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ON THE IWASAWA λ-INVARIANT OF THE CYCLOTOMIC
Z2-EXTENSION OF Q(

√
p) II

Takashi Fukuda, Keiichi Komatsu

Abstract: In the preceding papers, we studied the Iwasawa λ-invariant of the cyclotomic Z2-
extension of Q(

√
p ) for an odd prime number p using certain units and the invariants n(r)

0 and n2.
In the present paper, we develop new criteria for Greenberg conjecture using n(r)

0 and n2.
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1. Introduction

We start with reviewing Iwasawa invariants and Greenberg conjecture. Let k be
a finite algebraic number field, ` a prime number and

k = k0 ⊂ k1 ⊂ k2 ⊂ · · · ⊂ k∞

the cyclotomic Z`-extension of k with G(kn/k) ∼= Z/`nZ. Let `en be the highest
power of ` dividing the class number of kn. Then Iwasawa [8, 9] proved that there
exist rational integers µ`(k) > 0, λ`(k) > 0 and ν`(k) which realize the equality

en = µ`(k)`n + λ`(k)n+ ν`(k)

for all sufficiently large n. Greenberg conjecture, which is still open, predicts that
both µ`(k) and λ`(k) vanish for any totally real number field k and for any prime
number `.

It is most fundamental to study Greenberg conjecture when k is a real quadratic
field and ` = 2. In this situation, µ2(k) is known to be zero by Ferrero-
-Washington [1]. So we are interested in λ2(k). It is especially important to
consider λ2(k) for k = Q(

√
p ) with prime number p. In the preceding paper [4],
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we gave a sufficient condition for λ2(Q(
√
p )) = 0 based on a property of units in

kn and verified that λ2(Q(
√
p )) = 0 for all prime number p less than 10000. In the

paper [3] following [4], one of the authors introduced the invariants n(r)
0 and n2,

which are analogous to those defined in [5], and verified that λ2(Q(
√
p )) = 0 for

all prime number p satisfying 10000 < p < 20000 except p = 13841.
In this paper, we develop new criteria for λ2(Q(

√
p )) = 0 using n(r)

0 and n2,
which are deeply based on the structure of the unit group of kn and show numer-
ically λ2(k) = 0 faster than known criteria.

2. Main Results

Let k = Q(
√
p ) be a real quadratic field with prime number p. If p 6≡ 1 (mod 16),

then it is known that λ2(k) = 0 by [10]. So we assume hereafter that p ≡ 1
(mod 16).

We briefly recall the definitions of n(r)
0 and n2. Let kr be the r-th layer of the

cyclotomic Z2-extension of k, Er the unit group of kr, Ar the 2-part of the ideal
class group of kr and 2er the order of Ar. Let p and p′ be the prime ideals of k
lying over 2 and pr (resp. p′r) the prime ideal of kr lying over p (resp. p′). We
define the subgroup Dr of Ar by Dr = 〈 cl(pr) 〉 ∩ Ar. Namely Dr = 〈 cl(phkr ) 〉,
where hk is the class number of k. For an element ε of E0 which is not a root of
unity, we define mε to be the maximal integer satisfying ε2 ≡ 1 (mod pmε+1) and
put

n2 = min{mε | ε ∈ E0, ε 6= ± 1 }.

We note that n2 is the maximal integer satisfying ε2
0 ≡ 1 (mod pn2+1), where ε0

is the fundamental unit of k. Let d be the order of Dr and fix an element β of kr
such that

p′hkdr = (β).

Then we define mβ,ε to be the maximal integer satisfying Nkr/k(β2ε2) ≡ 1
(mod pmβ,ε+1) for an element ε in Er and put

n
(r)
0 = min{mβ,ε | ε ∈ Er }.

We also put n0 = n
(0)
0 . We note that n0 6 n2 and n(r)

0 > r+ 2 for all r > 0. Then
our main results are stated in the following form.

Theorem 2.1. Assume that e1 = 1 and e2 = 2. If n0 < n2, then λ2(k) = 0.

Theorem 2.2. Assume that e1 = 1 and e2 = 2. If n(r−1)
0 = n

(r)
0 for some r > 1,

then λ2(k) = 0.

Theorems 2.1 and 2.2 have the advantage of proving λ2(k) = 0 numerically
faster than Theorem 2.1 in [3]. We show numerical data for k = Q(

√
p ) with
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prime number p satisfying p ≡ 1 (mod 16) and 2(p−1)/4 ≡ 1 (mod p). In [3],
we showed a table for 10000 < p < 20000 and verified that λ2(k) = 0 except
p = 13841. We now show data for 20000 < p < 100000.

Example 2.3. In the range 20000 < p < 100000, there are 73 k’s which satisfy
e1 = 1, e2 = 2 and n0 < n2. For these k’s, we have λ2(k) = 0 from Theorem 2.1.

Example 2.4. In the range 20000 < p < 100000, there are 45 k’s which satisfy
e1 = 1, e2 = 2 and n0 = n2. For these k’s we verified that the equality n(r−1)

0 =

n
(r)
0 holds with some r 6 7. Hence we conclude that λ2(k) = 0 for these 45 k’s

from Theorem 2.2. We show two typical examples.
Let k = Q(

√
20353 ). Then e1 = 1, e2 = 2, n0 = n2 = 6 and n

(1)
0 = 6.

Hence we can conclude λ2(k) = 0 with calculation in k1. Theorem 2.1 in [3] needs
calculation in k4.

Let k = Q(
√

61297 ). Then e1 = 1, e2 = 2, n0 = n2 = 4 and n(6)
0 = n

(7)
0 = 10.

Hence we can conclude λ2(k) = 0 with calculation in k7. Theorem 2.1 in [3] needs
calculation in k8.

The proofs of Theorems 2.1 and 2.2 depend essentially on the structure of Er.
We start with explaining properties of Er which are needed for our proof.

3. Cyclotomic Units

We study the relation between class numbers and cyclotomic units in the interme-
diate fields of the cyclotomic Z2-extension of k = Q(

√
p ). Let ζn = exp(2π

√
−1/n)

and αn = ζ2n+2 + ζ−1
2n+2 . Then Qn = Q(αn) is a cyclic extension of Q of degree 2n

and kn = kQn. Let Q∞ = ∪∞n=0Qn, k∞ = ∪∞n=0kn and G(k∞/Q∞) = 〈 τ 〉. We fix
the topological generator γ of G(k∞/k) induced by ζ2n+2 + ζ−1

2n+2 7→ ζ5
2n+2 + ζ−5

2n+2 .
Let Cn be the unit group of Qn and En the unit group of kn. We define the cyclo-
tomic unit group Sn of kn according to [11]. Let Tn be the subgroup of k×n gener-
ated by −1 and {NQ(ζm)/kn∩Q(ζm)(1− ζam) | m, a ∈ Z, m > 1, m 6 | a }. Then Sn is
defined to be En∩Tn. An easy argument shows that Tn is equal to the subgroup of
k×n generated by −1 and {NQ(ζm)/kn∩Q(ζm)(1−ζam) | m, a ∈ Z, m > 1, (a,m) = 1 }.
We are able to describe generators of Sn explicitly. Let ρ be the fundamental unit
of k = k0 and hk the class number of k. Then [11, Theorem 4.1 and Theorem 5.1]
implies S0 = 〈−1, ρ2hk 〉. Next let cn = 1 + αn. It is straightforward to see that

NQn/Qn−1
(cn) = −cn−1 (n > 1) (3.1)

and cn is contained in Cn. We use the equality

c2n = (1 + ζ2n+2 + ζ−1
2n+2)ζ2n+2ζ−1

2n+2(1 + ζ2n+2 + ζ−1
2n+2)

= (1 + ζ2n+2 + ζ2
2n+2)(1 + ζ−1

2n+2 + ζ−2
2n+2)

=
1− ζ3

2n+2

1− ζ2n+2

·
1− ζ−3

2n+2

1− ζ−1
2n+2

=
NQ(ζ2n+2 )/Qn(1− ζ3

2n+2)

NQ(ζ2n+2 )/Qn(1− ζ2n+2)
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to see that c2n ∈ Sn. Finally we let

ξn = NQ(ζ2n+2p)/kn(1− ζ2n+2ζp).

Then ξn is an integer of kn satisfying Nkn/Q(ξn) = 1 and clearly contained in Sn.
We define an element ηn of Q(ζ2n+2ζp) by

ηn = ζ
(p−1)/4
2n+2

∏
x∈H

(ζ−1
2n+2 − ζxp ),

where H is the subgroup of (Z/pZ)× with index 2. Since the product running over
x ∈ H is the norm from Q(ζ2n+2ζp) to k(ζ2n+2), ηn is contained in k(ζ2n+2).

Lemma 3.1. One has ηn ∈ En and ξn = η2
n.

Proof. We write ω = ζ2n+2 and ζ = ζp. Note that
∏
x∈H ζ

x = NQ(ζ)/k(ζ) is a real
p-th root of unity, hence is equal to 1. The complex conjugate of ηn is

ω−(p−1)/4
∏
x∈H

(ω − ζ−x) = ω−(p−1)/4
∏
x∈H

ωζ−x(ζx − ω−1)

= ω(p−1)/4
∏
x∈H

(ω−1 − ζx) = ηn,

implying ηn ∈ k(ω) ∩ R = kn. Next we have

ξn = Nk(ω)/knNQ(ω,ζ)/k(ω)(1− ωζ)

= Nk(ω)/kn

( ∏
x∈H

(1− ωζx)
)

=
∏
x∈H

(1− ωζx)(1− ω−1ζ−x)

=
∏
x∈H

ω(ω−1 − ζx)ζ−x(ζx − ω−1)

= ω
p−1

2

∏
x∈H

(ω−1 − ζx)2 = η2
n. �

The straightforward calculation shows

Nkn/kn−1
(ηn) = ηn−1 (n > 1) (3.2)

because the assumption p ≡ 1 (mod 16) leads to 2 + pZ ∈ H. Now we get three
cyclotomic units ρ2h, c2n and η2

n. In order to prove that conjugates of these units
generate Sn, we need the following lemmas.

Lemma 3.2. Let e, f and m be positive integers with (m, 2p) = 1. Then, for any
non-negative integer n, we have

kn ∩Q(ζ2e) = kn ∩Q(ζ2e , ζm), (3.3)
kn ∩Q(ζp) = kn ∩Q(ζpf , ζm), (3.4)

kn ∩Q(ζ2ep) = kn ∩Q(ζ2epf , ζm). (3.5)
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Proof. We put K = Q(ζ2epf ) and K ′ = Q(ζm) and show (3.5). The remaining
assertions are proved similarly. Since knK ∩K ′ = Q, we have

[knKK
′ : K ′] = [knK : knK ∩K ′] = [knK : Q]

= [knK : K][K : Q] = [kn : kn ∩K][K : Q]

and

[knKK
′ : K ′] = [knKK

′ : KK ′][KK ′ : K ′] = [kn : kn ∩KK ′][K : Q].

Hence we have [kn : kn ∩K] = [kn : kn ∩KK ′], which implies kn ∩K = kn ∩KK ′
by kn ∩ K ⊂ kn ∩ KK ′. The equality kn ∩ Q(ζ2ep) = kn ∩ Q(ζ2epf ) is a direct
consequence of [Q(ζ2epf ) : Q(ζ2ep)] = pf−1. �

Lemma 3.3. Let ` be a prime number and m a positive integer prime to `. For
a positive integer e, we have

NQ(ζ`em)/Q(ζ`e−1m)(1− ζ`eζm) = 1− ζ``eζ`m (e > 2), (3.6)

NQ(ζ`m)/Q(ζm)(1− ζ`ζm) =
1− ζ`m
1− ζm

. (3.7)

Proof. We prove when ` is an odd prime number. The case ` = 2 is proved in
a similar manner. Since

X` − ζ``e =
∏

σ∈G(Q(ζ`em)/Q(ζ`e−1m))

(X − ζσ`e)

is the minimal polynomial of ζ`e over Q(ζ`e−1m), we have

ζ−`m − ζ``e = NQ(ζ`em)/Q(ζ`e−1m)(ζ
−1
m − ζ`e)

= NQ(ζ`em)/Q(ζ`e−1m)ζ
−1
m (1− ζ`eζm)

= ζ−`m NQ(ζ`em)/Q(ζ`e−1m)(1− ζ`eζm),

from which (3.6) follows. Similarly we have (3.7) from the minimal polynomial

X` − 1

X − 1
=

∏
σ∈G(Q(ζ`m)/Q(ζm))

(X − ζσ` )

of ζ` over Q(ζm). �

Proposition 3.4. The cyclotomic unit group Sn is generated by

{−1, ρ2hk } ∪ { c2γ
i

n | 0 6 i 6 2n − 2 } ∪ { η2γi

n | 0 6 i 6 2n − 2 }.
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Proof. For a positive integer m, let

T ′n,m = {NQ(ζm)/kn∩Q(ζm)(1− ζam) | a ∈ Z, (a,m) = 1 }.

We define T ′n to be the subgroup of k×n generated by

{−1} ∪ T ′n,p ∪ T ′n,2n+2 ∪ T ′n,2n+2p.

Let S′n be the subgroup of Sn generated by the set stated in the proposition.
Then S′n = En ∩ T ′n and T ′n ⊂ Tn. Let m be any positive integer and a ∈ Z with
(a,m) = 1. Then we factorize m and apply Lemmas 3.2 and 3.3 repeatedly for
NQ(ζm)/kn∩Q(ζm)(1−ζam). Finally we use the relations (3.1) and (3.2) and conclude
that Tn ⊂ T ′n. This completes the proof. �

We start with the subgroup

E′n = 〈−1, ρ, cn, c
γ
n, · · · , cγ

2n−2

n , ηn, η
γ
n, · · · , ηγ

2n−2

n 〉

of En and enlarge E′n by finding square roots contained in En. Owing to the
relations (3.1) and (3.2), E′n is written also as

E′n = 〈−1, ρ, c1, η1, c2, c
γ
2 , η2, η

γ
2 , · · · , cn, cγn, · · · , cγ

2n−1−1

n , ηn, η
γ
n, · · · , ηγ

2n−1−1

n 〉.

We define E′′n to be the subgroup of En containing E′n such that (En : E′′n) is
prime to 2 and (E′′n : E′n) is 2-power. Since (E′n : Sn) = 22n+1−1hk and hk is odd,
Proposition 3.4 and [11, Theorem 4.1 and Theorem 5.1] leads us to the following
proposition, on which our proof deeply depends.

Proposition 3.5. We have |An| = (E′′n : E′n) for n > 1.

Proposition 3.5 has a straightforward application. Namely, Conjecture 4.1 in [3]
immediately follows from Proposition 3.5 and ar in the table of [3] actually satisfies
the equality |Ar| = 2ar .

We need to study Nkn/k(E′′n) later on. It is clear that Nkn/k(cn) = −1
from (3.1). We note that ηn has a similar property. Though the following lemma
may be well known, we give a proof here for the completeness.

Lemma 3.6. Let m be a positive integer which has at least two prime divisors
and ζm any primitive m-th root of unity in C. Let ` be a prime divisor of m and
M` the decomposition field of ` with respect to Q(ζm)/Q. Then we have

NQ(ζm)/M`
(1− ζm) = 1.

Proof. Let m = `ed with (`, d) = 1. Then ζm = ζ`eζd for appropriate `e-th root
of unity ζ`e and appropriate d-th root of unity ζd. First we have, by repeating use
of Lemma 3.3,

NQ(ζm)/Q(ζd)(1− ζm) = NQ(ζm)/Q(ζd)(1− ζ`eζd) =
1− ζ`

1− ζ
,
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where ζ = ζ`
e−1

d . Since every prime ideal of Q(ζd) lying over ` is totally ramified in
Q(ζm), M` is contained in Q(ζd) and G(Q(ζd)/M`) corresponds to the subgroup
of (Z/dZ)× generated by `+ dZ. Let f be the order of `+ dZ. Then we have

NQ(ζm)/M`
(1− ζm) = NQ(ζd)/M`

(1− ζ`

1− ζ

)
=

1− ζ`

1− ζ
· 1− ζ`2

1− ζ`
· · · · · 1− ζ`f

1− ζ`f−1 = 1. �

Since the prime number 2 splits in k/Q, we see Nkn/k(ηn)2 = Nkn/k(ξn) = 1.
We summarize properties of cn and ηn in the following lemma.

Lemma 3.7. One has Nkn/k(cn) = −1 and Nkn/k(ηn) = ± 1.

We need one more lemma to prove Theorems 2.1 and 2.2.

Lemma 3.8. Let ε be an element of En with ε 6∈ E2
n. Then we have ε 6∈ E2

n+1.

Proof. Suppose that there exists a unit v of En+1 with ε = v2. Since kn+1 =
kn(
√

2 + αn ), we have v−1(2+αn) ∈ k2
n, which is a contradiction because (2+αn)

is a prime ideal of kn. �

4. Structure of Unit Group

In [10], Ozaki and Taya showed λ2(k) = 0 if 2(p−1)/4 ≡ −1 (mod p). From now
on, we assume 2(p−1)/4 ≡ 1 (mod p) and describe E′′n explicitly. We define the
subgroup Vn of En by

Vn = 〈E′′n−1 ∪ { cn, cγn, · · · , cγ
2n−1

−1
n , ηn, η

γ
n, · · · , ηγ

2n−1
−1

n } 〉.

Then Lemma 3.7 implies

Nkn/k(Vn) = 〈−1, Nkn−1/k(E′′n−1)2 〉. (4.1)

We know Nkn/k(ηn) = ± 1 by Lemma 3.7 and get now Nkn/k(ηn) explicitly by the
assumption 2(p−1)/4 ≡ 1 (mod p).

Lemma 4.1. One has Nk1/k(η1) = 1 and η1 ∈ Q(
√

2p ).

Proof. Let g be a primitive root modulo p. Then we have

η1+γ
1 =

(p−1)/2∏
i=1

(ζ−1
8 − ζg

2i

p )(ζ−γ8 − ζg
2i

p ) =

(p−1)/2∏
i=1

(ζg
2i

p +
√
−1)

≡
(p−1)/2∏
i=1

(1 +
√
−1) = 2(p−1)/4 ≡ 1 (mod ζp − 1),

which shows η1+γ
1 = Nk1/k(η1) = 1 because Nk1/k(η1) = ± 1. We see now that

η1 ∈ Q(
√

2p ) follows from Nk1/Q1
(η1) = 1. �
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The following lemma enables us to restrict the form of an element of Vn whose
square root lies in E′′n.

Lemma 4.2. If (E′′n : Vn) > 1, then there exists an element v of Vn which satisfies
√
v 6∈ Vn,

√
v ∈ E′′n and

√
v1+γ ∈ Vn.

Proof. Since E′′n/Vn is a non-trivial G(kn/k)-module, there exists a non-trivial
fixed point. Namely, there exists ε = εVn with ε ∈ E′′n such that

ε 6= 1, ε2 = 1, εγ = ε,

which means

ε 6∈ Vn, ε2 ∈ Vn, εγ−1 ∈ Vn.

Then v = ε2 has a desired property because
√
v = ± ε ∈ E′′n and

√
v1+γ =

√(
ε1+γ

)2

= ± ε1+γ = ± εγ−1ε2 ∈ Vn. �

Now recall that An is the 2-part of the ideal class group of kn and |An| = 2en .
We describe our main result in the following form, which will be used in §5 to
prove Lemma 5.2.

Theorem 4.3. Assume that en = en−1 + 1 for some n > 2. Then the following
assertions hold:

(1) We have E′′n = 〈Vn ∪ {
√
vn} 〉, where vn = ξη

(1+γ)2n−1−1

n with appropriate
ξ ∈ E′′n−1.

(2) If en+1 > en, then we have en+1 = en + 1 and E′′n+1 = 〈Vn+1 ∪ {
√
vn+1} 〉,

where vn+1 = ξ′
√
vn η

(1+γ)2n−1

n+1 with appropriate ξ′ ∈ Vn.

Proof. First we note that

(E′′n : E′n) = 2(E′′n−1 : E′n−1)

by Proposition 3.5. On the other hand, we have (E′′n : E′n) = (E′′n : Vn)(Vn : E′n)
and

(Vn : E′n) = (E′′n−1E
′
n : E′n) = (E′′n−1 : E′′n−1 ∩ E′n) = (E′′n−1 : E′n−1)

by Proposition 3.4. Moreover, we have (E′′n : Vn) = 2.
(1) There exist vn ∈ Vn, ε ∈ En\Vn, ξ ∈ E′′n−1 and xi, yi ∈ { 0, 1 } such that

ε2 = vn = ξc
x0+x1(1+γ)+···+x2n−1−1(1+γ)2n−1−1

n η
y0+y1(1+γ)+···+y2n−1−1(1+γ)2n−1−1

n

and v1+γ
n ≡ 1 (mod V 2

n ) by Lemma 4.2. From the relations

η(1+γ)2n−1

n ≡ η1+γ2n−1

n ≡ ηn−1 (mod V 2
n )



On the Iwasawa λ-invariant of the cyclotomic Z2-extension of Q(
√
p ) II 175

and

c(1+γ)2n−1

n ≡ c1+γ2n−1

n ≡ −cn−1 (mod V 2
n ),

we have

v1+γ
n = ξ1+γc

x0(1+γ)+x1(1+γ)2+···+x2n−1−1(1+γ)2n−1

n

× ηy0(1+γ)+y1(1+γ)2+···+y2n−1−1(1+γ)2n−1

n

≡ cx0(1+γ)+x1(1+γ)2+···+x2n−1−2(1+γ)2n−1−1

n

× ηy0(1+γ)+y1(1+γ)2+···+y2n−1−2(1+γ)2n−1−1

n (mod E′′n−1V
2
n ),

which implies

x0 = x1 = · · · = x2n−1−2 = y0 = y1 = · · · = y2n−1−2 = 0

by Propositions 3.4 and 3.5. Hence we have

vn = ξc
x2n−1−1(1+γ)2n−1−1

n η
y2n−1−1(1+γ)2n−1−1

n .

From the congruences

(1 + γ)2n−1−1(1 + γ) ≡ 1 + γ2n−1

(mod 2),

(1 + γ)2n−1−1 ≡ 1 + γ + · · ·+ γ2n−1−1 (mod 2)

and Lemma 4.1,

we have

v1+γ2n−1

n = ξ2(−cn−1)x2n−1−1(1+γ)2n−1−1

η
y2n−1−1(1+γ)2n−1−1

n−1

≡ ξ2(−1)x2n−1−1 ≡ 1 (mod V 2
n ),

which implies x2n−1−1 = 0. Since en = en−1 + 1, we have y2n−1−1 = 1 and
E′′n = 〈Vn∪{

√
vn} 〉. (2) There exists vn+1 ∈ Vn+1 such that v1+γ

n+1 ≡ 1 (mod V 2
n+1)

with √vn+1 ∈ E′′n+1\Vn+1 by Lemma 4.2. We may write

vn+1 = ξ′c
x0+x1(1+γ)+···+x2n−1−1(1+γ)2n−1−1

n η
y0+y1(1+γ)+···+y2n−1−2(1+γ)2n−1−2

n

×
√
vn

y2n−1−1c
x′0+x′1(1+γ)+···+x′2n−1(1+γ)2n−1

n+1 η
y′0+y′1(1+γ)+···+y′2n−1(1+γ)2n−1

n+1

with appropriate ξ′ ∈ E′′n−1 and xi, yi, x
′
i, y
′
i ∈ { 0, 1 }. Since (1 + γ)2n−1 ≡ 1 +

2γ2n−2

+ γ2n−1

(mod 4), we have

v1+γ
n ≡ ξ1+γηn−1η

2γ2n−2

n ≡ ξ1+γηn−1η
2((1+γ)2n−2

+1)
n (mod V 4

n ).
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This means
√
vn

1+γ ≡ η
1+(1+γ)2n−2

n (mod E′′n−1V
2
n ) by Lemma 3.8. Hence we

have

v1+γ
n+1 ≡ c

x0(1+γ)+x1(1+γ)2+···+x2n−1−2(1+γ)2n−1−1

n

× ηy0(1+γ)+y1(1+γ)2+···+y2n−1−3(1+γ)2n−1−2

n (η1+(1+γ)2n−2

n )y2n−1−1

× cx
′
2n−1
n c

x′0(1+γ)+x′1(1+γ)2+···+x′2n−2(1+γ)2n−1

n+1

× ηy
′
2n−1
n η

y′0(1+γ)+y′1(1+γ)2+···+y′2n−2(1+γ)2n−1

n+1

≡ 1 (mod E′′n−1V
2
n+1),

which shows

x0 = · · · = x2n−1−2 = x′0 = · · · = x′2n−1 = y′0 = · · · = y′2n−2 = 0

and y′2n−1 = y2n−1−1 = 1 by √vn+1 ∈ E′′n+1 and √vn+1 6∈ Vn+1. Hence we have

vn+1 = ξc
x2n−1−1(1+γ)2n−1−1

n η
y0+y1(1+γ)+···+y2n−1−2(1+γ)2n−1−2

n
√
vn η

(1+γ)2n−1

n+1 .

We put V ′n+1 = 〈Vn+1∪{
√
vn+1 } 〉. Then V ′n+1 ⊂ E′′n+1 and V ′n+1 ( E′′n+1 is equiv-

alent to en+1 > en + 1. Now we assume en+1 > en + 1 and derive a contradiction.
There exists an element v′n+1 in V ′n+1 satisfying (v′n+1)1+γ ≡ 1 (mod (V ′n+1)2) and√
v′n+1 ∈ E′′n+1\V ′n+1. Since

v1+γ
n+1 = ξ1+γc

x2n−1−1(1+γ)2n−1

n η
y0(1+γ)+y1(1+γ)2+···+y2n−1−2(1+γ)2n−1−1

n

×
√
vn

1+γ
η

(1+γ)2n

n+1

≡ ξ1+γc
x2n−1−1(1+γ)2n−1

n η
y0(1+γ)+y1(1+γ)2+···+y2n−1−2(1+γ)2n−1−1

n

×
√
vn

1+γ
ηnη

2(1+(1+γ)2n−1
)

n+1 (mod V 4
n+1)

and since v1+γ
n+1 ≡ 1 (mod V 2

n+1), we have√vn+1
1+γ ≡ η1+(1+γ)2n−1

n+1 (mod E′′nV
2
n+1),

which means v′n+1 ∈ Vn+1 and

(v′n+1)1+γ ∈ 〈Vn ∪ { cγ
i

n+1, η
γi

n+1 | i ∈ Z } 〉. (4.2)

Since (v′n+1)1+γ 6≡ 1 (mod V 2
n+1) by en = en−1 + 1, we have (v′n+1)1+γ ≡ vn+1

(mod V 2
n+1). This contradicts (4.2). Hence we conclude en+1 = en+1 and V ′n+1 =

E′′n+1. �

Corollary 4.4. Assume that en 6 en−1 + 1 for some n > 2. Then we have
em 6 em−1 + 1 for all m > n.

Proof. If en = en−1, then em = em−1 for all m > n by [2, Theorem 1]. Otherwise,
en+1 = en or en+1 = en + 1 by (2) of Theorem 4.3. If en+1 = en, then em = em−1

for all m > n + 1. Otherwise, en+2 = en+1 or en+2 = en+1 + 1 again by (2) of
Theorem 4.3. Repeating this procedure, we reach the conclusion. �
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5. The Proofs of Theorems 2.1 and 2.2

We assume 2(p−1)/4 ≡ 1 (mod p) continuously. In order to prove Theorems 2.1
and 2.2, We need some more lemmas. We first recall that the equality

|Dr| =
2r

(E0 : Nkr/k(Er))
(5.1)

is a direct consequence of genus formula (cf. (4) in [3]). Note that Er in the right
hand side of (5.1) may be replaced by E′′r .

The following two lemmas depend on the property of η1.

Lemma 5.1. If |A1| = 2, then |D1| = 1.

Proof. We abbreviate G(k1/Q1) = 〈 τ 〉 and G(k1/k) = 〈 γ 〉. We also recall that
E′1 = 〈−1, ρ, c1, η1 〉. We define S(α) for non-zero element α in k1 by

S(α) =
( α

|α|
,
ατ

|ατ |
,
αγ

|αγ |
,
ατγ

|ατγ |

)
.

Then we have

S(ρ) = (1,−1, 1,−1), S(c1) = (1, 1,−1,−1), S(η1) = ± (1, 1, 1, 1) (5.2)

by p ≡ 1 (mod 16), c1 = 1 +
√

2 and Lemma 4.1. From Proposition 3.5 and the
assumption |A1| = 2, we have

E′′1 = 〈−1, ρ, c1, η1,
√
ε 〉,

where ε = ± ρx1cx2
1 ηx3

1 with xi ∈ { 0, 1 }. The equalities (5.2) imply ε = ± η1 and
so Nk1/k(E1) = 〈−1, ρ2 〉, which means |D1| = 1 by (5.1). �

Lemma 5.2. Assume that e1 = 1 and e2 = 2. If |Dr| > 1 for some r > 1, then
λ2(k) = 0.

Proof. We may assume that |Dr−1| = 1 and |Dr| = 2 with r > 2 by Lemma 5.1.
Then we see that

Nkr/k(Vr) = 〈−1, Nkr−1/k(E′′r−1)2 〉 = 〈−1, ρ2r 〉,

Nkr/k(E′′r ) = 〈−1, ρ2r−1

〉

from (4.1) and (5.1). We have er 6 er−1 + 1 by Corollary 4.4. If er = er−1, then
λ2(k) = 0 by [2, Theorem 1]. So we may assume er = er−1 + 1. Then vr in (1) of
Theorem 4.3 has the property

〈−1, Nkr/k(ρ), Nkr/k(
√
vr ) 〉 = 〈−1, ρ2r−1

〉.
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By Corollary 4.4, there are two possibilities for er+1, namely er+1 = er and
er+1 = er + 1. If er+1 = er + 1, then we have

Nkr+1/k(E′′r+1) = 〈Nkr+1/k(Vr+1), Nkr+1/k(
√
vr+1 ) 〉 = 〈−1, ρ2r−1

〉

by (2) of Theorem 4.3 and hence |Dr+1| = 4 by (5.1). Namely, either er+1 = er or
|Dr+1| = 2|Dr| holds. Repeating this procedure, we reach n satisfying en+1 = en
or |Dn| = 2n2−2, which means λ2(k) = 0 by [6, Theorem 2] or [3, Theorem 2.1]. �

Now we are able to prove Theorems 2.1 and 2.2. For an integer α in k, we
write pe || α if α ≡ 0 (mod pe) and α 6≡ 0 (mod pe+1).

Proof of Theorem 2.1. Put r = n0−1 and assume that |Dr| = 1. Then there exist
β ∈ k and βr ∈ kr which satisfy

p′hk = (β), pn0 || β − 1,

p′hkr = (βr), pn
(r)
0 || Nkr/k(βr)− 1.

Then we have β2r

r = βεr for some εr ∈ Er and

Nkr/k(βr)
2r = β2rNkr/k(εr).

We see that

pn
(r)
0 +r || Nkr/k(βr)

2r − 1, pn0+r || β2r − 1, pn2+r | Nkr/k(εr)− 1

from (5.1), so n(r)
0 + r = n0 + r by the assumption n0 < n2. It means n0 = n

(r)
0 >

r+ 2 = n0 + 1, which is a contradiction. Hence we have |Dr| > 1 and so λ2(k) = 0
from Lemma 5.2. �

Proof of Theorem 2.2. Since n(s)
0 6 n(s−1)

0 + 1 in general, we may assume that

n
(r)
0 = n

(r−1)
0 = n0 + r − 1.

Put s = n0 − 2 and assume that |Dr+s| = 1. Then there exist βr ∈ kr and
βr+s ∈ kr+s which satisfy

p′hkr = (βr), pn
(r)
0 || Nkr/k(βr)− 1,

p′hkr+s = (βr+s).

Then we have β2s

r+s = βrεr+s for some εr+s ∈ Er+s and

Nkr+s/k(βr+s)
2s = Nkr/k(βr)

2sNkr+s/k(εr+s).

We see that

pn
(r)
0 +s || Nkr/k(βr)

2s − 1, pn2+r+s | Nkr+s/k(εr+s)− 1
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from (5.1). Since n(r)
0 + s = n0 + r + s− 1 < n2 + r + s, we see that

pn
(r)
0 || Nkr+s/k(βr+s)− 1.

Since pn2+r+s | Nkr+s/k(ε′r+s) − 1 for any ε′r+s ∈ Er+s and since n2 + r + s −
n

(r)
0 = n2 − 1 > 0, it follows that n(r+s)

0 = n
(r)
0 = n0 + r − 1, which contradicts

n
(r+s)
0 > r + s + 2 = n0 + r. Hence we have |Dr+s| > 1 and so λ2(k) = 0 from

Lemma 5.2. �
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