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SPECTRAL APPROXIMATIONS OF UNBOUNDED OPERATORS
OF THE TYPE “NORMAL PLUS COMPACT”

Michael Gil’

Abstract: Let B be a compact operator in a Hilbert space H and S an unbounded normal one in
H, having a compact resolvent. We consider operators of the form A = S+B. Numerous integro-
differential operators A can be represented in this form. The paper deals with approximations
of the eigenvalues of the considered operators by the eigenvalues of the operators An = S + Bn
(n = 1, 2, . . .), where Bn are n-dimensional operators. Besides, we obtain the error estimate of
the approximation.
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1. Introduction and statement of the main result

Let H be a separable Hilbert space with a scalar product (., .), the norm ‖.‖ =√
(., .) and the unit operator I. Let S be a normal operator in H, having the

compact resolvent, and B be a compact operator in H. Our main object in this
paper is the operator

A = S +B. (1.1)

Numerous integro-differential operators A can be represented in the form (1.1),
cf. [1, 3, 6]. This paper deals with the spectral approximation of operator A.
The literature devoted to approximations of the eigenvalues of various concrete
operators is very rich, cf. the interesting papers [2, 4, 5, 10, 15] and references
given therein. At the same time, to the best of our knowledge, the spectrum
approximations of the operators of the form (1.1) were not investigated in the
available literature.

Introduce the notations. For a linear unbounded operator A in H, Dom(A) is
the domain, A∗ is the adjoint of A; σ(A) denotes the spectrum of A and A−1 is
the inverse to A, Rλ(A) = (A− Iλ)−1 (λ 6∈ σ(A)) is the resolvent; λk(A) are the
eigenvalues of A taken with their multiplicities. ρ(A, λ) = infs∈σ(A) |λ − s| is the
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distance between λ ∈ C and σ(A). If A is bounded, then ‖A‖ means its operator
norm. For an integer p > 1, SNp is the Schatten-von Neumann ideal of compact
operators K in H with the finite norm Np(K) = [Trace(KK∗)p/2]1/p.

Let {ek}∞k=1 be the normalized eigenvectors of S, and B be represented in the
basis {ek}∞k=1 by a matrix (bjk)∞j,k=1. So A is represented by the matrix (ajk) with
ajj = λj(S) + bjj and ajk = bjk (j 6= k).

For an integer n < ∞, put b̂(n)
jk = bjk if 1 6 j, k 6 n and b̂

(n)
jk = 0 overwise.

Denote by Bn the operator represented in the basis {ek}∞k=1 by matrix (b
(n)
jk )∞j,k=1.

So Bn has the range no more than n. We will approximate the spectrum of A by
the spectrum of the operators An = S + Bn (n = 1, 2, . . .). So An = Sn ⊕ Cn,
where

Cn = (bjk)nj,k=1 + diag(λk(S))nk=1 and Sn = diag(λk(S))∞k=n+1. (1.2)

Consequently, Cn has in the basis {ek}nk=1 the entries cjj = λj(S) + bjj and
cjk = bjk (j 6= k; 1 6 j, k 6 n).

Note that the resolvent

(A−λI)−1 = (S+B−λI)−1 = (S−Iτ)−1(I+(B+τ−λI)(S−Iτ)−1)−1 (τ 6∈ σ(S))

is compact for any regular λ of A, and therefore, the spectrum of A is discrete.
Since B is compact we have

qn := ‖An −A‖ = ‖Bn −B‖ → 0 as n→∞.

To formulate the result, denote

g(Cn) = [N2
2 (Cn)−

n∑
k=1

|λk(Cn)|2 ]1/2.

The following relations are checked in [7, Section 2.1].

g2(Cn) 6 N2
2 (Cn)− |TraceC2

n|

and

g2(Cn) 6
N2

2 (Cn − C∗n)

2
= 2N2

2 (CnI), (1.3)

where CnI = (Cn − C∗n)/2i.
If Cn is a normal matrix: CnC∗n = C∗nCn, then g(Cn) = 0.
Denote by r(qn) the unique positive root of the algebraic equation

zn = qn

n−1∑
j=0

zn−j−1gj(Cn)√
j!

. (1.4)

Now we are in a position to formulate the main result of the paper.
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Theorem 1.1. Let A be defined by (1.1), Cn and Sn be defined by (1.2). Then for
any eigenvalue µ(A) of A and a natural n, either there is an eigenvalue λ(Cn) of
the n× n-matrix Cn, such that |µ(A)− λ(Cn)| 6 r(qn), or |µ(A)− λj(S)| 6 r(qn)
for some j > n. Moreover, if

S = S∗ (1.5)

and
B −B∗ ∈ SN2, (1.6)

then r(qn)→ 0 as n→∞.

This theorem is proved in the next section. In addition, in Section 3, we suggest
another error estimate, which tends to zero, provided B−B∗ ∈ SN2p, p > 1. That
estimate is generally rougher than that in Theorem 1.1.

Note that approximations of unbounded self-adjoint Jacobi matrices acting in
l2 by the use of finite submatrices were investigated in the very interesting paper
[11] (see also the papers [12, 13]).

Put

Pn(x) =

n−1∑
j=0

gj(Cn)xj+1

√
j!

(x > 0).

Thanks to [7, Lemma 1.6.1] r(qn) 6 ζ(qn), where

ζ(qn) =

{
n
√
qnPn(1) if qnPn(1) 6 1,

qnPn(1) if qnPn(1) > 1.

Thus in Theorem 1.1 one can replace r(qn) by ζ(qn).

2. Proof of Theorem 1.1

First, let us prove that r(qn)→ 0, provided (1.5) and (1.6) hold. To this end note
that N2(Cn − C∗n) = N2(Bn −B∗n). Thus by (1.3) we obtain

g(Cn) 6
√

1/2N2(Bn −B∗n) 6
√

1/2N2(B −B∗).

Rewrite (1.4) as

1 = qn

n−1∑
j=0

gj(Cn)

zj+1
√
j!
.

Hence, it follows that

1 6 qn

∞∑
j=0

√
1/2N2(B −B∗)
rj+1(qn)

√
j!

.

Since qn → 0, we have r(qn)→ 0.
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Furthermore, put Qn =
∑n
k=1(., ek)ek. Then Cn = QnAQn and Sn =

(I −Qn)S = S(I −Qn). Clearly, SnCn = CnSn = 0 and

σ(An) = σ(Cn) ∪ {λk(S)}∞k=n+1. (2.1)

Thus
‖Rλ(An)‖ = max{‖QnRλ(Cn)‖, ‖(I −Qn)Rλ(Sn)‖}. (2.2)

Thanks to Corollary 2.1.2 [7] we have

‖QnRλ(Cn)‖ 6
n−1∑
k=0

gk(Cn)√
k!ρk+1(Cn, λ)

for any regular point λ of Cn. (2.3)

Rewrite (2.3) as
‖QnRλ(Cn)‖ 6 Pn(1/ρ(Cn, λ)). (2.4)

Now (2.4) and (2.2) imply the inequality

‖Rλ(An)‖ 6 max{Pn(1/ρ(Cn, λ), 1/ρ(Sn, λ)}. (2.5)

But due to (2.1) ρ(Cn, λ) > ρ(An, λ) and ρ(Sn, λ) > ρ(An, λ). In addition,
Pn(x) > x for x > 0. Thus

‖Rλ(An)‖ 6 Pn(1/ρ(An, λ)). (2.6)

Furthermore, for two operators A and Ã, the spectral variation svA(Ã) of Ã with
respect to A is defined by

svA(Ã) := sup
µ∈σ(Ã)

inf
λ∈σ(A)

|λ− µ|.

Lemma 2.1. Let Dom (A) = Dom (Ã) and q̂ := ‖A − Ã‖ < ∞. In addition,
assume that

‖Rλ(A)‖ 6 φ(1/ρ(A, λ)) for all regular λ of A,

where φ(x) is a monotonically increasing non-negative continuous function of
a non-negative variable x, such that φ(0) = 0 and φ(∞) =∞. Then the inequality

svA(Ã) 6 z(φ, q̂)

is true, where z(φ, q̂) is the a unique positive root of the equation

1 = q̂φ(1/z). (2.7)

Proof. For a λ ∈ C, let q̂φ(1/ρ(A, λ)) < 1. Then q̂‖Rλ(A)‖ < 1. But due to the
Hilbert identity

Rλ(Ã)−Rλ(A) = Rλ(Ã)(A− Ã)Rλ(A)

the latter inequality implies that λ 6∈ σ(Ã). So for all µ ∈ σ(Ã) we have.

q̂φ(1/ρ(A,µ)) > 1.

Since φ(x) monotonically increases, we have ρ(A,µ) 6 z(φ, q̂). This, proves the
required inequality. �
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The previous lemma and (2.6) imply

svAn(A) 6 r(qn). (2.8)

According to (2.1) this proves the theorem.

3. The case B −B∗ ∈ SN2p (p > 1)

Assume that
B −B∗ ∈ SN2p (p = 2, 3, . . .). (3.1)

Let cm (m = 1, 2, . . .) be a sequence of positive numbers defined by by the recursive
relation

c1 = 1, cm = cm−1 +
√
c2m−1 + 1 (m = 2, 3, . . .).

To formulate the result, for a p ∈ [2m, 2m+1] (m = 1, 2, . . .), put

bp = ctmc
1−t
m+1 with t = 2− 2−mp.

The following inequality is valid:

bp 6
pe1/3

2
6 p (p > 2),

cf. [8, Corollary 1.3].
For instance,

b2 = c1 = 1, b3 =
√
c1c2 =

√
1 +
√

2 6 1.554, b4 = c2 6 2.415,

b5 = c
3/4
2 c

1/4
3 6 2.900; b6 = (c2c3)1/2 6 3.485;

b7 = c
1/4
2 c

1/4
3 6 4.185 and b8 = c3 6 5.027.

Put βp = 2(1 + b2p) and take n = jp for an integer j > 2. Denote by r̂p(qn)
the unique positive root of the algebraic equation

zn = qn

p−1∑
m=0

j−1∑
k=0

zn−pk−m−1
Nkp+m

2p (βpCnI)√
k!

. (3.2)

Recall that CnI = (Cn − C∗n)/2i.

Theorem 3.1. Let conditions (1.5) and (3.1) hold. Then for any µ ∈ σ(A) and
an n = pj with an integer j > 2, either there is an eigenvalue λ(Cn) of matrix Cn
satisfying |µ − λ(Cn)| 6 r̂p(qn), or |µ − ajj | 6 r̂p(qn) for some j > n. Moreover,
r̂p(qn)→ 0 as n→∞.
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To prove this theorem we need the following result.

Lemma 3.2. Let T be a linear operator acting in a Euclidean space Cn with
n = jp and integers p > 2, j > 2. Then

‖Rλ(T )‖ 6
p−1∑
m=0

j−1∑
k=0

Nkp+m
2p (βpTI)

ρpk+m+1(T, λ)
√
k!

(λ 6∈ σ(T )), (3.3)

where TI = (T − T ∗)/2i.

Proof. Due to the Schur theorem, cf. [14], T = D + V (σ(T ) = σ(D)), where
D is a normal matrix and V is a nilpotent matrix. Besides, D and V have the
same invariant subspaces, and V is called the nilpotent part of T . Thanks to
[7, Lemma 6.8.3],

‖Rλ(T )‖ 6
p−1∑
m=0

j−1∑
k=0

Nkp+m
2p (V )

ρpk+m+1(T, λ)
√
k!

(λ 6∈ σ(T )), (3.4)

where V is the nilpotent part of T . Making use Lemma 2.2 from [8], we get the
inequality

N2p(V ) 6 (1 + b2p)N2p(VI) (1 6 p <∞; VI = (V − V ∗)/2i)

But by the Weyl inequality we have N2p(DI) 6 N2p(TI) with (DI = (D−D∗)/2i).
Hence we obtain

N2p(V ) 6 (1 + b2p)N2p(VI) = (1 + b2p)N2p(TI −DI) 6 2(1 + b2p)N2p(TI).

Thus N2p(V ) 6 βpN2p(TI). This and (3.4) proves the lemma. �

Proof of Theorem 3.1. First let us prove that r̂p(qn)→ 0 as n→∞, provided
(1.5) and (3.1) hold. To this end rewrite (3.3) as

1 = qn

p−1∑
m=0

j−1∑
k=0

Nkp+m
2p (βpCnI)

zpk+m+1
√
k!

.

Hence

1 6 qn

p−1∑
m=0

∞∑
k=0

Nkp+m
2p (βpCnI)

rpk+m+1
p (qn)

√
k!
.

Since qn → 0, we have r̂p(qn)→ 0.
Furthermore, due to Lemma 3.2,

‖QnRλ(Cn)‖ 6 P̂n,p(1/ρ(Cn, λ)), (3.5)

where

P̂n,p(x) =

p−1∑
m=0

j−1∑
k=0

xpk+m+1
Nkp+m

2p (βpCnI)√
k!

(x > 0).
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Now (3.5) and (2.2) imply the inequality

‖Rλ(An)‖ 6 max{P̂n,p(1/ρ(Cn, λ), 1/ρ(Sn, λ)}.

But due to (2.1) , we have ρ(Cn, λ) > ρ(An, λ) and ρ(Sn, λ) > ρ(An, λ). In
addition, P̂n,p(x) > x for x > 0. Thus,

‖Rλ(An)‖ 6 P̂n,p(1/ρ(An, λ)). (3.6)

Due to Lemma 2.1, the inequality svAn(A) 6 ẑp(qn) holds. According to (2.1) this
proves the theorem. �

Furthermore, again use [7, Lemma 1.6.1], we obtain r̂p(qn) 6 ζ̂p(qn), where

ζ̂p(qn) =

{
n

√
qnP̂n,p(1) if qnP̂n,p(1) 6 1,

qnP̂n,p(1) if qnP̂n,p(1) > 1.

Thus in Theorem 3.1 one can replace r̂p(qn) by ζ̂p(qn).

References

[1] H. Abels, M. Kassmann, The Cauchy problem and the martingale problem
for integro-differential operators with non-smooth kernels, Osaka J. Math. 46
(2009), 661–683.

[2] M.G. Armentano, C. Padra, A posteriori error estimates for the Steklov eigen-
value problem, Applied Numerical Mathematics 58 (2008) 593–601.

[3] S.A. Buterin, On an inverse spectral problem for a convolution integro-
differential operator, Result. Math. 50 (2007), 173–181.

[4] M. Charalambides, F. Waleffe, Spectrum of the Jacobi tau approximation for
the second derivative operator, SIAM J. Numer. Anal. 46, no. 1, (2008)
280–294.

[5] Chena Huajie, Xingao Gongc,Aihui Zhoua, Numerical approximations of
a nonlinear eigenvalue problem and applications to a density functional model,
Mathematical Methods in the Applied Sciences 33, Issue 14, (2010) 1723–
1742.

[6] Ding Xiaqi and Luo Peizhu, Finite element approximation of an integro-
differential operator, Acta Mathematica Scientia 29B(6), (2009) 1767–1776.

[7] M.I. Gil’, Operator Functions and Localization of Spectra, Lecture Notes in
Mathematics, Vol. 1830, Springer-Verlag, Berlin, 2003.

[8] M.I. Gil’, Lower bounds for eigenvalues of Schatten-von Neumann operators,
J. Inequal. Pure Appl. Mathem. 8, no 3 (2007) 117–122.

[9] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfad-
joint Operators, Trans. Mathem. Monographs, v. 18, Amer. Math. Soc., Prov-
idence, R. I., 1969.

[10] J.I.H. Lopez, J.R. Meneghini, F. Saltarab, Discrete approximation to the
global spectrum of the tangent operator for flow past a circular cylinder,
Applied Numerical Mathematics 58 (2008) 1159–1167.



140 Michael Gil’

[11] M. Malejki, Approximation of eigenvalues of some unbounded self-adjoint dis-
crete Jacobi matrices by eigenvalues of finite submatrices, Opuscula Math. 27
(2007), no. 1, 37–49.

[12] M. Malejki, Asymptotics of large eigenvalues for some discrete unbounded
Jacobi matrices, Linear Algebra and its Applications 431 (2009) 1952–1970.

[13] M. Malejki, Approximation and asymptotics of eigenvalues of unbounded self-
adjoint Jacobi matrices acting in l2 by the use of finite submatrices, Cent.
Eur. J. Math. 8(1), (2010) 114–128.

[14] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities,
Allyn and Bacon, Boston, 1964.

[15] A.D. Russo, A.E. Alonso, A posteriori error estimates for nonconforming
approximations of Steklov eigenvalue problems, Computers and Mathematics
with Applications 62 (2011) 4100–4117.

Address: Michael Gil’: Department of Mathematics, Ben Gurion University of the Negev, P.0.
Box 653, Beer-Sheva 84105, Israel.

E-mail: gilmi@bezeqint.net
Received: 17 February 2013; revised: 20 June 2013




