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EXPLICIT CONGRUENCES FOR CLASS EQUATIONS

Patrick Morton

Abstract: Explicit congruences (mod p) are proved for the class equations corresponding to dis-
criminants D = −8p,−3p, −12p in the theory of complex multiplication, where p is an odd prime.
They are explicit in that they can be computed directly from a formula for the supersingular
polynomial without first having to know the coefficients of the class equation in characteristic
zero. These congruences have previously appeared in print without proof, and have been used
to study factorizations of certain Legendre polynomials (mod p).
Keywords: class equation, supersingular polynomial, modular equation, class number, complex
multiplication.

1. Introduction

In this paper we shall prove several explicit congruences modulo p for the class
equations corresponding to discriminants −8p,−3p, and −12p in the theory of
complex multiplication, where p is an odd prime. These congruences were initially
presented without proof in [10] and [11] and were used to study connections be-
tween the Legendre polynomials of degree [p/4] = (p − e)/4 (with e = 1 or 3) or
[p/3] = (p− e)/3 (with e = 1 or 2) and complex multiplication in characteristic p.

For example, it is shown in [10] that (for p > 3) the number of irreducible
binomial quadratic factors of the Legendre polynomial P(p−e)/4(x) over the finite
field Fp is (h(−2p)−dp)/4, where h(−2p) is the class number of the quadratic field
Q(
√
−2p) and

dp = 2−
(
−4

p

)
−
(
−8

p

)
.

These binomial quadratic factors of P(p−e)/4(x) over Fp reflect the existence of
multipliers µ ∈ End(E) of supersingular elliptic curves E for which µ2 = −2p, and
the exact count of these factors depends on Theorem 1.1 below.

Recall that the class equation HD(t) of discriminant D is the monic, irreducible
polynomial in Z[t] whose roots are the j-invariants of elliptic curves with complex
multiplication by the quadratic order OD of discriminant D. (See [2], [4], [14].)
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Congruences for the class equations H−p(t) and H−4p(t) with p an odd prime were
first proved by Elkies [6]. These congruences were given explicit form in [1], in
terms of the supersingular polynomial ssp(t), as follows.

The supersingular polynomial ssp(t) in characteristic p is the monic polynomial
over Fp whose roots are the distinct j-invariants of supersingular elliptic curves in
characteristic p. See [8], [1], [9]. It is well-known that

ssp(t) = tr(t− 1728)sJp(t), p > 3, (1.1)

where
r = rp =

1

2

(
1−

(
−3

p

))
, s = sp =

1

2

(
1−

(
−4

p

))
,

and where the polynomial Jp(t) ∈ Fp[t] has distinct roots (mod p), none of which
are 0 or 1728. Furthermore, Jp(t) factors into a product of linear and quadratic
factors over Fp, by the well-known result of Deuring [3] that the j-invariant of
a supersingular elliptic curve always lies in Fp2 . (For a simple proof see [13,
p. 145] or [1, Prop. 1].)

The following explicit formula for Jp(t) is proven in [9]. If n = (p − ep)/12,
with p ≡ ep (mod 12) and ep ∈ {1, 5, 7, 11}, and if the integer s = 0 or 1 is defined
as above, then

Jp(t) ≡
n∑
k=0

(
2n+ s

2k + s

)(
2n− 2k

n− k

)
(−432)n−k(t− 1728)k (mod p). (1.2)

Now we can express the congruences of Elkies in the following explicit form: If
p ≡ 3 (mod 4), then from [1, Prop. 11] we have:

H−p(t) ≡ (t− 1728)
[
gcd(Jp(t), (t− 1728)(p−1)/2 − 1)

]2
(mod p),

H−4p(t) ≡ (t− 1728)
[
gcd(tJp(t), (t− 1728)(p−1)/2 + 1)

]2
(mod p);

while if p ≡ 1 (mod 4), we have

H−4p(t) ≡
[
gcd(tJp(t), (t− 1728)(p−1)/2 + 1)

]2
(mod p).

In particular, these polynomials always factor into a product of linear factors
(mod p), and every supersingular j-invariant in Fp is a root of H−p(t) or H−4p(t).
It is clear that the class number h(−p) of Q(

√
−p) can be determined from these

congruences once the linear factors of Jp(t) (mod p) are known.
Here we prove the following two analogous congruences, using some classical re-

sults on the modular equation Φn(x, y) [2, pp. 229-231], [12]. Recall that Φn(x, y)
is symmetric in x and y if n > 1. We write Qn(u, v) for the de-symmetrized form
of Φn(x, y), i.e. Qn(−x− y, xy) = Φn(x, y).

The first congruence involves the class equation for the ring of integers O−8p

in the field Q(
√
−2p).
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Theorem 1.1. For p > 13, the class equation H−8p(t) of discriminant −8p sat-
isfies the congruence:

H−8p(t) ≡ (t− 1728)2ε1(t− 8000)2ε2(t+ 3375)4ε3(t2 + 191025t− 121287375)4ε4

×
∏

Q2(ai,bi)≡0(p)

(t2 + ait+ bi)
2 (mod p);

where

ε1 =
1

2

(
1−

(−4

p

))
, ε2 =

1

2

(
1−

(−8

p

))
,

ε3 =
1

2

(
1−

(−7

p

))
, ε4 =

1

4

(
1−

(−15

p

))(
1−

(5

p

))
;

and the product is over all the irreducible quadratic factors t2 + at + b of Jp(t)
distinct from H−15(t) = t2 + 191025t − 121287375 which satisfy Q2(a, b) ≡ 0
(mod p), where

−4Q2(a, b) = (2b+ 1485a− 41097375)2 + (4a− 29025)(a− 191025)2.

An immediate corollary of this theorem is a formula, in terms of the class
number h(−2p), for the number of j-invariants of supersingular elliptic curves E in
characteristic p which have an endomorphism µ satisfying µ2 = −2p (see Theorem
3.3). This is an analogue of Deuring’s formula for the number of j-invariants of
supersingular curves in characteristic p which have an endomorphism µ satisfying
µ2 = −p. (See [5], [1, p. 97], and [10, Thm. 2.1].) A similar formula is given
in Theorem 3.5 for endomorphisms µ satisfying µ2 = −3p, as a consequence of
Theorem 1.2 below. Theorem 1.1 also immediately implies the well-known result
that the class number h(−2p) is even, and is divisible by 4 exactly when p ≡ ±1
(mod 8).

The next congruence involves the class equations for the orders O−3p and O−12p

in the field Q(
√
−3p).

Theorem 1.2. Let p be a prime > 53 and set K3p(t) = H−12p(t) or
H−3p(t)H−12p(t) according as p ≡ 3 or 1 (mod 4). Then we have the congru-
ence

K3p(t) ≡ t2δ1(t− 54000)2δ1(t− 8000)4δ2(t+ 32768)4δ3H−20(t)4δ4H−32(t)4δ5

×H−35(t)4δ6
∏

Q3(ci,di)≡0(p)

(t2 + cit+ di)
2 (mod p);
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where

δ1 =
1

2

(
1−

(−3

p

))
, δ2 =

1

2

(
1−

(−8

p

))
,

δ3 =
1

2

(
1−

(−11

p

))
, δ4 =

1

4

(
1−

(−5

p

))(
1−

(5

p

))
,

δ5 =
1

4

(
1−

(−2

p

))(
1−

(2

p

))
, δ6 =

1

4

(
1−

(−35

p

))(
1−

(5

p

))
.

The polynomials H−20(t), H−32(t) and H−35(t) are the quadratic class equa-
tions

H−20(t) = t2 − 1264000t− 681472000,

H−32(t) = t2 − 52250000t+ 12167000000,

H−35(t) = t2 + 117964800t− 134217728000;

and the above product is over all the irreducible quadratic factors t2 +ct+d of Jp(t)
distinct from H−20(t), H−32(t) and H−35(t) which satisfy Q3(c, d) ≡ 0 (mod p),
with

Q3(c, d) = −2453359c+ 2303356c2 − 2153253c3 + c4 − 23459 · 23d

− 2153353 · 23 · 3499cd− 23 · 5 · 23 · 1163c2d+ 24531093d2

− 2332 · 31cd2 − d3.

The degree of the polynomialK3p(t) in this theorem is aph(−3p), where h(−3p)
is the class number of the field Q(

√
−3p), and ap is defined as

ap =


4, if p ≡ 1 (mod 8),
2, if p ≡ 5 (mod 8),
1, if p ≡ 3 (mod 4).

(1.3)

The factor H−15(t) in Theorem 1.1 and the factors H−20(t), H−32(t) and
H−35(t) in Theorem 1.2 are always irreducible (mod p) whenever they occur,
because their discriminants are non-squares (mod p), a fact which is incorporated
into the definition of ε4 and the δi (the largest prime dividing their discriminants
is p = 13 for d = −15 resp. p = 29 for d = −20,−32,−35).

We can extend the result of Theorem 1.2 by proving separate congruences for
H−3p(t) and H−12p(t) (mod p), when p ≡ 1 (mod 4).
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Theorem 1.3. If p > 53 is a prime with p ≡ 1 (mod 4), then we have the following
congruences (mod p):

H−3p(t) ≡ (t− 54000)2δ1(t− 8000)4δ2H−20(t)2δ4H−32(t)2δ5
∏
i∈I

(t2 + cit+ di)
2,

H−12p(t) ≡ t2δ1(t+ 32768)4δ3H−20(t)2δ4H−32(t)2δ5H−35(t)4δ6
∏
j∈J

(t2 + cjt+ dj)
2,

with the same notation as in Theorem 1.2, where the indexing sets I and J in the
two products in these congruences are disjoint.

The proof of the congruences in Theorem 1.3 involves an application of the
basic theory of complex multiplication, along with some elementary Galois theory.
(See Section 4.) In this proof we also make use of a number of the results of [11],
some of which depend in turn on Sections 2-3 of this paper. As in [11, p. 274], an
important role is played by points on the Fermat curve

Fer3 : 27X3 + 27Y 3 = X3Y 3

which are defined over certain Hilbert class fields. These points come into play in
exhibiting elliptic curves in Deuring normal form with the properties necessary for
proving the above congruences.

To determine exactly which factors t2 + ct+ d of Jp(t) with Q3(c, d) ≡ 0 (mod
p) divide H−3p(t) (mod p) in Theorem 1.3 one can proceed as follows. To a root
j ∈ Fp2 of each factor t2 + ct+ d there correspond values of α and β = αp in Fp2

for which

j =
α3(α3 − 24)3

α3 − 27
, 27α3 + 27β3 = α3β3.

Now consider the map µ on points of order 2 on the curve

Eα : Y 2 + αXY + Y = X3

which is given on X-coordinates by µ : x→ xµ, with

xµ = − α2

36α2p

(
αx+ 3

x

)2p

, α 6= 0.

Then t2 + ct+ d will divide H−3p(t) if and only if µ is the trivial permutation on
Eα[2]. (See Section 4.)

As a further application, it can be shown that the primes p > 13, for which the
supersingular polynomial ssp(t) splits into linear factors over Fp, are the primes
for which the class equations H−8p(x), H−12p(x), and H−3p(x) (the last only for
p ≡ 1 mod 4) all split into linear factors mod p (Theorem 3.6). This fact is
closely related to Ogg’s theorem, that ssp(t) splits in this way mod p for exactly
15 different primes p. The reader is also referred to Theorem 4.11, which gives
three different infinite families of class equations, corresponding to discriminants
divisible by p, which have no linear factors at all (mod p). Thus, Theorem 4.11 is
a complementary result to Ogg’s theorem.
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I note finally that it would be possible to prove a result like Theorem 1.2 for the
class equations H−dp(x) and H−4dp(x), where d is a fixed, square-free, odd integer
(see Lemmas 2.1-2.3 and Theorem 3.1). However, as the reader will notice, the
passage from Theorem 1.2 to the explicit and separate congruences in Theorem
1.3 takes up half of the present paper. Thus, establishing explicit congruences for
H−dp(x) and H−4dp(x) will most likely require significantly more effort for larger
values of d. Even for d = 7, for example, it is not clear what curve should play
the role that the curve Fer3 does in establishing Theorem 1.3. For d = 5 the
analogous curve seems to be the curve ε5X5 + ε5Y 5 = 1−X5Y 5, with ε = 1+

√
5

2 .
I plan to return to this question in another paper.

2. Properties of the transformation polynomial

We begin by proving several important results for the modular equation Φn(x, y)
of order n.

The polynomial Φn(x, y) is the polynomial whose solutions (x, y), in character-
istic 0 or p not dividing n, are pairs (j0, j1) of j-invariants satisfying the condition:
an elliptic function field K0 with j-invariant j0 has an elliptic subfield K1 with
j-invariant j1 for which K0/K1 is cyclic of degree n. (See [3], [2], [12].)

We follow Deuring’s paper [3] in using the notation Φn(x, y) also in the case
that the characteristic p does divide n, for the reduction of the characteristic 0
transformation polynomial of order n modulo p. From [3, p. 241] we take the
well-known formula

Φp(t, j) ≡ (tp − j)(t− jp) (mod p). (2.1)

We will also need the fact that if (m,n) = 1, then

Φmn(t, j) =

ψ(n)∏
h=1

Φm(t, jh), (2.2)

where the last product is over the ψ(n) values jh for which

Φn(t, j) =

ψ(n)∏
h=1

(t− jh). (2.3)

We use these facts to prove

Lemma 2.1. If d > 1 is a positive integer not divisible by the prime p, then we
have

Φdp(t, t) ≡ Φd(t
p, t)2 (mod p). (2.4)

Proof. From (2.1)-(2.3) we have in characteristic p that

Φdp(t, j) =

ψ(p)∏
h=1

Φd(t, jh) =

p∏
h=1

Φd(t, j
1/p) · Φd(t, jp) = Φd(t

p, j)Φd(t, j
p),
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which is a generalization of (2.1). Putting j = t and using Φd(x, y) = Φd(y, x)
gives (2.4). �

We let HD(x) or HO(x) denote the class equation of the quadratic order
O = OD whose discriminant is D. In what follows we will be considering the
factorization of H−dp(x) or H−4dp(x) mod p, where p is a prime > 3 and d = 2
or 3. In the following two lemmas we will take d to be any positive, square-free
integer not divisible by p. We have from [2, p.291] and [3, p.251] that

Φdp(t, t) = ±H−4dp(t) ·
∏
O

HO(t)r(O,dp), if dp ≡ 1, 2 (mod 4),

Φdp(t, t) = ±H−dp(t)H−4dp(t) ·
∏
O

HO(t)r(O,dp), if dp ≡ 3 (mod 4), (2.5)

where r(O,m) = |{α ∈ O : α is primitive, N(α) = m}/O∗|, and r(O, dp) = 0 or
r(O, dp) > 2 for all the terms occurring in the above products.

We call an irreducible factor of Φdp(t, t) (mod p) supersingular if its roots are
supersingular j-invariants in charateristic p.

Lemma 2.2. Assume d > 1 is a square-free, positive integer.

a) If p > 4d, then in (2.5), we have gcd(H−dp(t), HO(t)) = gcd(H−4dp(t),
HO(t)) = 1 (mod p) for all the orders O occurring in the product.

b) If p > 4d, all the supersingular factors of Φdp(t, t) (mod p) occur as factors
of H−dp(t) or H−4dp(t) (mod p).

Proof. Suppose that O = O−D is an order for which r(O, dp) > 1 in (2.5).
Then dp or 4dp = x2 + Dy2, with (x, y) = 1. If p|D, then p|x and we have d or
4d = px2

1+D
p y

2. If p > 4d, then x1 must be 0, so that d = D/p·y2 or 4d = D/p·y2.
Since d is square-free, y = 1 or y = 2 (in the second case only), so that d = D/p
or 4d = D/p. Hence, D = dp or D = 4dp, which is impossible because the orders
O in the product in (2.5) have discriminants different from −dp or −4dp.

Therefore, p divides none of the discriminants in the products in (2.5), under
the assumption that p > 4d. Hence, −D ≡ x2/y2 (mod p), so that the Legendre
symbol (−D/p) = +1. In this case none of the factors of HO(t) = H−D(t) (mod
p) can have supersingular j-invariants as roots, by Deuring’s theory [3]. On the
other hand, all of the factors of H−dp(t) and H−4dp(t) (mod p) correspond to
supersingular j-invariants, since p divides the discriminant. This proves both
parts of Lemma 2.2. �

Combining Lemmas 2.1 and 2.2 gives

Lemma 2.3. Assume d > 1 is a square-free, positive integer and p > 4d.

a) The irreducible factors of gcd(ssp(t),Φd(t
p, t)) (mod p) are exactly the irre-

ducible factors of H−4dp(t) or H−dp(t)H−4dp(t) (mod p).
b) The multiplicity of an irreducible factor of H−4dp(t) or H−dp(t)H−4dp(t)

(mod p) is the same as its multiplicity in Φd(t
p, t)2 (mod p).
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We note the following expressions for Φ2(t, j) and Φ3(t, j) in characteristic 0.
See [7, p. 321] or [2, p. 234]. (See also [3, p. 247] for the computation of Φ2, but
beware of misprints in the coefficients of tj and (t+ j) in the final answer [3,(57)].
The powers of 3 in those coefficients should be 34 and 37, respectively.) We have:

Φ2(t, j) = t3 − t2 · (j2 − 1488j + 162000) + t · (1488j2 + 40773375j + 8748000000)

+ j3 − 162000j2 + 8748000000j − 157464000000000,

Φ2(t, t) = −(t− 1728)(t− 8000)(t+ 3375)2,

∆2(j) = disct(Φ2(t, j)) = 4(j − 1728)j2(j + 3375)2(j2 + 191025j − 121287375)2.

Also,

Φ3(t, j) = t · (t+ 215 · 3 · 53)3 + j · (j + 215 · 3 · 53)3 − t3j3

+ 23 · 32 · 31 · t2j2(t+ j)− 22 · 33 · 9907 · tj(t2 + j2)

+ 2 · 34 · 13 · 193 · 6367 · t2j2 + 216 · 35 · 53 · 17 · 263 · tj(t+ j)

− 231 · 56 · 22973 · tj,
Φ3(t, t) = −t(t− 54000)(t+ 32768)2(t− 8000)2,

∆3(j) = disct(Φ3(t, j)) = −27j2(j − 1728)2(j − 8000)2(j + 32768)2

× (j2 − 1264000j − 681472000)2(j2 − 52250000j + 12167000000)2

× (j2 + 117964800j − 134217728000)2.

In order to identify the individual factors in these formulae, we make use of a beau-
tiful theorem appearing in Fricke’s Lehrbuch der Algebra, III [7, p. 338]:

Theorem. Over the rational field Q, the discriminant ∆p(j) of Φp(t, j), for
a prime p, is divisible by the factors j = H−3(j), j − 1728 = H−4(j), and HD(j),
for every negative integer D satisfying:

(i) −4p2 < D < −4,
(ii) p does not divide D,
(iii) 4p2 = a2 −Db2, with integers a and b 6= 0 not divisible by p,
(iv) D is a quadratic discriminant;

and this exhausts all possible irreducible factors of the discriminant ∆p(j).

It follows easily from this theorem, for example, that the irreducible factors of
∆2(j) are

j, j− 1728, H−7(j) = j+ 3375, H−15(j) = j2 + 191025j− 121287375,

since −7 and −15 are the only odd discriminants between −4 and −16 for which
the equation in (iii) has a solution, and since h(−7) = 1.

For Φ3(t, j), there are 5 possible discriminants between −4 and −36 for which
condition (iii) holds, namely:

D = −8,−11,−20,−32,−35,
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with corresponding class numbers 1, 1, 2, 2, 2; and 5 irreducible factors of ∆3(j)
other than j or j − 1728. For the formulas

H−8(j) = j − 8000, H−11(j) = j + 32768. (2.6)

we refer to [7, pp. 394, 396] or [2, p. 261]. We also claim that:

H−20(j) = j2 − 1264000j − 681472000,

H−32(j) = j2 − 52250000j + 12167000000, (2.7)

H−35(j) = j2 + 117964800j − 134217728000.

This can be seen as follows. The second quadratic splits into the product
(j + 52)(j + 63) (mod 73), while the first and third quadratics are irreducible
(mod 73). Since 73 = (1 + 6

√
−2)(1 − 6

√
−2) splits into primes which lie in

the principal ring class (mod 2) in Ω = Q(
√
−2), 73 splits completely in the

ring classfield (mod 2) over Ω. This implies that the second quadratic must be
H−32(j). The first and third quadratics cannot be distinguished by the splitting of
an appropriate prime, since they both have roots belonging to Q(

√
5). However,

by (2.5), with d = 1 and p = 5, it is clear that H−20(t) divides Φ5(t, t) while
H−35(t) does not. The formula

Φ5(t, t) = −(t2 − 1264000t− 681472000)(t− 1728)2

× (t+ 32768)2(t− 287496)2(t+ 884736)2

shows that the first quadratic in (2.7) does indeed divide Φ5(j, j) and so is identical
with H−20(j). These facts may also be verified by expanding Fricke’s expressions
for the roots of H−20(j) on p. 399 and for the roots of H−32(j) on p. 421 of [7].

We also note that H−12(j) = j − 54000 from [7, p.395] or [2, p.291].

Proposition 2.4. If p is a prime > 3, the multiplicity of an irreducible factor of
Φ2(tp, t) (mod p) is at most 3. If p > 13, this multiplicity is at most 2.

Proof. We set F (t, j) = Φ2(t, j), and write Fi(t, j) for the partial derivative of
F (t, j) with respect to the i-th variable (t or j). We consider the discriminant
∆2(j) of F (t, j), as above. We know that in characteristic p,

∆2(j) = A(t, j)F1(t, j) +B(t, j)F (t, j),

for some polynomials A(t, j) and B(t, j) in Fp[t, j]. Putting tp for j gives

∆2(tp) = A(t, tp)F1(t, tp) +B(t, tp)F (t, tp).

Furthermore,

d

dt
(F (t, tp)) = F1(t, tp) + p · tp−1F2(t, tp) = F1(t, tp).
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Hence, common factors of F (t, tp) and its derivative must divide ∆2(t)p. Now,

F1(t, j) = 3t2 − 2t(j2 − 1488j + 162000) + 1488j2 + 40773375j + 8748000000,

so that

d

dt
(F (t, tp)) = 3t2 − 2t(t2p − 1488tp + 162000) + 1488t2p

+ 40773375tp + 8748000000,

= −2t2p+1 + 1488t2p + 2976tp+1 + 40773375tp + 3t2

− 324000t+ 8748000000.

It follows that

d2

dt2
(F (t, tp)) = −2t2p + 2976tp + 6t− 324000,

and d3

dt3 (F (t, tp)) = 6. Therefore, no root of F (t, tp) has multiplicity greater than
3. To prove the second assertion of the lemma, we evaluate s(t) = (F (t, tp))′′ at
the roots of ∆2(t). For the roots 0, 1728, and −3375 we have

s(0) = −25 · 34 · 53, s(1728) = −25 · 36 · 72, s(−3375) = −22 · 36 · 53 · 7 · 13.

It remains to evaluate the second derivative s(t) at the roots of the factorH−15(t) =
t2 + 191025t− 121287375, which are

t =
−191025± 85995

√
5

2
= α±.

If these roots lie in the prime field Fp, we have

s(α±) = 2 · 34 · 5 · 72 · 13 · (−71745± 32086
√

5),

where the norm of the last factor (−71745± 32086
√

5) is −5 · 42391. On the other
hand, if the roots α± are quadratic over the prime field, then we have

s(α±) = 2 · 35 · 52 · 72 · 13 · (−4783± 2139
√

5),

where the norm of the factor (−4783± 2139
√

5) is 22 · 112. Thus, the only prime
for which s(α±) could possibly be 0 (mod p), for p > 17, is p = 42391. Now we
note that

H−15(t) ≡ (t+ 4410)(t+ 17051)(mod 42391),

but that neither −4410 nor −17051 can be roots of F (t, tp) = Φ2(t, tp) (mod
42391), by the above factorization of Φ2(t, t). Hence, (Φ2(t, tp))′′ is never 0
(mod p), for a multiple root of Φ2(t, tp) = Φ2(tp, t). This completes the proof
of the proposition. �
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Corollary 2.5. For a prime p > 3, the multiplicity of an irreducible factor of
H−8p(t) (mod p) is even and never greater than 6. If p 6= 13, this multiplicity is
never greater than 4.

Proof. Combine Proposition 2.4 with Lemma 2.3 in the case d = 2. This proves
the claim as long as p > 13. For p = 5, 7 and 11 the claim follows from

H−40(t) ≡ t2 (mod 5);

H−56(t) ≡ (t+ 1)4 (mod 7);

H−88(t) ≡ (t+ 10)2 (mod 11).

We also note in the case p = 13 that

H−104(t) ≡ (t+ 8)6 (mod 13).

(See [7, pp. 408] for H−40(t).) For p = 5, 7, 13 these congruences follow from the
fact that there is only one supersingular j-invariant, so H−8p(t) must be a pure
power (mod p), and the exact power is determined by the class number. For p = 11
the congruence follows from Lemma 2.3 and the fact that (t+10) divides Φ2(t11, t)
(mod 11), but t (the other factor of ss11(t)) does not. �

Corollary 2.6. For p > 3 the only linear factor of Φ2(tp, t) (mod p) which is
a multiple factor is t+ 3375.

Proof. From the formula for Φ2(t, t) we know that the only linear factors of
Φ2(tp, t) (mod p) are (t− 1728), (t− 8000), and (t+ 3375). By the computations
in the proof of Proposition 2.4, we have for t ∈ Fp that

d

dt
(F (t, tp)) = −2t3 + 4467t2 + 40449375t+ 8748000000

= −(t+ 3375)(2t2 − 11217t− 2592000)

= −(t+ 3375)f(t).

Hence (t + 3375) is certainly a multiple factor of Φ2(tp, t) (mod p). On the
other hand, f(1728) = −26 · 36 · 73 and f(8000) = 26 · 53 · 73 · 13 imply that 1728
and 8000 can be multiple roots of Φ2(tp, t) (mod p) only for p = 5, 7, 13. Since
1728 ≡ −3375 (mod 7) and 8000 ≡ −3375 (mod 5 · 7 · 13), the assertion of the
corollary holds. �

We now prove a similar result for Φ3(t, j):

Proposition 2.7. If p is a prime > 3, the multiplicity of an irreducible factor of
Φ3(tp, t) (mod p) is at most 4. If p > 53, this multiplicity is at most 2.

Proof. Exactly as in the proof of Proposition 2.4 (but with slightly different
notation), multiple factors of F (t) = Φ3(tp, t) (mod p) must divide ∆3(t) (mod
p), and can therefore only be one of the linear factors t, t− 1728, one of the linear
factors in (2.6), or must divide one of the quadratic factors in (2.7).
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Since Φ3(x, j) is a symmetric polynomial in x and j, we may write Φ3(x, j) =
Q(u, v), where u = −(x + j) and v = xj. Write Qi(u, v) for the partial deriva-
tive of Q with respect to the i-th variable, i = 1, 2, and let F (t) = Φ3(tp, t) =
Q(−tp − t, tp+1). In characteristic p we have

F ′(t) = −Q1(−tp − t, tp+1) + tpQ2(−tp − t, tp+1),

and therefore

F ′′(t) = Q11(−tp − t, tp+1)− 2tpQ12(−tp − t, tp+1) + t2pQ22(−tp − t, tp+1).

If t is a multiple root of F (t) over Fp, then because t is at most quadratic over
Fp, we have t2p = −utp − v, with u = −t− tp, v = tp+1. Hence, the expression for
F ′′(t) becomes

F ′′(t) = Q11 − vQ22 − tp(2Q12 + uQ22). (2.8)

Furthermore, an explicit expression for Q(u, v) is

Q(u, v) = u4 − 36864000u3 + 452984832000000u2 − 1855425871872000000000u

− 1069960u2v − 2232uv2 − 8900112384000uv

− v3 + 2590058000v2 − 771751936000000000v

= u4 − 215 · 32 · 53 · u3 + 230 · 33 · 56 · u2 − 245 · 33 · 59 · u
− 23 · 5 · 23 · 1163 · u2v − 23 · 32 · 31 · uv2 − 215 · 33 · 53 · 23 · 3499 · uv
− v3 + 24 · 53 · 1093 · v2 − 234 · 59 · 23 · v.

This yields the following partial derivatives:

Q11(u, v) = 22 · 3 · u2 − 216 · 33 · 53 · u+ 231 · 33 · 56 − 24 · 5 · 23 · 1163 · v,
Q12(u, v) = −24 · 5 · 23 · 1163 · u− 24 · 32 · 31 · v − 215 · 33 · 53 · 23 · 3499,

Q22(u, v) = −24 · 32 · 31 · u− 2 · 3 · v + 25 · 53 · 1093.

If t does not lie in Fp, then 1 and tp are independent over Fp, and (2.8) implies
that the combinations

D1 = Q11(u, v)− vQ22(u, v), D2 = 2Q12(u, v) + uQ22(u, v)

must both be zero (mod p), for u = −tp − t and v = tp+1, which are just the
coefficients in the quadratic equation satisfied by t over Fp. Taking the three
possible equations in turn, from (2.7), and computing the gcd of the integers D1

and D2 in each case, we find

gcd(D1, D2) = 217 · 3 · 53 · 13 · 37 · 53, if H−20(t) ≡ 0 (mod p);

gcd(D1, D2) = 211 · 3 · 53 · 72 · 13 · 37 · 53, if H−32(t) ≡ 0 (mod p);

gcd(D1, D2) = 216 · 3 · 53 · 7 · 37 · 53, if H−35(t) ≡ 0 (mod p).
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Thus t is never a zero of F ′′(t) (mod p), when p > 53, and the multiplicity of
such a root of Φ3(tp, t) is at most 2.

On the other hand, if t lies in Fp, then the factorization of Φ3(t, t) shows that
t = 0, 8000,−32768, or 54000. We have, using the congruences

F ′(t) ≡ −Q1(−2t, t2) + tQ2(−2t, t2) (mod p),

F ′′(t) ≡ Q11(−2t, t2)− 2tQ12(−2t, t2) + t2Q22(−2t, t2) (mod p),

the following values of F ′′(t) (mod p):

F ′′(0) ≡ 231 · 33 · 56,

F ′′(8000) ≡ 220 · 3 · 56 · 74 · 132 · 23,

F ′′(−32768) ≡ −232 · 3 · 74 · 132 · 17 · 29;

while

F ′(54000) ≡ −219 · 33 · 59 · 112 · 172 · 232 · 292, (2.9)

F ′′(54000) ≡ −216 · 33 · 56 · 17 · 23 · 29 · 89 · 1153.

Hence, F ′′(t) is never 0 (mod p) at an Fp-rational double root of F (t), for
p > 29. Therefore, the multiplicities of all roots of Φ3(tp, t) (mod p) are at most
2, for p > 53. For primes between 5 and 53, direct calculation shows that the
maximum multiplicity of a multiple factor of Φ3(tp, t) (mod p) is 4. The polynomial
Φ3(tp, t) has an irreducible factor of multiplicity 3 for p = 17, 23, 29, 37, 53 and a
factor of multiplicity 4 for p = 5, 7, 13. �

Corollary 2.8. For p > 53 the multiplicities of the linear factors t, t− 54000, t+
32768 and t− 8000 in the factorization of Φ3(tp, t) (mod p) are, respectively, 1, 1,
2, and 2.

Proof. We have, in the notation of the proof of Proposition 2.7, for t ∈ Fp, that

F ′(t) = −Q1(−2t, t2) + tQ2(−2t, t2)

= −3t5 + 23 · 32 · 5 · 31 · t4 + 212 · 1262587 · t3

+ 215 · 33 · 54 · 109 · 443 · t2 − 232 · 56 · 7 · 11 · 149 · t+ 245 · 33 · 59

= −(t+ 32768)(t− 8000)(3t3 − 85464t2 − 2268352000t+ 7077888000000).

Hence F ′(0) ≡ 245 · 33 · 59. Equation (2.9) and Proposition 2.7 now imply the
assertions of the corollary. �

3. Proofs of Theorems 1.1 and 1.2

The following theorem is preparation for the proof of the explicit congruences in
Theorems 1.1 and 1.2. It allows us to identify which factors of Jp(t) will divide
H−4dp(t) or H−dp(t)H−4dp(t) over Fp. For the sake of convenience, let

Kdp(t) = H−4dp(t) or H−dp(t)H−4dp(t)

according as dp ≡ 1, 2 or dp ≡ 3 (mod 4).
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Theorem 3.1. Let d > 1 be a square-free, positive integer, not divisible by p. An
irreducible quadratic factor q(t) = t2 + at+ b of Jp(t) over Fp divides Kdp(t) (mod
p) if and only if Qd(a, b) ≡ 0 (mod p), where Qd(u, v) is the de-symmetrized form
of the transformation polynomial Φd(x, y) defined by Qd(−x− y, xy) = Φd(x, y).

Proof. By Lemma 2.3 and (1.1), the given factor q(t) of Jp(t) divides Kdp(t) over
Fp if and only if it divides gcd(Jp(t),Φd(t

p, t)); and q(t) divides Φd(t
p, t) if and

only if 0 = Φd(j
p, j) = Qd(−jp − j, jp+1), for a root j of q(t). But −jp − j = a

and jp+1 = b, so this is the case exactly when Qd(a, b) = 0. �

Remark. When d = 2 the polynomial Q2(u, v) is given by

4Q2(u, v) = −(2v + 1485u− 41097375)2 − (4u− 29025)(u− 191025)2.

With this preparation we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. From Lemma 2.3 and the factorization of Φ2(t, t) we
know that (t− 1728), (t− 8000), and (t+ 3375) are the only possible linear factors
of H−8p(t) over Fp, and that these factors occur in H−8p(t) if and only if their
roots are supersingular j-invariants for the prime p. Since

H−4(t) = t− 1728, H−8(t) = t− 8000, H−7(t) = t+ 3375,

by the discussion preceding Proposition 2.4, it is clear that one of these is a linear
factor of ssp(t) if and only if the corresponding discriminant (−4,−8, or −7) is
a quadratic non-residue of p. This explains the definitions of the εi, for i = 1, 2, 3.
Lemma 2.3 shows that the correct exponent of each of these factors is twice the
exponent of the same factor in Φ2(tp, t). Proposition 2.4 and Corollary 2.6 show
that the exponent for both (t − 1728) and (t − 8000) in Φ2(tp, t) is 1, and for
(t + 3375) is 2. This explains the contribution of the linear factors, since their
roots (mod p) are distinct for p > 13.

We turn now to the quadratic factors, beginning with H−15(t). By the initial
argument in the proof of Proposition 2.4, H−15(t) is the only irreducible quadratic
that can divide H−8p(t) (mod p) to a power higher than 2, because it is the only
such quadratic dividing ∆2(t). Its roots are supersingular and quadratic over Fp
exactly when ε4 = 1. Further, it must divide H−8p(t) when ε4 = 1, because
its roots α+ and α− satisfy Φ2(α+, α−) = 0 in characteristic 0, and therefore in
characteristic p for all p (see the expressions for α+, α− in the proof of Proposition
2.4). It is straightforward to compute that the derivative (Φ2(tp, t))′ is also 0 at
α+ and α−, when these roots are quadratic over Fp, using the expression F1(t, tp)
given in the proof of Proposition 2.4. Hence, H−15(t) must occur to the 4-th power
in H−8p(t) (mod p) when ε4 = 1, by the result of Proposition 2.4.

It remains to show that H−15(t) makes no contribution to the factorization of
H−8p(t) (mod p) when ε4 = 0, or (wlog) when ( 5

p ) = +1. But in that case H−15(t)

has two linear factors (mod p), and any contribution to the factorization ofH−8p(t)
must coincide with one of the factors (t − 1728), (t − 8000), (t + 3375) discussed
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above. In fact, this happens for p > 13 only when p = 29, since 29 is the only prime
divisor greater than 13 of any of the integersH−15(1728), H−15(8000), H−15(−3375).

All other irreducible quadratic factors of H−8p(t) (mod p) are the quadratic
factors of Jp(t) (aside from H−15(t)) for which Q2(ai, bi) = 0 in Fp, by Theo-
rem 3.1. Furthermore, they must occur to exactly the second power in H−8p(t),
by Lemma 2.3 and the above argument. This completes the proof. �

Theorem 3.2. If p > 13 and h(−2p) is the class number of the quadratic field
Q(
√
−2p), then

h(−2p) = 5 +

(
−3

p

)
−
(
−4

p

)
−
(

5

p

)
− 2

(
−7

p

)
−
(
−8

p

)
−
(
−15

p

)
+ 4N2,

where N2 is the number of irreducible quadratic factors t2 + at + b of Jp(t) over
Fp for which Q2(a, b) ≡ 0 (mod p).

Theorem 3.2 follows immediately from Theorem 1.1 by equating degrees, since

h(−2p) = degH−8p(t) = 2ε1 + 2ε2 + 4ε3 + 8ε4 + 4(N2 − ε4).

As an example, consider the prime p = 233, for which we have

J233(t) ≡ (t+ 46)(t+ 50)(t+ 56)(t+ 148)(t+ 222)(t2 + 25t+ 109)

× (t2 + 55t+ 139)(t2 + 64t+ 57)(t2 + 81t+ 81)(t2 + 147t+ 62)

× (t2 + 162t+ 216)(t2 + 169t+ 171) (mod 233).

Only the first and third quadratic factors in this factorization satisfy Q2(a, b) ≡ 0,
so N2 = 2 and Theorem 3.2 gives h(−2 · 233) = 0 + 4N2 = 8.

Theorem 3.3. If p > 13, the number of distinct j-invariants of supersingular
elliptic curves E in characteristic p for which

√
−2p is an endomorphism of E is

1

2
(h(−2p)− 2ε3 − 4ε4)

=
1

2

(
h(−2p)− 2−

(
−3

p

)
+

(
5

p

)
+

(
−7

p

)
+

(
−15

p

))
.

Theorem 3.3 is also immediate, since the count given in this corollary is just
the number of distinct roots of H−8p(t) (mod p).

We turn now to the analgous theorem for the field Q(
√
−3p).

Proof of Theorem 1.2. As in the proof of Theorem 1.1, the linear factors
H−3(t) = t, H−12(t) = t − 54000, H−11(t) = t + 32768 and H−8(t) = t − 8000
(see (2.6)) certainly divide K3p(t) when their roots are supersingular in character-
istic p, by Lemma 2.3 and the formula

Φ3(t, t) = −t(t− 54000)(t+ 32768)2(t− 8000)2.
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These are the only possible linear factors of K3p(t) (mod p), and they are
distinct for p > 29. Furthermore their multiplicities are, respectively, 2, 2, 4, and
4, when they occur, by Corollary 2.8.

The three quadratic factors

H−20(t) = t2 − 1264000t− 681472000,

H−32(t) = t2 − 52250000t+ 12167000000,

H−35(t) = t2 + 117964800t− 134217728000,

are distinct (mod p) for p > 53, and all divide Φ3(tp, t) (mod p) when they are
irreducible over Fp. This holds because in characteristic 0, the coefficients of each
polynomial t2 + ct+ d satisfy Q(c, d) = Q3(c, d) = 0. Furthermore, in the proof of
Proposition 2.7 the partial derivatives

∂

∂u
Q(u, v) = 22u3 − 215 · 33 · 53u2 + 231 · 33 · 56u− 245 · 33 · 59

− 24 · 5 · 23 · 1163uv − 23 · 32 · 31v2 − 215 · 33 · 53 · 23 · 3499v,

∂

∂v
Q(u, v) = −23 · 5 · 23 · 1163u2 − 24 · 32 · 31uv − 215 · 33 · 53 · 23 · 3499u

− 3v2 + 25 · 53 · 1093 · v − 234 · 59 · 23,

are employed to give an expression for the derivative

d

dt
Φ3(tp, t) ≡ − ∂

∂u
Q(−tp − t, tp+1) + tp

∂

∂v
Q(−tp − t, tp+1) (mod p).

Since ∂
∂uQ(c, d) = ∂

∂vQ(c, d) = 0 in characteristic 0, for each of the three
quadratics given above, it follows that each quadratic is a double factor of Φ3(tp, t)
whenever it is irreducible (mod p). By Lemma 2.3 these quadratics divide K3p(t)
(mod p) whenever they are irreducible and supersingular, i.e., when the respec-
tive δi = 1. For the definitions of δi for i = 4, 5, 6 note that HD(t) has roots
in Q(

√
5),Q(

√
2), and Q(

√
5) for D = −20,−32,−35, respectively. Lemma 2.3,

Proposition 2.7, and the above argument show that each HD(t) has multiplic-
ity 4 when it occurs. Finally, as in the proof of Theorem 1.1, the contributions
of HD(t) to the factorization of K3p(t) (mod p) are accounted for by the linear
factors discussed above, when HD(t) is reducible (mod p).

The rest of the argument is now exactly as in the proof of Theorem 1.1. �

Theorem 3.4. If p > 53, h(−3p) is the class number of Q(
√
−3p), and ap is

defined in (1.3), then

aph(−3p) = 9− 2

(
−3

p

)
+ 2

(
−4

p

)
− 2

(
5

p

)
+

(
−7

p

)
−
(

8

p

)
− 3

(
−8

p

)
− 2

(
−11

p

)
−
(
−20

p

)
−
(
−35

p

)
+ 4N3,

where N3 is the number of irreducible quadratic factors t2 + ct + d of Jp(t) over
Fp for which Q3(c, d) ≡ 0 (mod p).
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This theorem is immediate from the congruence in Theorem 1.2, since
degK3p(t) = aph(−3p), by (1.3) and the well-known relationship between the
class numbers h(O−3p) and h(O−12p) in [2, p. 146].

For example, with p = 233, all but the third quadratic in the above factorization
of J233(t) satisfy Q3(c, d) ≡ 0, so 4h(−3 · 233) = 16 + 4N3 = 16 + 4 · 6 = 40 and
h(−3 · 233) = 10.

The analogue of Theorem 3.3 is

Theorem 3.5. If p > 53, the number of distinct j-invariants of supersingular
elliptic curves E in characteristic p for which

√
−3p lies in End(E) is

1

2
(aph(−3p)− 2δ2 − 2δ3 − 4δ4 − 4δ5 − 4δ6).

One more result connects the primes p for which the supersingular polynomial
ssp(t) splits into linear factors (mod p) with the class equations we have been
considering.

Theorem 3.6. If p > 13 is prime, the supersingular polynomial ssp(t) is a product
of linear polynomials over Fp if and only if the polynomials H−8p(t), H−12p(t), and
H−3p(t) (when p ≡ 1 (mod 4)) are products of linear polynomials over Fp.

Because of space considerations I omit the proof, which will appear elsewhere.

4. The class equations H−3p(t) and H−12p(t)

In this section we shall give a proof of Theorem 1.3. In order to do this we examine
each of the explicit factors of K3p(t) (mod p) in Theorem 1.2, and determine
whether or not that factor – which is itself a class equation – can divide H−3p(t)
modulo p, when p ≡ 1 (mod 4). The criterion we use is contained in the following
lemma, whose straightforward proof we leave to the reader. (See the arguments
in [6] or [1, Prop. 7].)

Lemma 4.1. Let µ ∈ End(Eα) be a multiplier of the curve

Eα : Y 2 + αXY + Y = X3

in characteristic p, satisfying µ2 = −3p. Then 1+µ
2 ∈ End(Eα) if and only if µ is

the identity permutation on the points in Eα[2].

Lemma 4.2. If p ≡ 1 (mod 4), then H−3p(t) is a product of square factors
(mod p).

Proof. This proof is similar to the proof of Prop. 9 and congruence (3.3b) in [1].
The class number h = h(−3p) is even, and the genus field of k = Q(

√
−3p) is

Q(
√
p,
√
−3), so Q(

√
p) is contained in the real subfield Σ0 of the Hilbert class

field Σ of k. The ideal (p) is a square in Q(
√
p). Moreover the prime ideal p over p

in k has order 2 in the class group of k, and therefore splits into h/2 prime ideals of
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degree 2 in Σ. Putting these two facts together implies that p splits into the squares
of primes of degree 1 or 2 in Σ0. Thus, over the p-adic field Qp, the polynomial
H−3p(t), either of whose real roots generates the real subfield Σ0 over Q, splits
into a product of irreducible quadratics or quartics, each belonging to a ramified
extension of Qp with ramification index e = 2. Each of these irreducible factors
must reduce to a power of an irreducible factor (mod p), by Hensel’s Lemma.
Therefore, each of these irreducible factors must be a square (mod p). This proves
the lemma. �

In the situation we are considering, the curve Eα is supersingular in character-
istic p, because we want its j-invariant to be a root of H−3p(t) or H−12p(t) over Fp.
We work on the curve Eα, which is in Deuring normal form, because a multiplier µ
satisfying µ2 = −3p is given explicitly in [11]. Such a multiplier exists with kernel
equal to {O, (0, 0), (0,−1)} if and only if (α, αp) is a point on the curve

Fer3 : 27X3 + 27Y 3 = X3Y 3.

If this is the case, µ is given by µ = ±ν ◦ φ, where ν(X,Y ) = (Xp, Y p) is the
Frobenius map and φ = φα,β with β = αp is the isogeny from Eα to Eβ given on
X-coordinates by

φα,β(X) = − β2

9α2

3X3 + α2X2 + 3αX + 3

X2
, β = αp. (4.1)

Furthermore, by [11, Thm. 2.3], the parameter α of a supersingular curve Eα
lies in the finite field Fp2 . Hence we may write the X-coordinate of the image
µ(X,Y ) = (Xµ, Y µ) of the point (X,Y ) on Eα as

Xµ = − α2

9α2p

(
3X3 + α2X2 + 3αX + 3

X2

)p
, α 6= 0. (4.2)

If α = 0, we have instead that

Xµ = −1

3

(
X3 + 1

X2

)p
, α = 0. (4.3)

On the other hand, the points of order 2 on Eα are the points (x, y) satisfying
the equation (

y +
α

2
x+

1

2

)2

= x3 +
1

4
(αx+ 1)2 = 0. (4.4)

Replacing X by x and x3 by −(αx+ 1)2/4 in the formula (4.2) for µ gives

xµ = − α2

36α2p

(
α2x2 + 6αx+ 9

x2

)p
= − α2

36α2p

(
αx+ 3

x

)2p

, α 6= 0, (4.5)

for solutions x of (4.4). Thus µ is the identity permutation on the points of Eα[2]
if and only if xµ = x for all the roots x of (4.4).
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Example (The factor H−3(t) = t). The factor H−3(t) = t corresponds to j = 0.
We consider the curve E0 : Y 2 +Y = X3 with α = 0, and take p to be a prime with
p ≡ 5 (mod 12), in order that δ1 = 1 in Theorem 1.2. Then the X-coordinates of
points of order 2 satisfy x3 + 1/4 = 0. Thus we have the three roots

xi = − ωi

41/3
, 1 6 i 6 3,

where ω is a primitive cube root of unity in Fp2 . In this case (4.3) gives that
xµi = − 1

4x2p
i

. Since 41/3 ∈ Fp but ω /∈ Fp we have

xµi = − 1

4 · ωi

42/3

= − ω2i

41/3
= x2i.

Thus, µ does not fix the point P1 = (x1,−1/2). By Lemma 4.1, we know that
there is no endomorphism of E0 of the form (1+µ)/2. This assumes that ker(µ) =
{O, (0, 0), (0,−1)}.

Now suppose µ is any endomorphism of E0 satisfying µ2 = −3p. By arguments
of [11, Section 4], there is an isomorphism of E0 defined over Fp2 taking E0 to
a curve Eα′ with j(Eα′) = 0, and taking µ → µ′ ∈ End(Eα′) such that ker(µ′) =
{O′, (0, 0), (0,−1)} on Eα′ . Then µ′2 = −3p implies that (α′, α′p) is a point on
Fer3. The only possibilities for α′ are α′ = 0, 2 · 31/3ωi, by the fact that

j(Eα) =
α3(α3 − 24)3

α3 − 27
.

If α′ = 2 · 31/3ωi, it is easy to check that the only β′s for which (α′, β) lies
on Fer3 are β = −6ωj , and such a β can only equal α′p if p = 5. If we restrict
ourselves to primes p > 5, then we must have α′ = 0 = α and therefore µ′ =
±µ. It follows that there is no endomorphism µ of E0 for which µ2 = −3p and
(1 + µ)/2 ∈ End(E0). This proves the following proposition.

Proposition 4.3. If p ≡ 1 (mod 4) and p > 5, the factor H−3(t) = t never divides
H−3p(t) (mod p). Hence we have t2δ1 | H−12p(t) (mod p) for all p > 53.

This proposition takes care of one of the seven explicit factors of K3p(t) in
Theorem 1.2. In the propositions that follow p represents a prime ≡ 1 (mod 4)
with p > 53. For the linear factors (Props. 4.4-4.6), the computations in the
proofs of Proposition 2.7 (see equation (2.9)) and Theorem 1.2 (Section 3) show
that we could improve this to p > 29.

Proposition 4.4. If p ≡ 1 (mod 4) and p > 53, then H−12(t)2δ1 = (t− 54000)2δ1

divides H−3p(t) (mod p) and (t− 54000) does not divide H−12p(t) (mod p).

Proof. We only have to show that t− 54000 divides H−3p(t) (mod p) when p ≡ 5
(mod 12). The assertion will then be immediate from Lemma 4.2 and Theorem 1.2.
To show this we take α = 541/3 = 3 · 21/3 ∈ Fp so that

j(Eα) =
α3(α3 − 24)3

α3 − 27
= 54000.
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Note that (α, αp) = (α, α) is a point on Fer3. The roots xi of (4.4) can be
determined by noting that

x3
i +

α2

4
x2
i +

α

2
xi +

1

4
=

1

54

(
y3 +

27

2
y2 + 27y +

27

2

)
, (y = αxi)

=
1

54

(
y +

3

2

)
(y2 + 12y + 9).

We find the roots

x1 = −1

4
· 41/3, x2 =

−2 +
√

3

2
· 41/3, x3 =

−2−
√

3

2
· 41/3.

Using the fact
√

3 /∈ Fp it is straightforward to verify that xµi = xi for i = 1, 2, 3,
so µ fixes all the points of order 2 on Eα. Hence, 1+

√
−3p

2 injects into End(Eα)
under reduction of a suitable elliptic curve with complex multiplication by the
order O−3p, and therefore j(Eα) = 54000 is a root of H−3p(t) (mod p). �

The factors H−8(t) = t − 8000 and H−11(t) = t + 32768 (see (2.6)) require
a little more work, since they occur to the 4th power in the factorization of K3p(t)
(mod p) whenever they are present. We first note the following.

In general, if µ is an endomorphism in Eα with µ2 = −3p and ker(µ) is
a subgroup of Eα[3] other than {O, (0, 0), (0,−1)}, then there is an isomorphism
ι : Eα → Eα′ defined over Fp2 for which µ → µ′ with µ′2 = −3p and ker(µ′) =
{O′, (0, 0), (0,−1)}. Then (α′, α′p) is a point on Fer3, and (x−α′3)(x−α′3p) = q(x)
is irreducible over Fp satisfying q(x) = x2 +Ax+B with B = −27A. (This holds
whenever j = j(Eα) 6= 0, 54000.) These factors q(x) have been studied in [11,
Section 5], where they are shown to be in 1-1 correspondence with the quartic
factors of K3p(t) over Fp which are powers of irreducibles. In this situation, the
endomorphism µ′ is determined up to sign, by [11, Prop. 4.1], namely

µ′ = ±ν′ ◦ φα′,α′p ,

as in the discussion immediately preceding equation (4.1) above. Furthermore,
µ = ι−1 ◦ µ′ ◦ ι on Eα is independent of the particular cube root of α′3 which is
chosen, as can be seen from the formula for φα,αp .

Thus, when considering the factors H−8(t) = t−8000 and H−11(t) = t+32768,
whose 4th powers divide K3p(t) (mod p), there is only one factor q(x) of the above
form available, for p > 53. This means that when q(α3) = 0 there can only be
two independent endomorphisms µi of Eα satisfying µ2

i = −3p, one of which has
ker(µ1) = {O, (0, 0), (0,−1)}, the other arising from an isomorphism ι : Eα → Eβ
in which β = αp.

Proposition 4.5. If p > 53, the factor H−8(t)4δ2 = (t− 8000)4δ2 divides H−3p(t)
(mod p), so that H−8(t) does not divide H−12p(t) (mod p).
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Proof. Let p be a prime ≡ 5 (mod 8), so that (−2/p) = −1. We take α =
−2 +

√
−2 and β = −2 −

√
−2 so that j(Eα) = 8000. As noted above, there

are two independent endomorpishms µi in End(Eα) satisfying µ2
i = −3p. We will

show that both of these induce the trivial permutation on the points of order 2.
The X-coordinates of these points satisfy the equation

f2(x) = x3 +
α2

4
x2 +

α

2
x+

1

4
= (x− x1)(x− x2)(x− x3)

with

x1 =
1

2
, x2 =

(−1 +
√
−1)(1 +

√
2)

2
, x3 =

(−1−
√
−1)(1−

√
2)

2
.

Furthermore, (α, β) = (−2 +
√
−2,−2 −

√
−2) is a point on Fer3 (even in

characteristic 0), so we have the meromorphism µ1 = µ given by (4.2) or by (4.5)
on the roots of f2(x) = 0:

xµ1 =
7 + 4

√
−2

324

(
αx+ 3

x

)2p

.

Using that
√
−1 ∈ Fp but

√
2,
√
−2 /∈ Fp, one computes easily that xµ1

i = xi
for all i.

The second endomorphism µ2 satisfying µ2
2 = −3p in End(Eα) is given on

X-coordinates by the formula

Xµ2 = −1

3

X(X2 + (1−
√
−2)X − 1 +

√
−2)(

X − 1+
√
−2

3

)2


p

+
1 +
√
−2

3
. (4.6)

This formula can be computed in the following way. We know Eα ∼= Eβ since
j(Eα) ∈ Fp. The value

γ =
−3β

α(β − 3)
=

1 +
√
−2

3

is the X-coordinate of a point of order 3 on Eα (see [11, Thm. 1.3]), and since
β = αp, γ′ = γp is the X ′-coordinate of a point of order 3 on Eβ . By [11, Prop.
3.10] an isomorphism ι : Eα → Eβ exists for which ι(X,Y ) = (X ′, Y ′) and a

Xι = X ′ = −γ
′

γ
X + γ′ = −γp−1X + γp =

1 + 2
√
−2

3
X +

1−
√
−2

3
, (4.7a)

(X ′)ι
−1

= X = − 1

γp−1
X ′ + γ =

1− 2
√
−2

3
X ′ +

1 +
√
−2

3
. (4.7b)

(This uses the fact that the linear fractional map σ1(z) = 3(z+6)/(z−3) takes α to
β and vice versa.) The endomorphism µ′2 = ν′ ◦ φβ,α on Eβ arises by conjugating
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the coefficients of (4.2) in Fp2 :

(X ′)µ
′
2 = − β2

9α2

(
3X ′3 + β2X ′2 + 3βX ′ + 3

X ′2

)p
and satisfies µ′22 = −3p in End(Eβ). Then µ2 = ιµ′2ι

−1 (in this order when applied
to exponents, i.e. as a meromorphism, but in the reverse order when applied to
points) satisfies µ2

2 = −3p in End(Eα). The formula (4.6) now follows by using
these formulas to compute Xµ2 = Xιµ′2ι

−1

.
Another straightforward calculation using (4.6) shows that µ2 is the trivial

permutation on the roots xi of f2(x) = 0. Alternatively, since µ′2 arises by conju-
gating the coefficients of the map µ1 in Fp2 (i.e., raising to p-th powers), and the
points of order 2 on Eβ arise in the same way from the points in Eα[2], it is clear
that µ′2 induces the trivial automorphism on Eβ [2]. Then µ2 will also be the trivial
permutation on Eα[2]. Note that (4.6) and (4.2) show that ker(µ2) 6= ker(µ1), so
µ2 6= ±µ1.

It follows that (1 + µ)/2 ∈ End(Eα) for every endomorphism µ for which
µ2 = −3p. Consequently, there can be no root of H−12p(t) in characteristic 0
which reduces to j ≡ 8000 under reduction (mod p). If there were, and E is an
elliptic curve with invariant j and complex multiplication by the order O−12p =

Z[1,
√
−3p], then the reduced curve Ẽ would have an endomorphism ring in which

O−12p is maximally embedded by
√
−3p→ µ, by Deuring’s result [3, p. 270], since

the conductor of O−12p is f = 2 and not divisible by p. But this contradicts the
fact that we have established above, that (1+µ)/2 is contained in End(Ẽ), so that
End(Ẽ) ∩ Q(µ) = Z[1, 1+µ

2 ], which is strictly larger than Z[1, µ]. This proves the
proposition. �

We have the opposite result for the factor H−11(t) = t+ 32768.

Proposition 4.6. For p > 53 we have that H−11(t)4δ3 = (t + 32768)4δ3 divides
H−12p(t) (mod p), so that H−3p(t) is not divisible by H−11(t) (mod p).

Proof. This follows by a similar argument as in the proof of Proposition 4.5, but
with some complications arising from the nature of the solutions of (4.4). We
take α = −1 +

√
−11 and β = −1 −

√
−11, where (α, β) is a point on Fer3 (in

characteristic 0!), and j(Eα) = −32768. This time we let

f2(x) = x3 +
1

4
(αx+ 1)2 = x3 − 5 +

√
−11

2
x2 +

−1 +
√
−11

2
x+

1

4

in characteristic 0, and we set

h(x) = f2(x)f̄2(x) = x6 − 5x5 + 8x4 − 5

2
x3 +

7

4
x2 − 1

4
x+

1

16
.

The polynomial h(x) is irreducible and normal over Q with Galois group S3,
and since

discx(f2(x)) =

(
1− 1

4

√
−11

)2

,
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the splitting field L of h(x) over Q is a cyclic cubic extension of k = Q(
√
−11)

with Galois group generated by an automorphism σ, say. Since L arises from
k by adjoining the X-coordinates of the points of order 2 on Eα, a curve with
complex multiplication by the ring of integers of k, the field L is the ray class field
of conductor 2 over k (see [14, Thm. 4.6, p. 135]). A prime p with (−11/p) = −1
splits into 3 primes of degree 2 in L, which are cyclically permuted by σ, because
p is inert in k and the ideal (p) lies in the principal ray class (mod 2). For these
same primes Eα is supersingular in characteristic p.

Now we let τ ∈ Gal(L/Q) be complex conjugation and we set ψ = τ ◦ φα,β ,
which on X-coordinates is given by

ψ(X) = (φα,β(X))
τ

=

(
− β2

9α2

3X3 + α2X2 + 3αX + 3

X2

)τ
. (4.8)

The map ψ is an endomorphism of Eα in characteristic 0 (but not a morphism!),
since φα,β is an isogeny from Eα to Eβ , and τ maps Eβ back to Eα by (X ′, Y ′)τ =
(X ′τ , Y ′τ ). (See [11, Prop. 3.5].) It is easy to see that ψ : Eα[2] → Eα[2] is
a permutation, since ker(ψ) = {O, (0, 0), (0,−1)}.

Also, let P be a prime divisor of p in L for which the decomposition group of
P/p is generated by τ , possible because Gal(L/Q) ∼= S3. Let RP denote the ring
of P-adic integers contained in L. Since RP/P ∼= Fp2 , for any γ ∈ RP we can
write γ ≡ a+b

√
−11 (mod P) for suitable a, b ∈ Zp∩Q (the ring of p-adic integers

contained in Q) and since Pτ = P we have

γτ ≡ a− b
√
−11 ≡ (a+ b

√
−11)p ≡ γp (mod P).

Therefore, it follows that

ψ(X) ≡ (φα,β(X))p = Xµ1 (mod P), X ∈ RP,

where Xµ1 is given by (4.2). Now if x = X(P ), for P ∈ Eα[2], is one of the roots
of f2(x) = 0, then

ψ2(x) = (φα,β (φα,β(x)τ ))
τ

= (φβ,α)
(
φα,β(x)τ

2
)

= (φβ,α ◦ φα,β)(x) = X(3P ) = X(P ) = x, (4.9)

where we have used the formulas in [11, Props. 3.5 and 3.6]. This shows that
ψ2 = 1 on Eα[2]. Therefore, ψ has a fixed point, say P1 = (x1, y1). Then ψ(x1) =
x1 implies that

ψ(xσ1 ) = φα,β(xσ1 )τ = φα,β(x1)στ = φα,β(x1)τσ
−1

= ψ(x1)σ
−1

= xσ
−1

1 .

The roots x1, x2 = xσ1 , x3 = xσ
−1

1 are distinct (mod P), for p > 3, so this
computation implies that µ1 is not the identity permutation on the points of
order 2 of the reduced curve Ẽα = Eα (mod P).
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The same argument as in Proposition 4.5 will prove the assertion, once we apply
an appropriate isomorphism ι : Ẽα → Ẽβ and demonstrate that the endomorphism

µ2 = ι−1 ◦ ν′ ◦ φβ,α ◦ ι

on Ẽα has a kernel which is different from ker(µ1). But this follows easily, as in
the proof of Proposition 4.5, from the fact that σ1(z) = 3(z + 6)/(z − 3) satisfies
σ1(α) = β and vice versa, and that γ = (−1 +

√
−11)/6 is the X-coordinate of

a point of order 3 on Ẽα. (See [11, Prop. 3.10].) Then an isomorphism ι : Ẽα → Ẽβ
exists for which ι(X,Y ) = (X ′, Y ′) and

Xι = X ′ = −γ
′

γ
X + γ′ = −γp−1X + γp =

5−
√
−11

6
X +

−1−
√
−11

6
.

Thus, the kernel of µ2 contains a point with X-coordinate γ 6= 0, and it follows
that µ2 6= ±µ1. As in the earlier proof, the endomorphism µ′2 = ν′ ◦ φβ,α has the
same behavior on Ẽβ [2] that µ1 has on Ẽα[2]. Hence, µ2 is not the identity on
Ẽα[2], so that no endomorphism of the form (1 + µ)/2 with µ2 = −3p exists in
End(Ẽα). This completes the proof. �

We turn now to the quadratic factors in Theorem 1.2.

Proposition 4.7. The factor H−20(t)2δ4 divides both H−3p(t) and H−12p(t) (mod p),
for p > 53.

Proof. In this case we take p to be a prime ≡ 1 (mod 4) with (5/p) = −1. We
take α and β to be

α =
−1 + 7

√
−1 +

√
5 +
√
−5

2
, β =

−1 + 7
√
−1−

√
5−
√
−5

2
.

Note that
j(Eα) = 632000 + 282880

√
5

is a root of H−20(t) = t2 − 1264000t − 681472000 and 27α3 + 27β3 = α3β3 in
characteristic 0. The X-coordinates of the points of order 2 on Eα are the roots
of the polynomial

f2(x, α) = x3 +
1

4
(αx+ 1)2

=

(
x− 3

√
−1−

√
−5

4

)(
x2 +

−6 +
√
−1− 2

√
5 +
√
−5

2
x+

3 +
√
−5

4

)
.

With µ1 = ν ◦ φα,β as in (4.2) and x1 = (3
√
−1−

√
−5)/4 we have xµ1

1 = x1,
because φα,β takes roots of f2(x, α) to roots of f2(x, β) and x1 is the only root
which is rational over K = Q(

√
−1,
√

5). We take x2 to be a root of the quadratic
in the above factorization of f2(x, α):

x2 =
6−
√
−1 + 2

√
5−
√
−5

4
+

1

2

√
∆,
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where

∆ =
25− 22

√
−1 + 11

√
5− 10

√
−5

2
= −(2

√
−1−

√
5)

(
1 +
√

5

2

)5

.

Let L = Q(
√
−1,
√

5,
√

∆), and let σ denote complex conjugation and τ the
automorphism of K = Q(

√
−1,
√

5) over Q(
√
−1) for which τ(

√
5) = −

√
5. Since

∆∆τ = NormQ(
√
−1)(∆) = 9,

∆∆σ = NormQ(
√

5)(∆) = 9

(
1 +
√

5

2

)10

,

and

∆∆στ = NormQ(
√
−5)(∆) = 1− 4

√
−5 = (2

√
−1−

√
5)2,

it is clear that L is normal over Q. Further, since 1 − 4
√
−5 is not a square in

Q(
√
−5), it follows that ∆ is not a square in K = Q(

√
−1,
√

5). Thus, [L : Q] = 8.
Setting

∆′ = ∆στ = ∆̄τ ,
√

∆′ =
2
√
−1−

√
5√

∆
,

we define the automorphism ρ on L by

ρ :
√

∆→
√

∆′ =
2
√
−1−

√
5√

∆
,

and we extend the automorphisms σ and τ to L by setting

σ :
√

∆→
√

∆̄ =
3ε5

√
∆
, ε =

1 +
√

5

2
,

τ :
√

∆→
√

∆τ =
3√
∆
.

Then ρ|K = (στ)|K , so that ρ2(
√

∆) = −
√

∆. Hence, ρ has order 4 and L
is cyclic over k3 = Q(

√
−5). It is easy to check that σ2 = 1 and σρ = ρ−1σ, so

Gal(L/Q) is the dihedral group D4. It is also straightforward to verify that

τ2 = 1, τρ = ρ−1τ, στ = τσρ2.

I claim now that p splits into four primes of degree 2 in L/Q. This follows
from the fact that L is the 2-ray class field over k3 = Q(

√
−5), which is the case

since the equation for Eα is defined over the Hilbert class field Kof k3 and Eα has
complex multiplication by the ring of integers of k3. The prime ideal (p) lof k3 lies
in the principal ray class (mod 2), hence p splits completely in L/k3. (This may
also be shown directly. See the proof of Proposition 4.8 below.)
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Now p also splits in k2 = Q(
√
−1), so k2 is contained in the decomposition

field of the prime divisors of p in L. The invariant subgroup of k2 in Gal(L/Q)
is 〈ρ2, τ〉. However, both prime divisors of p in K – the fixed field of 〈ρ2〉 – have
degree 2, so the decomposition group of a prime divisor of p in L is either 〈τ〉 or
〈ρ2τ〉. These two subgroups are conjugate in the whole group, so there is a prime
divisor P of p in L whose decomposition group is generated by τ . As in the proof
of Proposition 4.6 we have that Xτ ≡ Xp (mod P) for X ∈ RP.

We now define ψ(X) = (φα,β(X))τ , as in (4.8). Then a lengthy calculation
shows that

ψ(x2) = (φα,β(x2))τ

=

(
6−
√
−1− 2

√
5 +
√
−5

4
+
−25 + 22

√
−1 + 11

√
5− 10

√
−5

12

√
∆

)τ

=
6−
√
−1 + 2

√
5−
√
−5

4
+
−25 + 22

√
−1− 11

√
5 + 10

√
−5

12

3√
∆

=
6−
√
−1 + 2

√
5−
√
−5

4
− ∆

2

1√
∆

=
6−
√
−1 + 2

√
5−
√
−5

4
− 1

2

√
∆ = x3.

As in the proof of Proposition 4.6, it follows that xµ1

2 ≡ x3 (mod P). The
discriminant of f(x, α) is

discx(f(x, α)) = −35

16
− 11

4

√
−1− 7

8

√
5− 11

8

√
−5,

whose norm to Q is 312/216, so the xi are distinct modulo P for p > 3. Hence,
the endomorphism µ1 is a non-trivial permutation on Ẽα[2] = Eα[2] (mod P). It
follows that H−20(t)2δ4 divides H−12p(t) (mod p).

In this case we know that Eα and Eβ are not isomorphic, because their j-
invariants are conjugate over Q but not equal. However, Eα ∼= Eασ since σ is
complex conjugation and j(Eα) is real. Thus a second endomorphism µ2 arises
from an isomorphism ι : Eα → Eασ by the formula (in characteristic p)

µ2 = ι−1 ◦ ν′ ◦ φασ,βσ ◦ ι = ι−1 ◦ µ′2 ◦ ι,

where ν′ : Ẽβσ → Ẽασ is the Frobenius map. Here we have

ασ =
−1− 7

√
−1 +

√
5−
√
−5

2
, βσ =

−1− 7
√
−1−

√
5 +
√
−5

2
.

Now (once again in characteristic 0) the roots of f2(x, ασ) = 0 are xσi
(1 6 i 6 3), which also lie in L since L is normal over Q. Setting

ψ′(X) = (φασ,βσ (X))τ
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we have

ψ′(xσ2 ) = (φασ,βσ (xσ2 ))τ = (φα,β(x2))στ = (φα,β(x2))τσρ
2

= (φα,β(x2)τ )σρ
2

= ψ(x2)σρ
2

= xρ
2σ

3 = xσ2 ,

by the previous calculation, using the fact that ρ2 is in the center of Gal(L/Q). In
the same way, ψ′ also fixes xσ3 and xσ1 . Now the congruence ψ′(X) ≡ Xµ′2 (mod P)
implies that µ′2 is the identity permutation on Ẽασ [2] (in characteristic p), so µ2

is the identity on Ẽα[2]. Hence, H−20(t)2δ4 also divides H−3p(t) (mod p)! This
proves the proposition. �

There is a similar result for the factor H−32(t) in Theorem 1.2.

Proposition 4.8. The factor H−32(t)2δ5 divides both H−3p(t) and H−12p(t) (mod p),
for p > 53.

Proof. In this case we take p to be a prime ≡ 5 (mod 8) so that (2/p) = −1. We
take α and β to be

α =
4 + 2

√
−1 + 5

√
2 + 5

√
−2

2
, β =

4 + 2
√
−1− 5

√
2− 5

√
−2

2
,

so that

j(Eα) =
α3(α3 − 24)3

α3 − 27
= 26125000 + 18473000

√
2

is a root of H−32(t). The corresponding polynomial f2(x, α) is

f2(x, α) = x3 +
1

4
(αx+ 1)2 =

(
x− 1−

√
−1−

√
2 +
√
−2

4

)

×

(
x2 + (1 + 7

√
−1 +

√
2 + 4

√
−2)x+

1 +
√
−1 +

√
2 +
√
−2

2

)
,

where the discriminant of the quadratic factor is

4∆ = 4(−20 + 7
√
−1− 14

√
2 + 5

√
−2) = 4(

√
−1− 2

√
2)(1 +

√
2)3.

Letting σ be complex conjugation on the field K = Q(
√
−1,
√

2) and τ the
automorphism taking

√
2 to −

√
2, we have the norm equations

∆∆τ = NormQ(
√
−1)(∆) = 9,

∆∆σ = NormQ(
√

2)(∆) = 9(1 +
√

2)6,

and

∆∆στ = NormQ(
√
−2)(∆) = 7− 4

√
−2 = (

√
−1− 2

√
2)2.
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Further, a root x2 of the quadratic factor of f(x, α) is

x2 = −1 + 7
√
−1 +

√
2 + 4

√
−2

2
+
√

∆,

and x2, x3 ∈ L = Q(
√

∆), where L is normal over Q with degree 8. As before we
define ρ ∈ Gal(L/Q) by

ρ :
√

∆→
√

∆′ =

√
−1− 2

√
2√

∆
,

and we extend the automorphisms σ and τ to L by setting

σ :
√

∆→
√

∆̄ =
3ε3

√
∆
, ε = 1 +

√
2,

τ :
√

∆→
√

∆τ =
3√
∆
.

These automorphisms satisfy all the same relations as in the proof of Proposi-
tion 4.7. Now we compute

ψ(x2) = φα,β(x2)τ

=

(
−1− 7

√
−1 +

√
2 + 4

√
−2

2
+
−20 + 7

√
−1 + 14

√
2− 5

√
−2

3

√
∆

)τ

=
−1− 7

√
−1−

√
2− 4

√
−2

2
+
−20 + 7

√
−1− 14

√
2 + 5

√
−2

3

3√
∆

= −1 + 7
√
−1 +

√
2 + 4

√
−2

2
+
√

∆ = x2.

Also, setting ψ′(X) = (φασ,βσ (X))τ , we have

ψ′(xσ2 ) = (φασ,βσ (xσ2 ))τ = (φα,β(x2))στ = (φα,β(x2)τ )
σρ2

= ψ(x2)ρ
2σ = xσ3 .

These computations will imply the assertion of the proposition, if we show that
there is a prime divisor P of p in L with degree 2, whose decomposition group
is 〈τ〉. For this we need only show that p splits into four primes of degree 2 in
L. Note in this case that K = Q(

√
−1,
√

2) is not the Hilbert class field, but the
2-ray class field over k = Q(

√
−2), so we cannot use [14, Thm. 4.6, p.135] here.

Instead, we must argue directly. Since p splits into two primes p1 and p2 of degree
2 in the field K, it will suffice to compute the Legendre symbol(

∆

p1

)
=

(
(
√
−1− 2

√
2)(1 +

√
2)

p1

)
≡ (
√
−1− 2

√
2)(p2−1)/2(1 +

√
2)(p2−1)/2 (mod p1).
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Working with the first factor (mod p1) gives

(
√
−1− 2

√
2)(p2−1)/2 ≡

(
(
√
−1− 2

√
2)p

(
√
−1− 2

√
2)

)(p+1)/2

≡

(
(
√
−1 + 2

√
2)2

−9

)(p+1)/2

≡ (−1)(p+1)/2

(√
−1 + 2

√
2

3

)p+1

≡ (−1)(p+1)/2(−1) ≡ 1 (mod p1).

In the same way we obtain

(1 +
√

2)(p2−1)/2 ≡ (−1)(p+1)/2(−1) ≡ 1 (mod p1),

and therefore
(

∆

p1

)
= 1, as claimed. Conjugating by σ gives

(
∆

p2

)
= 1, and

therefore both pi split into two primes in L/K.
Now the same argument as in Proposition 4.7 shows that there is a prime

divisor P of p in L whose decomposition group is 〈τ〉, and this gives the assertion
by the same arguments as before. �

After the last two propositions, the result of our final proposition is similar to
Proposition 4.6.

Proposition 4.9. The factor H−35(t)4δ6 divides H−12p(t) (mod p), for p > 53.

Proof. Here p is a prime ≡ 1 (mod 4) for which (−35/p) = −1 and (5/p) = −1,
so that (−7/p) = +1. We take α and β to be

α = 3 +
√
−7 + 2

√
5, β = 3 +

√
−7− 2

√
5.

Then (α, β) is a point on Fer3, as before, and

j(Eα) = −58982400− 26378240
√

5

is a root of H−35(t). The polynomial

f2(x, α) = x3 +
1

4
(αx+ 1)2

has discriminant

D =
117

16
+ 5
√
−7 +

13

4

√
5 +

9

4

√
−35 =

(
1 +

√
5

2

)2(√
−7 + 2

√
5

2

)2

.

The norm of f2(x, α) to Q is the irreducible polynomial

h(x) = x12 + 22x11 + 199x10 − 407x9 +
1259

2
x8 − 295x7 +

1275

8
x6 +

409

8
x5

+
67

16
x4 +

37

16
x3 +

25

32
x2 +

3

32
x+

1

256
,
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whose splitting field is the 2-ray class field L over Q(
√
−35). We have [L : Q] =

12, so that h(x) is a normal polynomial. Furthermore, G = Gal(L/Q) = D6,
the dihedral group of order 12, by a standard result in the theory of complex
multiplication. In particular, H = Gal(L/Q(

√
−35)) is cyclic and every element

in G which does not fix Q(
√
−35) has order 2.

We take σ ∈ G to be complex conjugation and τ an automorphism which fixes√
−7 and changes the sign of

√
5. Also, let ρ be a generator of H. Then στ = ρl,

for some l, since στ fixes
√
−35, and ρ2 generates the group of the cyclic extension

L/K, where K = Q(
√
−7,
√

5). The automorphism τ is defined only up to a factor
of ρ2n. Hence we may assume l = 0 or 1.

As in previous proofs we let ψ(X) = (φα,β(X))τ . The computation analogous
to (4.9) shows that ψ2(x) = x for the roots of f2(x, α) = 0, so ψ has a fixed
point x1. If x2 = xρ

2

1 and x3 = xρ
4

1 , then

ψ(x2) = ψ(xρ
2

1 ) = φα,β(x1)ρ
2τ = φα,β(x1)τρ

4

= ψ(x1)ρ
4

= xρ
4

1 = x3.

Hence, ψ is not the identity on Eα[2]. If ψ′(X) = (φασ,βσ (X))τ , then

ψ′(xσ2 ) = (φασ,βσ (xσ2 ))τ = (φα,β(x2))στ = (φα,β(x2))ρ
l

= (φα,β(x2)τ )τρ
l

= ψ(x2)τρ
l

= xρ
2τρl

2 = (xσ2 )σρ
2τρl = (xσ2 )ρ

2l−2

.

Similarly, ψ′(xσ1 ) = (xσ1 )ρ
2l

and ψ′(xσ3 ) = (xσ3 )ρ
2l+2

. If l = 0, then ψ′ fixes xσ1
and interchanges xσ2 and xσ3 ; while if l = 1, ψ′ fixes xσ2 and interchanges xσ1 and
xσ3 . In either case, ψ′ is not the identity on Eασ [2].

Since L is the 2-ray class field of k1 = Q(
√
−35), the prime p splits into six

primes Pi of degree 2 in L. But p splits in k2 = Q(
√
−7), so k2 is contained in

the decomposition field of any of the primes Pi. The invariant group of k2 inside
Gal(L/Q) is 〈τ, ρ2〉 ∼= S3. The decomposition group of any Pi is generated by an
element of order 2, all of which are conjugate inside 〈τ, ρ2〉, so there is a prime
divisor P of p whose decomposition group is generated by τ .

Thus, all our previous arguments apply, namely Xτ ≡ Xp (mod P), so the
endomorphism µ1 is given on X-coordinates of points in Ẽα = Eα (mod P) by

Xµ1 ≡ ψ(X) (mod P), (X,Y ) ∈ Eα,

and the endomorphism µ′2 on points of Ẽασ by

Xµ′2 ≡ ψ′(X) (mod P) (X,Y ) ∈ Eσα.

Finally, the endomorphism µ2 on Ẽα is determined by an isomorphism ι : Ẽα →
Ẽασ as

µ2 = ι−1 ◦ µ′2 ◦ ι.
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As in (4.7), it is easily checked that we may take ι to be defined on X-coordinates
by

Xι = X ′ = −γ
′

γ
X + γ′ = −γp−1X + γp,

where

γ =
5

12
+

1

4

√
−7− 1

4

√
5− 1

12

√
−35 =

1

12
(3−

√
5)(
√
−7−

√
5)

is the X-coordinate of a point of order 3 on Ẽα. It follows from this that the
points of order 3 given by (γ, ξ) are in ker(µ2) and therefore ker(µ2) 6= ker(µ1).
Hence, µ1 and µ2 are two independent endomorphisms of Ẽα in characteristic p
with µ2

i = −3p, neither of which is the trivial permutation on Ẽα[2]. This proves
the proposition. �

Taken together, Lemma 4.2 and Propositions 4.3-4.9 imply Theorem 1.3. As
a corollary we have the following analogy to Theorems 3.2 and 3.4.

Theorem 4.10. For p ≡ 1 (mod 4) and p > 53 let n3,1 denote the number of
irreducible quadratic factors t2 + at + b of Jp(t) distinct from H−20(t), H−32(t),
and H−35(t) (mod p) which divide H−3p(t) (mod p), and n3,2 the number of those
factors which divide H−12p(t) (mod p). Then the class number h(−3p) satisfies
the following two equations:

h(−3p) = 7− 4

(
2

p

)
−
(

3

p

)
− 2

(
5

p

)
+ 4n3,1,

(ap − 1)h(−3p) = 9− 2

(
2

p

)
−
(

3

p

)
− 4

(
5

p

)
+ 2

(
7

p

)
− 2

(
11

p

)
− 2

(
35

p

)
+ 4n3,2,

with
ap − 1 = 2 +

(
2

p

)
.

Thus, we have

n3,2 =

(
2 +

(
2

p

))
n3,1 + ηp,

with

ηp =
1

4

(
1 +

(
2

p

)
−
(

3

p

)
−
(

6

p

)
− 2

(
7

p

)
− 2

(
10

p

)
+ 2

(
11

p

)
+ 2

(
35

p

))
.

Proof. This follows from equating degrees in the two congruences in Theorem 1.3:

h(−3p) = 2δ1 + 4δ2 + 4δ4 + 4δ5 + 4n3,1,

(ap − 1)h(−3p) = 2δ1 + 4δ3 + 4δ4 + 4δ5 + 8δ6 + 4n3,2,

and then subtracting the second equation from (ap − 1) times the first. �
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Adding the two equations in this theorem and comparing with Theorem 3.4
gives the following.

Corollary. If p > 53 satisfies p ≡ 1 (mod 4), then

n3,1 + n3,2 = N3 +
1

4

(
−5 + 2

(
2

p

)
+ 3

(
5

p

)
−
(

7

p

)
+

(
35

p

))
,

where N3 is the number of irreducible quadratic factors t2 + ct + d of Jp(t) over
Fp for which Q3(c, d) ≡ 0 (mod p).

Theorem 4.10 and its corollary give the means for determining the numbers of
irreducible quadratic factors in the two products in Theorem 1.3. For example,
when p = 233, the formulas in Theorem 4.10 give that n3,1 = 1 and n3,2 = 3, using
that h(−3 · 233) = 10 and a233 = 4. This agrees with the formula in the corollary
since N3 = 6 (see Section 3). Note that these formulas also make it possible to
determine these numbers directly from the factorization of Jp(t).

Thus we have:

H−3·233(t) ≡ (t− 54000)2H−20(t)2(t2 + c1t+ d1)2

≡ (t+ 56)2(t2 + 25t+ 109)2(t2 + c1t+ d1)2 (mod 233),

and

H−12·233(t) ≡ t2(t+ 32768)4H−20(t)2H−35(t)4
4∏
i=2

(t2 + cit+ di)
2

≡ t2(t+ 148)4(t2 + 25t+ 109)2(t2 + 162t+ 216)4

×
4∏
i=2

(t2 + cit+ di)
2 (mod 233).

To determine exactly which factors t2+ct+d of Jp(t) with Q3(c, d) ≡ 0 (mod p)
divide H−3p(t) (mod p) one can proceed as in the above proofs. To a root j of
each factor t2 + ct+ d there are values of α and β = αp in Fp2 for which

j =
α3(α3 − 24)3

α3 − 27
, 27α3 + 27β3 = α3β3.

Then t2 +ct+d will divide H−3p(t) if and only if the endomorphism µ given by
(4.2) or (4.5) is the trivial permutation on theX-coordinates of points in Eα[2]. By
the arguments in [11, pp. 273-274] there is only one independent endomorphism
µ in End(Eα) for which µ2 = −3p, so there is no need to construct additional
isomorphisms as in the proofs above.

Considering the quadratic factors of J233(t) given after Theorem 3.2, we check
that q(t) = (t2 + c1t+d1) = (t2 + 81t+ 81) divides H−3·233(t) (mod 233). We take

α = 115 +
√
−5, β = 115−

√
−5 ∈ F2332 ,
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so that (α, β) is a point on Fer3 over F2332 , and j(Eα) = 76 + 155
√
−5 is a root

of q(t). Then the roots of f2(x, α) = x3 + (αx+ 1)2/4 are

x1 = 78− 34
√
−5, x2 = 75− 109

√
−5, x3 = 37− 31

√
−5

in F2332 . Using (4.5) one can check easily that xµi = xi for all of these values.
Hence q(t) certainly divides H−3·233(t) (mod 233), and we have finally that

H−3·233(t) ≡ (t+ 56)2(t2 + 25t+ 109)2(t2 + 81t+ 81)2,

H−12·233(t) ≡ t2(t+ 148)4(t2 + 25t+ 109)2(t2 + 162t+ 216)4

× (t2 + 55t+ 139)2(t2 + 147t+ 62)2(t2 + 169t+ 171)2 (mod 233).

To conclude, we note the following corollary of Theorems 1.1 and Theorem 1.3.

Theorem 4.11.
a) If p > 13 is a prime with p ≡ 1 (mod 8) and (7/p) = +1, then H−8p(t) has

no linear factors over Fp.
b) If p > 53 is a prime with p ≡ 1 (mod 24), then H−3p(t) has no linear factors

over Fp.

c) If p > 53 is a prime with p ≡ 1 (mod 12) and
(

11

p

)
= +1, then H−12p(t)

has no linear factors over Fp.
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