic \mathbb{Z}_{2}-extension of $k=\mathbb{Q}(\sqrt{p})$. Let $\zeta_{n}=\exp (2 \pi \sqrt{-1} / n)$ and $\alpha_{n}=\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1}$. Then $\mathbb{Q}_{n}=\mathbb{Q}\left(\alpha_{n}\right)$ is a cyclic extension of \mathbb{Q} of degree 2^{n} and $k_{n}=k \mathbb{Q}_{n}$. Let $\mathbb{Q}_{\infty}=\cup_{n=0}^{\infty} \mathbb{Q}_{n}, k_{\infty}=\cup_{n=0}^{\infty} k_{n}$ and $G\left(k_{\infty} / \mathbb{Q}_{\infty}\right)=\langle\tau\rangle$. We fix the topological generator γ of $G\left(k_{\infty} / k\right)$ induced by $\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1} \mapsto \zeta_{2^{n+2}}^{5}+\zeta_{2^{n+2}}^{-5}$. Let C_{n} be the unit group of \mathbb{Q}_{n} and E_{n} the unit group of k_{n}. We define the cyclotomic unit group S_{n} of k_{n} according to [11]. Let T_{n} be the subgroup of k_{n}^{\times}generated by -1 and $\left\{N_{\mathbb{Q}\left(\zeta_{m}\right) / k_{n} \cap \mathbb{Q}\left(\zeta_{m}\right)}\left(1-\zeta_{m}^{a}\right) \mid m, a \in \mathbb{Z}, m>1, m \nmid a\right\}$. Then S_{n} is defined to be $E_{n} \cap T_{n}$. An easy argument shows that T_{n} is equal to the subgroup of k_{n}^{\times}generated by -1 and $\left\{N_{\mathbb{Q}\left(\zeta_{m}\right) / k_{n} \cap \mathbb{Q}\left(\zeta_{m}\right)}\left(1-\zeta_{m}^{a}\right) \mid m, a \in \mathbb{Z}, m>1,(a, m)=1\right\}$. We are able to describe generators of S_{n} explicitly. Let ρ be the fundamental unit of $k=k_{0}$ and h_{k} the class number of k. Then [11, Theorem 4.1 and Theorem 5.1] implies $S_{0}=\left\langle-1, \rho^{2 h_{k}}\right\rangle$. Next let $c_{n}=1+\alpha_{n}$. It is straightforward to see that

$$
\begin{equation*}
N_{\mathbb{Q}_{n} / \mathbb{Q}_{n-1}}\left(c_{n}\right)=-c_{n-1} \quad(n \geqslant 1) \tag{3.1}
\end{equation*}
$$

and c_{n} is contained in C_{n}. We use the equality

$$
\begin{aligned}
c_{n}^{2} & =\left(1+\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1}\right) \zeta_{2^{n+2}} \zeta_{2^{n+2}}^{-1}\left(1+\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1}\right) \\
& =\left(1+\zeta_{2^{n+2}}^{-1}+\zeta_{2^{n+2}}^{2}\right)\left(1+\zeta_{2^{n+2}}^{-1}+\zeta_{2^{n+2}}^{-2}\right) \\
& =\frac{1-\zeta_{2^{n+2}}^{3}}{1-\zeta_{2^{n+2}}} \cdot \frac{1-\zeta_{2^{n+2}}^{-3}}{1-\zeta_{2^{n+2}}^{-1}}=\frac{N_{\mathbb{Q}\left(\zeta_{2 n+2}\right) / \mathbb{Q}_{n}}\left(1-\zeta_{2^{n+2}}^{3}\right)}{N_{\mathbb{Q}\left(\zeta_{2 n+2}\right) / \mathbb{Q}_{n}}\left(1-\zeta_{2^{n+2}}\right)}
\end{aligned}
$$

to see that $c_{n}^{2} \in S_{n}$. Finally we let

$$
\xi_{n}=N_{\mathbb{Q}\left(\zeta_{2^{n+2_{p}}}\right) / k_{n}}\left(1-\zeta_{2^{n+2}} \zeta_{p}\right)
$$

Then ξ_{n} is an integer of k_{n} satisfying $N_{k_{n}} / \mathbb{Q}\left(\xi_{n}\right)=1$ and clearly contained in S_{n}. We define an element η_{n} of $\mathbb{Q}\left(\zeta_{2^{n+2}} \zeta_{p}\right)$ by

$$
\eta_{n}=\zeta_{2^{n+2}}^{(p-1) / 4} \prod_{x \in H}\left(\zeta_{2^{n+2}}^{-1}-\zeta_{p}^{x}\right)
$$

where H is the subgroup of $(\mathbb{Z} / p \mathbb{Z})^{\times}$with index 2 . Since the product running over $x \in H$ is the norm from $\mathbb{Q}\left(\zeta_{2^{n+2}} \zeta_{p}\right)$ to $k\left(\zeta_{2^{n+2}}\right), \eta_{n}$ is contained in $k\left(\zeta_{2^{n+2}}\right)$.
Lemma 3.1. One has $\eta_{n} \in E_{n}$ and $\xi_{n}=\eta_{n}^{2}$.
Proof. We write $\omega=\zeta_{2^{n+2}}$ and $\zeta=\zeta_{p}$. Note that $\prod_{x \in H} \zeta^{x}=N_{\mathbb{Q}(\zeta) / k}(\zeta)$ is a real p-th root of unity, hence is equal to 1 . The complex conjugate of η_{n} is

$$
\begin{aligned}
\omega^{-(p-1) / 4} \prod_{x \in H}\left(\omega-\zeta^{-x}\right) & =\omega^{-(p-1) / 4} \prod_{x \in H} \omega \zeta^{-x}\left(\zeta^{x}-\omega^{-1}\right) \\
& =\omega^{(p-1) / 4} \prod_{x \in H}\left(\omega^{-1}-\zeta^{x}\right)=\eta_{n}
\end{aligned}
$$

implying $\eta_{n} \in k(\omega) \cap \mathbb{R}=k_{n}$. Next we have

$$
\begin{aligned}
\xi_{n} & =N_{k(\omega) / k_{n}} N_{\mathbb{Q}(\omega, \zeta) / k(\omega)}(1-\omega \zeta) \\
& =N_{k(\omega) / k_{n}}\left(\prod_{x \in H}\left(1-\omega \zeta^{x}\right)\right) \\
& =\prod_{x \in H}\left(1-\omega \zeta^{x}\right)\left(1-\omega^{-1} \zeta^{-x}\right) \\
& =\prod_{x \in H} \omega\left(\omega^{-1}-\zeta^{x}\right) \zeta^{-x}\left(\zeta^{x}-\omega^{-1}\right) \\
& =\omega^{\frac{p-1}{2}} \prod_{x \in H}\left(\omega^{-1}-\zeta^{x}\right)^{2}=\eta_{n}^{2}
\end{aligned}
$$

The straightforward calculation shows

$$
\begin{equation*}
N_{k_{n} / k_{n-1}}\left(\eta_{n}\right)=\eta_{n-1} \quad(n \geqslant 1) \tag{3.2}
\end{equation*}
$$

because the assumption $p \equiv 1(\bmod 16)$ leads to $2+p \mathbb{Z} \in H$. Now we get three cyclotomic units $\rho^{2 h}, c_{n}^{2}$ and η_{n}^{2}. In order to prove that conjugates of these units generate S_{n}, we need the following lemmas.
Lemma 3.2. Let e, f and m be positive integers with $(m, 2 p)=1$. Then, for any non-negative integer n, we have

$$
\begin{align*}
k_{n} \cap \mathbb{Q}\left(\zeta_{2^{e}}\right) & =k_{n} \cap \mathbb{Q}\left(\zeta_{2^{e}}, \zeta_{m}\right), \tag{3.3}\\
k_{n} \cap \mathbb{Q}\left(\zeta_{p}\right) & =k_{n} \cap \mathbb{Q}\left(\zeta_{p^{f}}, \zeta_{m}\right), \tag{3.4}\\
k_{n} \cap \mathbb{Q}\left(\zeta_{2^{e} p}\right) & =k_{n} \cap \mathbb{Q}\left(\zeta_{2^{e} p^{f}}, \zeta_{m}\right) . \tag{3.5}
\end{align*}
$$

Proof. We put $K=\mathbb{Q}\left(\zeta_{2^{e} p^{f}}\right)$ and $K^{\prime}=\mathbb{Q}\left(\zeta_{m}\right)$ and show (3.5). The remaining assertions are proved similarly. Since $k_{n} K \cap K^{\prime}=\mathbb{Q}$, we have

$$
\begin{aligned}
{\left[k_{n} K K^{\prime}: K^{\prime}\right] } & =\left[k_{n} K: k_{n} K \cap K^{\prime}\right]=\left[k_{n} K: \mathbb{Q}\right] \\
& =\left[k_{n} K: K\right][K: \mathbb{Q}]=\left[k_{n}: k_{n} \cap K\right][K: \mathbb{Q}]
\end{aligned}
$$

and

$$
\left[k_{n} K K^{\prime}: K^{\prime}\right]=\left[k_{n} K K^{\prime}: K K^{\prime}\right]\left[K K^{\prime}: K^{\prime}\right]=\left[k_{n}: k_{n} \cap K K^{\prime}\right][K: \mathbb{Q}] .
$$

Hence we have $\left[k_{n}: k_{n} \cap K\right]=\left[k_{n}: k_{n} \cap K K^{\prime}\right]$, which implies $k_{n} \cap K=k_{n} \cap K K^{\prime}$ by $k_{n} \cap K \subset k_{n} \cap K K^{\prime}$. The equality $k_{n} \cap \mathbb{Q}\left(\zeta_{2^{e} p}\right)=k_{n} \cap \mathbb{Q}\left(\zeta_{2^{e} p f}\right)$ is a direct consequence of $\left[\mathbb{Q}\left(\zeta_{2^{e} p^{f}}\right): \mathbb{Q}\left(\zeta_{2^{e} p}\right)\right]=p^{f-1}$.

Lemma 3.3. Let ℓ be a prime number and m a positive integer prime to ℓ. For a positive integer e, we have

$$
\begin{align*}
N_{\mathbb{Q}\left(\zeta_{\ell^{e} m}\right) / \mathbb{Q}\left(\zeta_{\ell e-1}\right)}\left(1-\zeta_{\ell e} \zeta_{m}\right) & =1-\zeta_{\ell \ell}^{\ell} \zeta_{m}^{\ell} \quad(e \geqslant 2), \tag{3.6}\\
N_{\mathbb{Q}\left(\zeta_{\ell m}\right) / \mathbb{Q}\left(\zeta_{m}\right)}\left(1-\zeta_{\ell} \zeta_{m}\right) & =\frac{1-\zeta_{m}^{\ell}}{1-\zeta_{m}} \tag{3.7}
\end{align*}
$$

Proof. We prove when ℓ is an odd prime number. The case $\ell=2$ is proved in a similar manner. Since

$$
X^{\ell}-\zeta_{\ell^{e}}^{\ell}=\prod_{\sigma \in G\left(\mathbb{Q}\left(\zeta_{e^{e} m}\right) / \mathbb{Q}\left(\zeta_{e^{e-1}}\right)\right)}\left(X-\zeta_{\ell^{e}}^{\sigma}\right)
$$

is the minimal polynomial of $\zeta_{\ell^{e}}$ over $\mathbb{Q}\left(\zeta_{\ell^{e-1} m}\right)$, we have

$$
\begin{aligned}
\zeta_{m}^{-\ell}-\zeta_{\ell^{e}}^{\ell} & =N_{\mathbb{Q}\left(\zeta_{\ell^{e} m}\right) / \mathbb{Q}\left(\zeta_{\ell-1}\right)}\left(\zeta_{m}^{-1}-\zeta_{\ell^{e}}\right) \\
& =N_{\mathbb{Q}\left(\zeta_{\ell^{e} m}\right) / \mathbb{Q}\left(\zeta_{\ell-1} 1_{m}\right)} \zeta_{m}^{-1}\left(1-\zeta_{\ell^{e}} \zeta_{m}\right) \\
& =\zeta_{m}^{-\ell} N_{\mathbb{Q}\left(\zeta_{\ell^{e} m}\right) / \mathbb{Q}\left(\zeta_{\ell^{e-1}}\right)}\left(1-\zeta_{\ell^{e}} \zeta_{m}\right),
\end{aligned}
$$

from which (3.6) follows. Similarly we have (3.7) from the minimal polynomial

$$
\frac{X^{\ell}-1}{X-1}=\prod_{\sigma \in G\left(\mathbb{Q}\left(\zeta_{\ell m}\right) / \mathbb{Q}\left(\zeta_{m}\right)\right)}\left(X-\zeta_{\ell}^{\sigma}\right)
$$

of ζ_{ℓ} over $\mathbb{Q}\left(\zeta_{m}\right)$.
Proposition 3.4. The cyclotomic unit group S_{n} is generated by

$$
\left\{-1, \rho^{2 h_{k}}\right\} \cup\left\{c_{n}^{2 \gamma^{i}} \mid 0 \leqslant i \leqslant 2^{n}-2\right\} \cup\left\{\eta_{n}^{2 \gamma^{i}} \mid 0 \leqslant i \leqslant 2^{n}-2\right\} .
$$

Proof. For a positive integer m, let

$$
T_{n, m}^{\prime}=\left\{N_{\mathbb{Q}\left(\zeta_{m}\right) / k_{n} \cap \mathbb{Q}\left(\zeta_{m}\right)}\left(1-\zeta_{m}^{a}\right) \mid a \in \mathbb{Z},(a, m)=1\right\} .
$$

We define T_{n}^{\prime} to be the subgroup of k_{n}^{\times}generated by

$$
\{-1\} \cup T_{n, p}^{\prime} \cup T_{n, 2^{n+2}}^{\prime} \cup T_{n, 2^{n+2} p}^{\prime}
$$

Let S_{n}^{\prime} be the subgroup of S_{n} generated by the set stated in the proposition. Then $S_{n}^{\prime}=E_{n} \cap T_{n}^{\prime}$ and $T_{n}^{\prime} \subset T_{n}$. Let m be any positive integer and $a \in \mathbb{Z}$ with $(a, m)=1$. Then we factorize m and apply Lemmas 3.2 and 3.3 repeatedly for $N_{\mathbb{Q}\left(\zeta_{m}\right) / k_{n} \cap \mathbb{Q}\left(\zeta_{m}\right)}\left(1-\zeta_{m}^{a}\right)$. Finally we use the relations (3.1) and (3.2) and conclude that $T_{n} \subset T_{n}^{\prime}$. This completes the proof.

We start with the subgroup

$$
E_{n}^{\prime}=\left\langle-1, \rho, c_{n}, c_{n}^{\gamma}, \cdots, c_{n}^{\gamma^{2^{n}-2}}, \eta_{n}, \eta_{n}^{\gamma}, \cdots, \eta_{n}^{2^{2^{n}-2}}\right\rangle
$$

of E_{n} and enlarge E_{n}^{\prime} by finding square roots contained in E_{n}. Owing to the relations (3.1) and (3.2), E_{n}^{\prime} is written also as

$$
E_{n}^{\prime}=\left\langle-1, \rho, c_{1}, \eta_{1}, c_{2}, c_{2}^{\gamma}, \eta_{2}, \eta_{2}^{\gamma}, \cdots, c_{n}, c_{n}^{\gamma}, \cdots, c_{n}^{\gamma^{\gamma^{n-1}-1}}, \eta_{n}, \eta_{n}^{\gamma}, \cdots, \eta_{n}^{2^{2^{n-1}-1}}\right\rangle
$$

We define $E_{n}^{\prime \prime}$ to be the subgroup of E_{n} containing E_{n}^{\prime} such that $\left(E_{n}: E_{n}^{\prime \prime}\right)$ is prime to 2 and $\left(E_{n}^{\prime \prime}: E_{n}^{\prime}\right)$ is 2-power. Since $\left(E_{n}^{\prime}: S_{n}\right)=2^{2^{n+1}-1} h_{k}$ and h_{k} is odd, Proposition 3.4 and [11, Theorem 4.1 and Theorem 5.1] leads us to the following proposition, on which our proof deeply depends.

Proposition 3.5. We have $\left|A_{n}\right|=\left(E_{n}^{\prime \prime}: E_{n}^{\prime}\right)$ for $n \geqslant 1$.
Proposition 3.5 has a straightforward application. Namely, Conjecture 4.1 in [3] immediately follows from Proposition 3.5 and a_{r} in the table of [3] actually satisfies the equality $\left|A_{r}\right|=2^{a_{r}}$.

We need to study $N_{k_{n} / k}\left(E_{n}^{\prime \prime}\right)$ later on. It is clear that $N_{k_{n} / k}\left(c_{n}\right)=-1$ from (3.1). We note that η_{n} has a similar property. Though the following lemma may be well known, we give a proof here for the completeness.

Lemma 3.6. Let m be a positive integer which has at least two prime divisors and ζ_{m} any primitive m-th root of unity in \mathbb{C}. Let ℓ be a prime divisor of m and M_{ℓ} the decomposition field of ℓ with respect to $\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}$. Then we have

$$
N_{\mathbb{Q}\left(\zeta_{m}\right) / M_{\ell}}\left(1-\zeta_{m}\right)=1
$$

Proof. Let $m=\ell^{e} d$ with $(\ell, d)=1$. Then $\zeta_{m}=\zeta_{e^{e}} \zeta_{d}$ for appropriate ℓ^{e}-th root of unity $\zeta_{\ell^{e}}$ and appropriate d-th root of unity ζ_{d}. First we have, by repeating use of Lemma 3.3,

$$
N_{\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\left(\zeta_{d}\right)}\left(1-\zeta_{m}\right)=N_{\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\left(\zeta_{d}\right)}\left(1-\zeta_{\ell e} \zeta_{d}\right)=\frac{1-\zeta^{\ell}}{1-\zeta},
$$

where $\zeta=\zeta_{d}^{\ell^{e-1}}$. Since every prime ideal of $\mathbb{Q}\left(\zeta_{d}\right)$ lying over ℓ is totally ramified in $\mathbb{Q}\left(\zeta_{m}\right), M_{\ell}$ is contained in $\mathbb{Q}\left(\zeta_{d}\right)$ and $G\left(\mathbb{Q}\left(\zeta_{d}\right) / M_{\ell}\right)$ corresponds to the subgroup of $(\mathbb{Z} / d \mathbb{Z})^{\times}$generated by $\ell+d \mathbb{Z}$. Let f be the order of $\ell+d \mathbb{Z}$. Then we have

$$
\begin{aligned}
N_{\mathbb{Q}\left(\zeta_{m}\right) / M_{\ell}}\left(1-\zeta_{m}\right) & =N_{\mathbb{Q}\left(\zeta_{d}\right) / M_{\ell}}\left(\frac{1-\zeta^{\ell}}{1-\zeta}\right) \\
& =\frac{1-\zeta^{\ell}}{1-\zeta} \cdot \frac{1-\zeta^{\ell^{2}}}{1-\zeta^{\ell}} \cdots \cdot \frac{1-\zeta^{\ell^{f}}}{1-\zeta^{\ell f-1}}=1 .
\end{aligned}
$$

Since the prime number 2 splits in k / \mathbb{Q}, we see $N_{k_{n} / k}\left(\eta_{n}\right)^{2}=N_{k_{n} / k}\left(\xi_{n}\right)=1$. We summarize properties of c_{n} and η_{n} in the following lemma.

Lemma 3.7. One has $N_{k_{n} / k}\left(c_{n}\right)=-1$ and $N_{k_{n} / k}\left(\eta_{n}\right)= \pm 1$.
We need one more lemma to prove Theorems 2.1 and 2.2.
Lemma 3.8. Let ε be an element of E_{n} with $\varepsilon \notin E_{n}^{2}$. Then we have $\varepsilon \notin E_{n+1}^{2}$.
Proof. Suppose that there exists a unit v of E_{n+1} with $\varepsilon=v^{2}$. Since $k_{n+1}=$ $k_{n}\left(\sqrt{2+\alpha_{n}}\right)$, we have $v^{-1}\left(2+\alpha_{n}\right) \in k_{n}^{2}$, which is a contradiction because $\left(2+\alpha_{n}\right)$ is a prime ideal of k_{n}.

4. Structure of Unit Group

In [10], Ozaki and Taya showed $\lambda_{2}(k)=0$ if $2^{(p-1) / 4} \equiv-1(\bmod p)$. From now on, we assume $2^{(p-1) / 4} \equiv 1(\bmod p)$ and describe $E_{n}^{\prime \prime}$ explicitly. We define the subgroup V_{n} of E_{n} by

$$
V_{n}=\left\langle E_{n-1}^{\prime \prime} \cup\left\{c_{n}, c_{n}^{\gamma}, \cdots, c_{n}^{\gamma^{\gamma^{n-1}}-1}, \eta_{n}, \eta_{n}^{\gamma}, \cdots, \eta_{n}^{\gamma^{2^{n-1}}-1}\right\}\right\rangle
$$

Then Lemma 3.7 implies

$$
\begin{equation*}
N_{k_{n} / k}\left(V_{n}\right)=\left\langle-1, N_{k_{n-1} / k}\left(E_{n-1}^{\prime \prime}\right)^{2}\right\rangle \tag{4.1}
\end{equation*}
$$

We know $N_{k_{n} / k}\left(\eta_{n}\right)= \pm 1$ by Lemma 3.7 and get now $N_{k_{n} / k}\left(\eta_{n}\right)$ explicitly by the assumption $2^{(p-1) / 4} \equiv 1(\bmod p)$.

Lemma 4.1. One has $N_{k_{1} / k}\left(\eta_{1}\right)=1$ and $\eta_{1} \in \mathbb{Q}(\sqrt{2 p})$.
Proof. Let g be a primitive root modulo p. Then we have

$$
\begin{aligned}
\eta_{1}^{1+\gamma} & =\prod_{i=1}^{(p-1) / 2}\left(\zeta_{8}^{-1}-\zeta_{p}^{g^{2 i}}\right)\left(\zeta_{8}^{-\gamma}-\zeta_{p}^{g^{2 i}}\right)=\prod_{i=1}^{(p-1) / 2}\left(\zeta_{p}^{g^{2 i}}+\sqrt{-1}\right) \\
& \equiv \prod_{i=1}^{(p-1) / 2}(1+\sqrt{-1})=2^{(p-1) / 4} \equiv 1 \quad\left(\bmod \zeta_{p}-1\right),
\end{aligned}
$$

which shows $\eta_{1}^{1+\gamma}=N_{k_{1} / k}\left(\eta_{1}\right)=1$ because $N_{k_{1} / k}\left(\eta_{1}\right)= \pm 1$. We see now that $\eta_{1} \in \mathbb{Q}(\sqrt{2 p})$ follows from $N_{k_{1} / \mathbb{Q}_{1}}\left(\eta_{1}\right)=1$.

The following lemma enables us to restrict the form of an element of V_{n} whose square root lies in $E_{n}^{\prime \prime}$.
Lemma 4.2. If $\left(E_{n}^{\prime \prime}: V_{n}\right)>1$, then there exists an element v of V_{n} which satisfies

$$
\sqrt{v} \notin V_{n}, \quad \sqrt{v} \in E_{n}^{\prime \prime} \quad \text { and } \quad \sqrt{v^{1+\gamma}} \in V_{n} .
$$

Proof. Since $E_{n}^{\prime \prime} / V_{n}$ is a non-trivial $G\left(k_{n} / k\right)$-module, there exists a non-trivial fixed point. Namely, there exists $\bar{\varepsilon}=\varepsilon V_{n}$ with $\varepsilon \in E_{n}^{\prime \prime}$ such that

$$
\bar{\varepsilon} \neq 1, \quad \bar{\varepsilon}^{2}=1, \quad \bar{\varepsilon}^{\gamma}=\bar{\varepsilon}
$$

which means

$$
\varepsilon \notin V_{n}, \quad \varepsilon^{2} \in V_{n}, \quad \varepsilon^{\gamma-1} \in V_{n} .
$$

Then $v=\varepsilon^{2}$ has a desired property because $\sqrt{v}= \pm \varepsilon \in E_{n}^{\prime \prime}$ and

$$
\sqrt{v^{1+\gamma}}=\sqrt{\left(\varepsilon^{1+\gamma}\right)^{2}}= \pm \varepsilon^{1+\gamma}= \pm \varepsilon^{\gamma-1} \varepsilon^{2} \in V_{n}
$$

Now recall that A_{n} is the 2-part of the ideal class group of k_{n} and $\left|A_{n}\right|=2^{e_{n}}$. We describe our main result in the following form, which will be used in $\S 5$ to prove Lemma 5.2.

Theorem 4.3. Assume that $e_{n}=e_{n-1}+1$ for some $n \geqslant 2$. Then the following assertions hold:
(1) We have $E_{n}^{\prime \prime}=\left\langle V_{n} \cup\left\{\sqrt{v_{n}}\right\}\right\rangle$, where $v_{n}=\xi \eta_{n}^{(1+\gamma)^{2^{n-1}-1}}$ with appropriate $\xi \in E_{n-1}^{\prime \prime}$.
(2) If $e_{n+1}>e_{n}$, then we have $e_{n+1}=e_{n}+1$ and $E_{n+1}^{\prime \prime}=\left\langle V_{n+1} \cup\left\{\sqrt{v_{n+1}}\right\}\right\rangle$, where $v_{n+1}=\xi^{\prime} \sqrt{v_{n}} \eta_{n+1}^{(1+\gamma)^{2^{n}-1}}$ with appropriate $\xi^{\prime} \in V_{n}$.
Proof. First we note that

$$
\left(E_{n}^{\prime \prime}: E_{n}^{\prime}\right)=2\left(E_{n-1}^{\prime \prime}: E_{n-1}^{\prime}\right)
$$

by Proposition 3.5. On the other hand, we have $\left(E_{n}^{\prime \prime}: E_{n}^{\prime}\right)=\left(E_{n}^{\prime \prime}: V_{n}\right)\left(V_{n}: E_{n}^{\prime}\right)$ and

$$
\left(V_{n}: E_{n}^{\prime}\right)=\left(E_{n-1}^{\prime \prime} E_{n}^{\prime}: E_{n}^{\prime}\right)=\left(E_{n-1}^{\prime \prime}: E_{n-1}^{\prime \prime} \cap E_{n}^{\prime}\right)=\left(E_{n-1}^{\prime \prime}: E_{n-1}^{\prime}\right)
$$

by Proposition 3.4. Moreover, we have $\left(E_{n}^{\prime \prime}: V_{n}\right)=2$.
(1) There exist $v_{n} \in V_{n}, \varepsilon \in E_{n} \backslash V_{n}, \xi \in E_{n-1}^{\prime \prime}$ and $x_{i}, y_{i} \in\{0,1\}$ such that

$$
\varepsilon^{2}=v_{n}=\xi c_{n}^{x_{0}+x_{1}(1+\gamma)+\cdots+x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \eta_{n}^{y_{0}+y_{1}(1+\gamma)+\cdots+y_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}}
$$

and $v_{n}^{1+\gamma} \equiv 1\left(\bmod V_{n}^{2}\right)$ by Lemma 4.2. From the relations

$$
\eta_{n}^{(1+\gamma)^{2^{n-1}}} \equiv \eta_{n}^{1+\gamma^{2^{n-1}}} \equiv \eta_{n-1} \quad\left(\bmod V_{n}^{2}\right)
$$

and

$$
c_{n}^{(1+\gamma)^{2^{n-1}}} \equiv c_{n}^{1+\gamma^{2^{n-1}}} \equiv-c_{n-1} \quad\left(\bmod V_{n}^{2}\right)
$$

we have

$$
\begin{aligned}
v_{n}^{1+\gamma}= & \xi^{1+\gamma} c_{n}^{x_{0}(1+\gamma)+x_{1}(1+\gamma)^{2}+\cdots+x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}}} \\
& \times \eta_{n}^{y_{0}(1+\gamma)+y_{1}(1+\gamma)^{2}+\cdots+y_{2^{n-1}-1}(1+\gamma)^{2^{n-1}}} \\
\equiv & c_{n}^{x_{0}(1+\gamma)+x_{1}(1+\gamma)^{2}+\cdots+x_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1}} \\
& \times \eta_{n}^{y_{0}(1+\gamma)+y_{1}(1+\gamma)^{2}+\cdots+y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1} \quad\left(\bmod E_{n-1}^{\prime \prime} V_{n}^{2}\right),}
\end{aligned}
$$

which implies

$$
x_{0}=x_{1}=\cdots=x_{2^{n-1}-2}=y_{0}=y_{1}=\cdots=y_{2^{n-1}-2}=0
$$

by Propositions 3.4 and 3.5 . Hence we have

$$
v_{n}=\xi c_{n}^{x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \eta_{n}^{y_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} .
$$

From the congruences

$$
\begin{array}{rr}
(1+\gamma)^{2^{n-1}-1}(1+\gamma) \equiv 1+\gamma^{2^{n-1}} & (\bmod 2) \\
(1+\gamma)^{2^{n-1}-1} \equiv 1+\gamma+\cdots+\gamma^{2^{n-1}-1} & (\bmod 2)
\end{array}
$$

and Lemma 4.1,
we have

$$
\begin{aligned}
v_{n}^{1+2^{2 n-1}} & =\xi^{2}\left(-c_{n-1}\right)^{x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \eta_{n-1}^{y_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \\
& \equiv \xi^{2}(-1)^{x_{2^{n-1}-1}} \equiv 1 \quad\left(\bmod V_{n}^{2}\right),
\end{aligned}
$$

which implies $x_{2^{n-1}-1}=0$. Since $e_{n}=e_{n-1}+1$, we have $y_{2^{n-1}-1}=1$ and $E_{n}^{\prime \prime}=\left\langle V_{n} \cup\left\{\sqrt{v_{n}}\right\}\right\rangle$. (2) There exists $v_{n+1} \in V_{n+1}$ such that $v_{n+1}^{1+\gamma} \equiv 1\left(\bmod V_{n+1}^{2}\right)$ with $\sqrt{v_{n+1}} \in E_{n+1}^{\prime \prime} \backslash V_{n+1}$ by Lemma 4.2. We may write

$$
\begin{aligned}
v_{n+1}= & \xi^{\prime} c_{n}^{x_{0}+x_{1}(1+\gamma)+\cdots+x_{2^{n-1}-1}(1+\gamma)^{2^{n-1}-1}} \eta_{n}^{y_{0}+y_{1}(1+\gamma)+\cdots+y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-2}} \\
& \times{\sqrt{v_{n}}}^{y_{2^{n-1}-1}} c_{n+1}^{x_{0}^{\prime}+x_{1}^{\prime}(1+\gamma)+\cdots+x_{2^{n}-1}^{\prime}(1+\gamma)^{2^{n}-1}} \eta_{n+1}^{y_{0}^{\prime}+y_{1}^{\prime}(1+\gamma)+\cdots+y_{2}^{\prime} n-1}(1+\gamma)^{2^{n}-1}
\end{aligned}
$$

with appropriate $\xi^{\prime} \in E_{n-1}^{\prime \prime}$ and $x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime} \in\{0,1\}$. Since $(1+\gamma)^{2^{n-1}} \equiv 1+$ $2 \gamma^{2^{n-2}}+\gamma^{2^{n-1}}(\bmod 4)$, we have

$$
v_{n}^{1+\gamma} \equiv \xi^{1+\gamma} \eta_{n-1} \eta_{n}^{2 \gamma^{\gamma^{n-2}}} \equiv \xi^{1+\gamma} \eta_{n-1} \eta_{n}^{2\left((1+\gamma)^{2^{n-2}}+1\right)} \quad\left(\bmod V_{n}^{4}\right)
$$

This means ${\sqrt{v_{n}}}^{1+\gamma} \equiv \eta_{n}^{1+(1+\gamma)^{2^{n-2}}}\left(\bmod E_{n-1}^{\prime \prime} V_{n}^{2}\right)$ by Lemma 3.8. Hence we have

$$
\begin{aligned}
v_{n+1}^{1+\gamma} \equiv & c_{n}^{x_{0}(1+\gamma)+x_{1}(1+\gamma)^{2}+\cdots+x_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1}} \\
& \times \eta_{n}^{y_{0}(1+\gamma)+y_{1}(1+\gamma)^{2}+\cdots+y_{2^{n-1}-3}(1+\gamma)^{2^{n-1}-2}\left(\eta_{n}^{1+(1+\gamma)^{2^{n-2}}}\right)^{y_{2 n-1}-1}} \\
& \times c_{n}^{x_{2 n-1}^{\prime}-1} c_{n+1}^{x_{0}^{\prime}(1+\gamma)+x_{1}^{\prime}(1+\gamma)^{2}+\cdots+x_{2}^{\prime}{ }_{2}(1+\gamma)^{2^{n}-1}} \\
& \times \eta_{n}^{y_{2}^{\prime}-1} \eta_{n+1}^{y_{0}^{\prime}(1+\gamma)+y_{1}^{\prime}(1+\gamma)^{2}+\cdots+y_{2}^{\prime}{ }_{2}(1+\gamma)^{2^{n}-1}} \\
\equiv & 1 \quad\left(\bmod E_{n-1}^{\prime \prime} V_{n+1}^{2}\right),
\end{aligned}
$$

which shows

$$
x_{0}=\cdots=x_{2^{n-1}-2}=x_{0}^{\prime}=\cdots=x_{2^{n}-1}^{\prime}=y_{0}^{\prime}=\cdots=y_{2^{n}-2}^{\prime}=0
$$

and $y_{2^{n}-1}^{\prime}=y_{2^{n-1}-1}=1$ by $\sqrt{v_{n+1}} \in E_{n+1}^{\prime \prime}$ and $\sqrt{v_{n+1}} \notin V_{n+1}$. Hence we have

$$
v_{n+1}=\xi c_{n}^{x_{2 n-1}(1+\gamma)^{2^{n-1}-1}} \eta_{n}^{y_{0}+y_{1}(1+\gamma)+\cdots+y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-2}} \sqrt{v_{n}} \eta_{n+1}^{(1+\gamma)^{2^{n}-1}}
$$

We put $V_{n+1}^{\prime}=\left\langle V_{n+1} \cup\left\{\sqrt{v_{n+1}}\right\}\right\rangle$. Then $V_{n+1}^{\prime} \subset E_{n+1}^{\prime \prime}$ and $V_{n+1}^{\prime} \subsetneq E_{n+1}^{\prime \prime}$ is equivalent to $e_{n+1}>e_{n}+1$. Now we assume $e_{n+1}>e_{n}+1$ and derive a contradiction. There exists an element v_{n+1}^{\prime} in V_{n+1}^{\prime} satisfying $\left(v_{n+1}^{\prime}\right)^{1+\gamma} \equiv 1\left(\bmod \left(V_{n+1}^{\prime}\right)^{2}\right)$ and $\sqrt{v_{n+1}^{\prime}} \in E_{n+1}^{\prime \prime} \backslash V_{n+1}^{\prime}$. Since

$$
\begin{aligned}
v_{n+1}^{1+\gamma}= & \xi^{1+\gamma} c_{n}^{x_{2} n-1-1}(1+\gamma)^{2^{n-1}} \eta_{n}^{y_{0}(1+\gamma)+y_{1}(1+\gamma)^{2}+\cdots+y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1}} \\
& \times{\sqrt{v_{n}}}^{1+\gamma} \eta_{n+1}^{(1+\gamma)^{2^{n}}} \\
\equiv & \xi^{1+\gamma} c_{n}^{x_{2}^{n-1}-1}(1+\gamma)^{2^{n-1}} \eta_{n}^{y_{0}(1+\gamma)+y_{1}(1+\gamma)^{2}+\cdots+y_{2^{n-1}-2}(1+\gamma)^{2^{n-1}-1}} \\
& \times{\sqrt{v_{n}}}^{1+\gamma} \eta_{n} \eta_{n+1}^{2\left(1+(1+\gamma)^{2^{n-1}}\right)} \quad\left(\bmod V_{n+1}^{4}\right)
\end{aligned}
$$

and since $v_{n+1}^{1+\gamma} \equiv 1\left(\bmod V_{n+1}^{2}\right)$, we have ${\sqrt{v_{n+1}}}^{1+\gamma} \equiv \eta_{n+1}^{1+(1+\gamma)^{2^{n-1}}}\left(\bmod E_{n}^{\prime \prime} V_{n+1}^{2}\right)$, which means $v_{n+1}^{\prime} \in V_{n+1}$ and

$$
\begin{equation*}
\left(v_{n+1}^{\prime}\right)^{1+\gamma} \in\left\langle V_{n} \cup\left\{c_{n+1}^{\gamma^{i}}, \eta_{n+1}^{\gamma^{i}} \mid i \in \mathbb{Z}\right\}\right\rangle \tag{4.2}
\end{equation*}
$$

Since $\left(v_{n+1}^{\prime}\right)^{1+\gamma} \not \equiv 1\left(\bmod V_{n+1}^{2}\right)$ by $e_{n}=e_{n-1}+1$, we have $\left(v_{n+1}^{\prime}\right)^{1+\gamma} \equiv v_{n+1}$ $\left(\bmod V_{n+1}^{2}\right)$. This contradicts (4.2). Hence we conclude $e_{n+1}=e_{n}+1$ and $V_{n+1}^{\prime}=$ $E_{n+1}^{\prime \prime}$.

Corollary 4.4. Assume that $e_{n} \leqslant e_{n-1}+1$ for some $n \geqslant 2$. Then we have $e_{m} \leqslant e_{m-1}+1$ for all $m \geqslant n$.
Proof. If $e_{n}=e_{n-1}$, then $e_{m}=e_{m-1}$ for all $m \geqslant n$ by [2, Theorem 1]. Otherwise, $e_{n+1}=e_{n}$ or $e_{n+1}=e_{n}+1$ by (2) of Theorem 4.3. If $e_{n+1}=e_{n}$, then $e_{m}=e_{m-1}$ for all $m \geqslant n+1$. Otherwise, $e_{n+2}=e_{n+1}$ or $e_{n+2}=e_{n+1}+1$ again by (2) of Theorem 4.3. Repeating this procedure, we reach the conclusion.

5. The Proofs of Theorems 2.1 and 2.2

We assume $2^{(p-1) / 4} \equiv 1(\bmod p)$ continuously. In order to prove Theorems 2.1 and 2.2 , We need some more lemmas. We first recall that the equality

$$
\begin{equation*}
\left|D_{r}\right|=\frac{2^{r}}{\left(E_{0}: N_{k_{r} / k}\left(E_{r}\right)\right)} \tag{5.1}
\end{equation*}
$$

is a direct consequence of genus formula (cf. (4) in [3]). Note that E_{r} in the right hand side of (5.1) may be replaced by $E_{r}^{\prime \prime}$.

The following two lemmas depend on the property of η_{1}.
Lemma 5.1. If $\left|A_{1}\right|=2$, then $\left|D_{1}\right|=1$.
Proof. We abbreviate $G\left(k_{1} / \mathbb{Q}_{1}\right)=\langle\tau\rangle$ and $G\left(k_{1} / k\right)=\langle\gamma\rangle$. We also recall that $E_{1}^{\prime}=\left\langle-1, \rho, c_{1}, \eta_{1}\right\rangle$. We define $S(\alpha)$ for non-zero element α in k_{1} by

$$
S(\alpha)=\left(\frac{\alpha}{|\alpha|}, \frac{\alpha^{\tau}}{\left|\alpha^{\tau}\right|}, \frac{\alpha^{\gamma}}{\left|\alpha^{\gamma}\right|}, \frac{\alpha^{\tau \gamma}}{\left|\alpha^{\tau \gamma}\right|}\right) .
$$

Then we have

$$
\begin{equation*}
S(\rho)=(1,-1,1,-1), S\left(c_{1}\right)=(1,1,-1,-1), S\left(\eta_{1}\right)= \pm(1,1,1,1) \tag{5.2}
\end{equation*}
$$

by $p \equiv 1(\bmod 16), c_{1}=1+\sqrt{2}$ and Lemma 4.1. From Proposition 3.5 and the assumption $\left|A_{1}\right|=2$, we have

$$
E_{1}^{\prime \prime}=\left\langle-1, \rho, c_{1}, \eta_{1}, \sqrt{\varepsilon}\right\rangle
$$

where $\varepsilon= \pm \rho^{x_{1}} c_{1}^{x_{2}} \eta_{1}^{x_{3}}$ with $x_{i} \in\{0,1\}$. The equalities (5.2) imply $\varepsilon= \pm \eta_{1}$ and so $N_{k_{1} / k}\left(E_{1}\right)=\left\langle-1, \rho^{2}\right\rangle$, which means $\left|D_{1}\right|=1$ by (5.1).

Lemma 5.2. Assume that $e_{1}=1$ and $e_{2}=2$. If $\left|D_{r}\right|>1$ for some $r \geqslant 1$, then $\lambda_{2}(k)=0$.

Proof. We may assume that $\left|D_{r-1}\right|=1$ and $\left|D_{r}\right|=2$ with $r \geqslant 2$ by Lemma 5.1. Then we see that

$$
\begin{aligned}
N_{k_{r} / k}\left(V_{r}\right) & =\left\langle-1, N_{k_{r-1} / k}\left(E_{r-1}^{\prime \prime}\right)^{2}\right\rangle=\left\langle-1, \rho^{2^{r}}\right\rangle \\
N_{k_{r} / k}\left(E_{r}^{\prime \prime}\right) & =\left\langle-1, \rho^{2^{r-1}}\right\rangle
\end{aligned}
$$

from (4.1) and (5.1). We have $e_{r} \leqslant e_{r-1}+1$ by Corollary 4.4. If $e_{r}=e_{r-1}$, then $\lambda_{2}(k)=0$ by [2, Theorem 1]. So we may assume $e_{r}=e_{r-1}+1$. Then v_{r} in (1) of Theorem 4.3 has the property

$$
\left\langle-1, N_{k_{r} / k}(\rho), N_{k_{r} / k}\left(\sqrt{v_{r}}\right)\right\rangle=\left\langle-1, \rho^{2^{r-1}}\right\rangle .
$$

By Corollary 4.4, there are two possibilities for e_{r+1}, namely $e_{r+1}=e_{r}$ and $e_{r+1}=e_{r}+1$. If $e_{r+1}=e_{r}+1$, then we have

$$
N_{k_{r+1} / k}\left(E_{r+1}^{\prime \prime}\right)=\left\langle N_{k_{r+1} / k}\left(V_{r+1}\right), N_{k_{r+1} / k}\left(\sqrt{v_{r+1}}\right)\right\rangle=\left\langle-1, \rho^{2^{r-1}}\right\rangle
$$

by (2) of Theorem 4.3 and hence $\left|D_{r+1}\right|=4$ by (5.1). Namely, either $e_{r+1}=e_{r}$ or $\left|D_{r+1}\right|=2\left|D_{r}\right|$ holds. Repeating this procedure, we reach n satisfying $e_{n+1}=e_{n}$ or $\left|D_{n}\right|=2^{n_{2}-2}$, which means $\lambda_{2}(k)=0$ by [6, Theorem 2] or [3, Theorem 2.1].

Now we are able to prove Theorems 2.1 and 2.2. For an integer α in k, we write $\mathfrak{p}^{e} \| \alpha$ if $\alpha \equiv 0\left(\bmod \mathfrak{p}^{e}\right)$ and $\alpha \not \equiv 0\left(\bmod \mathfrak{p}^{e+1}\right)$.

Proof of Theorem 2.1. Put $r=n_{0}-1$ and assume that $\left|D_{r}\right|=1$. Then there exist $\beta \in k$ and $\beta_{r} \in k_{r}$ which satisfy

$$
\begin{array}{ll}
\mathfrak{p}^{\prime h_{k}}=(\beta), & \mathfrak{p}^{n_{0}} \| \beta-1 \\
\mathfrak{p}_{r}^{\prime h_{k}}=\left(\beta_{r}\right), & \mathfrak{p}_{0}^{n_{0}^{(r)}} \| N_{k_{r} / k}\left(\beta_{r}\right)-1
\end{array}
$$

Then we have $\beta_{r}^{2^{r}}=\beta \varepsilon_{r}$ for some $\varepsilon_{r} \in E_{r}$ and

$$
N_{k_{r} / k}\left(\beta_{r}\right)^{2^{r}}=\beta^{2^{r}} N_{k_{r} / k}\left(\varepsilon_{r}\right) .
$$

We see that

$$
\mathfrak{p}^{\mathfrak{n}_{0}^{(r)}+r}\left\|N_{k_{r} / k}\left(\beta_{r}\right)^{2^{r}}-1, \quad \mathfrak{p}^{n_{0}+r}\right\| \beta^{2^{r}}-1, \quad \mathfrak{p}^{n_{2}+r} \mid N_{k_{r} / k}\left(\varepsilon_{r}\right)-1
$$

from (5.1), so $n_{0}^{(r)}+r=n_{0}+r$ by the assumption $n_{0}<n_{2}$. It means $n_{0}=n_{0}^{(r)} \geqslant$ $r+2=n_{0}+1$, which is a contradiction. Hence we have $\left|D_{r}\right|>1$ and so $\lambda_{2}(k)=0$ from Lemma 5.2.

Proof of Theorem 2.2. Since $n_{0}^{(s)} \leqslant n_{0}^{(s-1)}+1$ in general, we may assume that

$$
n_{0}^{(r)}=n_{0}^{(r-1)}=n_{0}+r-1 .
$$

Put $s=n_{0}-2$ and assume that $\left|D_{r+s}\right|=1$. Then there exist $\beta_{r} \in k_{r}$ and $\beta_{r+s} \in k_{r+s}$ which satisfy

$$
\begin{aligned}
\mathfrak{p}_{r}^{\prime h_{k}} & =\left(\beta_{r}\right), \quad \mathfrak{p}^{n_{0}^{(r)}} \| N_{k_{r} / k}\left(\beta_{r}\right)-1, \\
\mathfrak{p}_{r+s}^{\prime h_{k}} & =\left(\beta_{r+s}\right) .
\end{aligned}
$$

Then we have $\beta_{r+s}^{2^{s}}=\beta_{r} \varepsilon_{r+s}$ for some $\varepsilon_{r+s} \in E_{r+s}$ and

$$
N_{k_{r+s} / k}\left(\beta_{r+s}\right)^{2^{s}}=N_{k_{r} / k}\left(\beta_{r}\right)^{2^{s}} N_{k_{r+s} / k}\left(\varepsilon_{r+s}\right) .
$$

We see that

$$
\mathfrak{p}^{n_{0}^{(r)}+s} \| N_{k_{r} / k}\left(\beta_{r}\right)^{2^{s}}-1, \mathfrak{p}^{n_{2}+r+s} \mid N_{k_{r+s} / k}\left(\varepsilon_{r+s}\right)-1
$$

from (5.1). Since $n_{0}^{(r)}+s=n_{0}+r+s-1<n_{2}+r+s$, we see that

$$
\mathfrak{p}^{n_{0}^{(r)}} \| N_{k_{r+s} / k}\left(\beta_{r+s}\right)-1 .
$$

Since $\mathfrak{p}^{n_{2}+r+s} \mid N_{k_{r+s} / k}\left(\varepsilon_{r+s}^{\prime}\right)-1$ for any $\varepsilon_{r+s}^{\prime} \in E_{r+s}$ and since $n_{2}+r+s-$ $n_{0}^{(r)}=n_{2}-1>0$, it follows that $n_{0}^{(r+s)}=n_{0}^{(r)}=n_{0}+r-1$, which contradicts $n_{0}^{(r+s)} \geqslant r+s+2=n_{0}+r$. Hence we have $\left|D_{r+s}\right|>1$ and so $\lambda_{2}(k)=0$ from Lemma 5.2.

References

[1] B. Ferrero and L.C. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. 109 (1979), no. 2, 377-395.
[2] T. Fukuda, Remarks on \mathbb{Z}_{p}-extensions of number fields, Proc. Japan Acad. Ser. A 65 (1989), 260-262.
[3] T. Fukuda, Greenberg conjecture for the cyclotomic \mathbb{Z}_{2}-extension of $\mathbb{Q}(\sqrt{p})$, Interdisciplinary Information Sciences 16-1 (2010), 21-32.
[4] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic \mathbb{Z}_{2}-extension of $\mathbb{Q}(\sqrt{p})$, Math. Comp. 78 (2009), 1797-1808.
[5] T. Fukuda and H. Taya, The Iwasawa λ-invariants of \mathbb{Z}_{p}-extensions of real quadratic fields, Acta. Arith. 69 (1995), 277-292.
[6] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
[7] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag, Berlin, 1952.
[8] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226.
[9] K. Iwasawa, On \mathbb{Z}_{ℓ}-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
[10] M. Ozaki and H. Taya, On the Iwasawa λ_{2}-invariants of certain families of real quadratic fields, Manuscripta Math. 94 (1997), no. 4, 437-444.
[11] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234.

[^0]E-mail: fukuda.takashi@nihon-u.ac.jp, kkomatsu@waseda.jp
Received: 8 February 2013

[^0]: Addresses: Takashi Fukuda: Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan;
 Keiichi Komatsu: Department of Mathematical Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

