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ON THE CONGRUENCE κn ≡ a(mod ϕ(n))

Boqing Xue

Abstract: Lehmer’s totient problem asks whether there exists a composite n such that
ϕ(n) | (n − 1), where ϕ is the Euler’s function. This problem is still open. Later, several
upper bounds of the derived problem "ϕ(n) | (n − a)" were given. In this paper, we extend it
to n with ϕ(n) | (κn− a) and obtain some new bounds. As an application, for any integer λ > 0
we have,

#{n 6 x : ϕ(n) | (n− 1), n 6≡ 1 (mod 6λ)} � x1/2/(log x)0.559552+o(1),

#{n 6 x : ϕ(n) | (3n− 1)} � x1/2/(log x)0.559552+o(1).

Keywords: Euler function, Lehmer’s totient problem.

1. Introduction

Let ϕ(n) be the Euler function of n; in particular, ϕ(p) = p − 1 for a prime p.
Lehmer [5] asked if there exist composite positive integers n such that ϕ(n) | (n−1).
This is still an open question. In 1976, C. Pomerance [9] proved that if one sets

L = {n : ϕ(n) | (n− 1) and n is composite } ,

and denote S(x) = {n 6 x : n ∈ S } for any set S, then the cardinality #L(x) �
x2/3(log log x)1/3.

The derived problem, ϕ(n) | (n−a), was studied in a series of papers ([10, 11, 2]).
The corresponding upper bounds were x1/2(log x)3/4, x1/2(log x)1/2(log log x)−1/2

and x1/2(log log x)1/2, respectively. In [1] the bound was improved to
x1/2/(log x)Θ+o(1), where Θ = 0.129398 and the term “log x” appeared in the
denominator. In [6], another upper bound for the original case a = 1 was given:
x1/2/(log x)1/2+o(1).

For fixed integer a and κ > 1, put

La,κ = {n : ϕ(n) | (κn− a) } .
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In the case a = 0 and κ = 1, Sierpinski ([12], p.232) showed that {n : ϕ(n)|n } =
{1} ∪ { 2i3j : i > 0, j > 0 }. Thus #L0,1(x) ∼ (log x)2/2 log 2 log 3. Actually when
a definite κ is given, it is easy to determine the form of those numbers n for which
ϕ(n) | κn . Both the number of prime factors and the number of choices for prime
factors of n are finite . It follows that #L0,κ(x) � xo(1). Consequently, we can
assume that a 6= 0.

When b ∈ L0,κ, we find that pb ∈ Lκb,κ for each prime p - b. To exclude trivial
solutions of this kind we put

L′a,κ = {n ∈ La,κ : κn 6= pa (p prime) whenever κp - a } ,

and following Pomerance we also define

L′′a,κ =
{
n ∈ L′a,κ : n is square free

}
.

We find that L(x) = L′1,1(x) = L′′1,1(x).
In this paper ,we prove the following theorem and corollaries:

Theorem 1. For arbitrary integers q, λ > 0, we have

#L′a,κ(x) ∩ {n : κn 6≡ a (mod qλ)} � x1/2/(log x)τ+1/ϕ(q)+o(1). (1)

Here τ = (ξ log 2)/2, where ξ is the least positive solution to the equation

ξ log

(
1 +

1 +
√

4ξ + 1

2ξ

)
+

2ξ

1 +
√

4ξ + 1
= 1− 1/ϕ(q). (2)

Corollary 1. For arbitrary integers λ0, λ1 > 0, we have

#L′a,κ(x) ∩ {n : κn 6≡ a (mod 2λ03λ1)} � x1/2/(log x)0.559552+o(1).

Corollary 2. For arbitrary integer λ0, λ1, λ2 > 0, we have

#L′a,κ(x) ∩ {n : κn 6≡ a (mod 2λ03λ15λ2)} � x1/2/(log x)0.35767+o(1).

Corollary 3. Suppose κ/(κ, a) > 1, and q is the smallest prime such that
q | κ/(κ, a). Then

#L′a,κ(x)� x1/2/(log x)τ+1/(q−1)+o(1).

Corollary 4. Suppose a 6= 0, 1, a/(a, κ) is not squarefree, and q is the smallest
prime such that q2 | a/(a, κ). Then

#L′′a,κ(x)� x1/2/(log x)τ+1/(q−1)+o(1).



On the congruence κn ≡ a (mod ϕ(n)) 191

2. Preparation

In the rest part of this paper, we always assume a 6= 0 and κ > 0 are fixed integers
and write l = log x, l2 = log log x, lk = log lk−1 for k > 2. ∆ denotes the set of all
the primes and p always denotes a prime. For any integers q and n, the expression
ordq(n) is defined to be the integer satisfying qordq(n)‖n . We use P (n) to denote
the largest prime factor of n and p(n) to represent the smallest one. The function
Ω(n) counts the total number of prime factors of n.

Lemma 1-5 were first proved by Pomerance([10]) in the case k = 1; the proofs
carry through for arbitrary κ > 1 with few changes and are therefore omitted.

Lemma 1 (see [10, Lemma 1]). For any integer q > 0, we have the following
two inequalities:

#L′a,κ(x) 6 4a2 +
∑
d|a

#L′′a/d,κ(x/d),

and

#L′a,κ(x)∩{n : κn 6≡ a (mod q)} 6 4a2+
∑
d|a

#L′′a/d,κ(x/d)∩{n : κn 6≡ a/d (mod q)}.

Thus, in order to get the upper bound of #L′a,κ(x), we only need to prove the
same bound for #L′′a,κ(x).

Lemma 2 (see [10, Lemma 2]). If n > 16a2, n ∈ L′′a,κ, write

k =
κn− a
ϕ(n)

.

Then:

(i) k > κ;
(ii) if m | n, m 6= n, then m/ϕ(m) < k/κ;
(iii) there is a prime q > P (n) with nq/ϕ(nq) > k/κ.

Lemma 3 (see [10, Lemma 3]). Suppose k, n, κ are natural numbers with n
square-free and n/ϕ(n) > k/κ. If m|n and m/ϕ(m) < k/κ, then

p(n/m) < ω(n/m) · (κm+ 1).

Lemma 4 (see [10, Theorem 1]). Suppose that n > 16a2, n ∈ L′′a,κ. Let the
prime factorization of n be p1 . . . pr, where p1 > . . . > pr and r = ω(n). Then, for
1 6 k 6 r we have

pk < (k + 1)

(
1 + κ

r∏
i=k+1

pi

)
.

Lemma 5 (see [11]). Suppose that δ > 0, a1 > . . . > at > 0, and ai 6 δ +∑t
j=i+1 aj for 1 > i > t−1. Then for any real number ρ such that 0 6 ρ 6

∑t
i=1 ai,

there is a subset I of 1, . . . , t such that ρ− δ <
∑
i∈I

ai 6 ρ.
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Lemma 6 (see [3, Proposition 3]). Let Vξ = {n : ω(n) < ξ log log n}. For fixed
0 < ξ1 < 1,

#Vξ1(x)� x

(log x)1+ξ1 log (ξ1/e)(log log x)1/2
(x→∞).

Let Wξ = {n : ω(n) > ξ log log n}. For fixed ξ2 > 1,

#Wξ2(x)� x

(log x)1+ξ2 log (ξ2/e)(log log x)1/2
(x→∞).

Lemma 7 (see [6, Corollary 1]). Given any ξ ∈ (0, 2], we have the estimate

#{n 6 t : ord2(ϕ(n)) 6 ξ log log t} � t

(log t)eξ
,

where

eξ := 1 + ξ log 2− ξ log

(
1 +

1 +
√

4ξ + 1

2ξ

)
− 2ξ

1 +
√

4ξ + 1
. (3)

Lemma 8 (see [7]). For a, q with (a, q) = 1,∑
p≡a (mod q)

p6x

1

p
=

1

ϕ(q)
log log x+A+ O

(
1

logx

)
.

Lemma 9 (see [8, p. 316]). For a, q with (a, q) = 1 and q 6 log x, we have∑
p≡a (mod q)

p6x

log p = x/ϕ(q) + O
(
xe−c

√
log x

)
.

In order to prove Theorem 1, we tend to study the number of integers whose
prime factors come from a particular set.

Let P be a subset of ∆ = {2, 3, 5, . . .} and P̄ = ∆ \ P. Factorize n = nPnP̄
where

nP = max
d|n
{d : p ∈ P for each prime p | d}

is the P-part of n, and nP̄ is the P̄-part of n, respectively.
For convenience, we call n a P-integer when n = nP and call n an s-almost-

P-integer when Ω(nP̄) 6 s. Denote NP be the set of P-integers and Ns−P be the
set of s-almost-P-integers. Let πP(x) = {n 6 x : n ∈ NP} and πs−P(x) = {n 6
x : n ∈ Ns−P}. The next lemma can be deduced from Theorem 00 of [4] (taking
f(n) to be the characteristic function of elements in NP).

Lemma 10. Let α, β ∈ (0, 1] be rational numbers. Suppose P ⊆ ∆ satisfies∑
p∈P
p6x

log p 6 βx+ O
(

x

log2 x

)
. (4)
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and ∑
p∈P
p6x

1/p < α log log x+B. (5)

Then the number of P-integers n 6 x is

πP(x)� x(log x)α−1,

where the implied constant depends only on α, β.

Next we obtain a result on the number of s-almost-P-integers.

Proposition 1. Let s > 0 be a fixed integer, and let α, β ∈ (0, 1] be real numbers.
Let P ⊆ {2, 3, 5, . . .} be a set of primes satisfying (4) and (5). Then

πs−P(x)� x(log x)α−1(log log x)s.

Proof. Combining Lemma 10, one can deduce that

πs−P(x) 6
s∑
i=1

∑
(p1,...,pi)∈P̄i
p1...pi6x

πP

(
x

p1 . . . pi

)

�
s∑
i=1

∑
(p1,...,pi)∈∆i

p1...pi6x

(x/p1 . . . pi) logα−1 (x/p1 . . . pi)

� xlα−1
s∑
i=1

∑
(p1,...,pi)∈∆i

p1...pi6x

1

p1 . . . pi

� xlα−1
s∑
i=1

∑
p∈∆
p6x

1

p


i

6 xlα−1
s∑
i=1

(αl2)i � xlα−1ls2. �

3. Proof of Theorem 1 and the corollaries

Proof of Theorem 1. In view of Lemma 1, it is sufficient to obtain a suitable
bound for

#L′′a,κ(x) ∩ {n : κn 6≡ a (mod qλ)} ∩ [x/2, x].

Denote P = {p ∈ ∆ : p 6≡ 1 (mod q)} and P̄ = ∆ \ P. Now consider any n ∈ L′′a,κ.
For each prime factor p | n, if p ≡ 1 (mod q), then

q | (p− 1) | ϕ(n) | (κn− a).

That is

ordq(κn− a) > #{p | n : p ≡ 1 (mod q)} = ω(nP̄) = Ω(nP̄).
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The condition κn 6≡ a (mod qλ) leads to the fact that ordq(κn− a) < λ. Hence

Ω(nP̄) < λ (6)

and n belongs to Nλ−P , as does every divisor of n.
If q = 2, then P = {2} and P̄ = ∆ \ {2}. It follows that ω(n) < λ+ 1 and the

number of such integers no larger than x is xo(1). Now we assume that q > 3.
Similar as in [1], it can be shown that

#{n ∈ L′′a,κ ∩W20 : x/2 6 n 6 x} � x1/2(log x)−11,

so here we always suppose that ω(n) 6 20l2. Recall (3) for the definition of eξ.
Let ξ be the unique solution in (0, 1) to the equation (2), or equivalently,

eξ = ξ log 2 + 1/ϕ(q), (7)

and denote τ = (ξ log 2)/2.
Now let n ∈ L′′a ∩ [x/2, x] be fixed. Factor n = p1p2 . . . pr where r = ω(n) and

p1 > . . . > pr. By Lemma 4 we have

log pi < log 2κr +

r∑
j=i+1

log pj (1 6 i 6 r).

Applying Lemma 5 with δ = log 2κr, t = r + 1, ai = log pi for 1 6 i 6 r, at = 0,
and ρ = log (x1/2l−τ l22), we conclude that n has a positive divisor m such that
ρ− δ < logm 6 ρ, i.e.,

x1/2l−τ l2/40κ 6
x1/2l−τ l22

2κr
6 m 6 x1/2l−τ l22.

Then d = n/m satisfies

x1/2lτ l−2
2 /2 6 d 6 40κx1/2lτ l−1

2 .

For d with ord2(ϕ(d)) < ξ log log d, from Lemma 7 we know the number of
choices for such d is

#{d 6 40κx1/2lτ l−1
2 : ord2(ϕ(d)) 6 ξ log log d} � x1/2lτ l−1

2

(log (x1/2lτ l−1
2 ))eξ

� x1/2lτ−eξ+o(1).

Since κmd ≡ a(mod ϕ(m)ϕ(d)), then κm ≡ ad′/µd(mod ϕ(d)/µd) where µd =
gcd(d, ϕ(d)) | a and d′ is the inverse of d/µd modulo ϕ(d)/µd. Hence m has only
finite choices modulo ϕ(d)/µd while x is sufficiently large, because m� x1/2l−τ l22
and ϕ(d)/µd � d/ log log d � x1/2lτ l−3

2 . It follows that d determines n up to
finitely many choices when x is sufficiently large and the number of choices for n is

� x1/2lτ−eξ+o(1).
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Now we consider d with ord2(ϕ(d)) > ξ log log d. Set

σ = bξ log log (x1/2lτ l−2
2 /2)c,

then 2σ−1 | ϕ(d). The congruence κmd ≡ a(mod ϕ(m)ϕ(d)) leads to

κd ≡ am′/µm(mod 2σ−1ϕ(m)/µm),

where µm = gcd(m, 2σ−1ϕ(m)) | a and m′ is the inverse of m/µm modulo
2σ−1ϕ(m)/µm. Since

d 6 40κx1/2lτ l−1
2 ,

whereas
2σ−1ϕ(m)

µm
� m2σ

log logm
� x1/2l−τ+ξ log 2l2

l2
� x1/2lτ .

It follows that d (and then n) has finitely many choices modulo 2σ−1ϕ(m)/µm
provided that x is sufficiently large. By applying Proposition 1, and in view of
(6), the number of choices for such m (and hence for such n) is

� (x1/2l−τ l22)(log (x1/2l−τ l22))−1/ϕ(q)(log log (x1/2l−τ l22))λ � x1/2l−τ−1/ϕ(q)+o(1).

From (7), eξ − τ = τ + 1/ϕ(q), it follows that

#L′′a,κ(x) ∩ {κn 6≡ a (mod qλ)} � x1/2/(log x)τ+1/ϕ(q)+o(1)

Now Theorem 1 can be obtained by applying Lemma 1. �

Applying Theorem 1 with q such that ϕ(q) = 2 or ϕ(q) = 4, we obtain Corol-
lary 1 and Corollary 2.

Proof of Corollary 1. For arbitrary integers λ0, λ1, if n 6≡ a (mod 2λ03λ1), then
either n 6≡ a (mod 2λ0) or n 6≡ a (mod 3λ1). The corollary follows by applying
Theorem 1 and using the fact ϕ(3) = 2 to estimate ξ = 0.171832, τ = 0.059552
and Θ = τ + 1/2 = 0.559552. �

Proof of Corollary 2. For arbitrary integer λ0, λ1, λ2 > 0, if n 6≡ a
(mod 2λ03λ15λ2), then n 6≡ a (mod 2λ0) or n 6≡ a (mod 3λ1) or n 6≡ a (mod 5λ2).
The corollary follows by applying Theorem 1 and using the fact ϕ(3) = 2 and
ϕ(5) = 4 to estimate ξ = 0.31067, τ = 0.10767 and Θ = τ + 1/4 = 0.35767. �

Proof of Corollary 3. Suppose κ/(κ, a) > 1, and q is the smallest prime such
that q | κ/(κ, a). Since n is squarefree, we have κn 6≡ a (mod qordq(κ)), it follows
from Theorem 1 that #L′′a,κ(x)� x1/2/(log x)τ+1/(q−1)+o(1). Since q | κ/(κ, a/d)
for each d | a, the corollary follows from Lemma 1. �

For example, since there is no n > 1 satisfying that 3n = p is a prime, we have

#{n 6 x : ϕ(n) | (3n− 1)} � x1/2/(log x)0.559552+o(1).

Proof of Corollary 4. Suppose a 6= 0, 1, a/(a, κ) is not squarefree and q is the
smallest prime such that q2 | a/(a, κ). Since n is squarefree, we have κn 6≡
a (mod qordq(a)). The corollary follows from Theorem 1. �
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