Functiones et Approximatio 50.2 (2014), 297–306 doi: 10.7169/facm/2014.50.2.7

BANACH ENVELOPES OF p-BANACH LATTICES, 0 , AND CESÀRO SPACES

Anna Kamińska, Pei-Kee Lin

Dedicated to Lech Drewnowski on the occasion of his 70th birthday

Abstract: In this note we characterize Banach envelopes of p-Banach lattices, $0 , such that their positive cones are 1-concave. In particular we show that the Banach envelope of Cesàro sequence space <math>\widehat{ces_p(v)}$, $0 , coincides isometrically with the weighted <math>\ell_1(w)$ space where $w(n) = \|e_n\|_{ces_p(v)} = \left(\sum_{i=n}^\infty i^{-p}v(i)\right)^{1/p}$ and e_n are the unit vectors. For Cesàro function space $Ces_p(v)$, $0 , its Banach envelope <math>\widehat{Ces_p(v)}$ is isometrically equal to $L_1(w)$ with $w(t) = \left(\int_t^\infty s^{-p}v(s)\,ds\right)^{1/p}$, $t \in (0,\infty)$.

Keywords: Banach envelopes, Mackey topology, p-Banach lattices for 0 , Cesáro function and sequence spaces.

Mackey topologies and in particular (Fréchet) Banach envelopes have been studied by several authors in the context of different spaces. Kalton in [3, 4] found Banach envelopes of separable Orlicz function and sequence spaces, Drewnowski [1] and Nawrocki [2] characterized Mackey topology and Banach envelope of separable Musielak-Orlicz function space and Orlicz sequence space in general case. Nawrocki, Ortyński, Popa [10, 11, 13] advanced these studies for Lorentz function and sequence spaces. Recently Pietsch [12] have investigated the Mackey topology of Marcinkiewicz sequence space, and in [8] this topology has been examined in certain class of Orlicz-Lorentz spaces. In [7], Mastyło and the first author found an isomorphic description of Banach envelope of a rearrangement invariant space whose cone of decreasing functions is 1-concave. The goal of this note is to study Banach envelopes of p-Banach function and sequence lattices, 0 . Under the assumption that the lattice <math>E is 1-concave on the cone of non-negative elements and in function case under additional assumption that certain "uniform averaging operation" is well defined we show that the Banach envelope \hat{E} of E coincides with

²⁰¹⁰ Mathematics Subject Classification: primary: 46A16; secondary: 46A40, 46A45, 46B04, 46B42, 46B45

the space $\ell_1(w)$ or $L_1(w)$ respectively, for some positive weight w. We apply these results to Cesàro sequence and function spaces $\cos_p(v)$ and $\operatorname{Ces}_p(v)$ respectively, for 0 , getting isometric representations of their Banach envelopes.

Let 0 . A*p-norm* $on a vector space X is a map <math>x \mapsto ||x||$ such that:

- 1. ||x|| > 0 if $x \neq 0$.
- 2. ||tx|| = |t|||x|| for all $x \in X$ and all scalars t.
- 3. $||x+y||^p \le ||x||^p + ||y||^p$.

Let $B = \{x \in X : \|x\| \le 1\}$. Then the family $\{rB : r > 0\}$ is a basis of neighborhoods of 0 for a Hausdorff locally bounded vector space X. If X is complete, then we say that X is a p-Banach space. The Mackey topology τ of a locally bounded space X with separating dual is the strongest locally convex topology on X which is weaker than the original one. The Minkowski functional of the set $\overline{co}(B)$ is called the Mackey norm on X. The completion of the space (X,τ) is called the Mackey completion of X and is denoted by \widehat{X} . \widehat{X} equipped with the Mackey norm $\|\cdot\|_{\widehat{X}}$ is also called a Banach envelope of X. There are well known several equivalent formulas for the Mackey norm [5, 14, 7, 10]. In this paper we shall use that for any $x \in \widehat{X}$,

$$||x||_{\widehat{X}} = \inf \left\{ \sum_{i=1}^{n} ||x_i||_X : \sum_{i=1}^{n} x_i = x \right\}.$$

Let Ω be either $\mathbb N$ or $(0,\infty)$. Let L^0 be the set of all (equivalence classes of) Lebesgue-measurable real valued functions f on Ω , and ℓ^0 be the set of all real sequences. We say that $E \subset L^0$ or $E \subset \ell^0$ is a p-Banach lattice, 0 , whenever it is complete if equipped with a <math>p-norm $\|\cdot\|_E$ such that if for any $f \in L^0$ or $f \in \ell^0$ and $g \in E$ with $|f| \leqslant |g|$, we have that $f \in E$ and $\|f\|_E \leqslant \|g\|_E$. Moreover we assume that there exists an element f > 0 which belongs to E. If $E \subset \mathbb N$ then we say that E is a p-Banach sequence space and if $E \subset L^0$ then it is called a p-Banach function space. The lattice $(E, \|\cdot\|_E)$ is said to be order continuous whenever for any $f_n \in E$ such that $f_n \downarrow 0$ a.e. we have $\|f_n\|_E \to 0$. Recall that the symbol $\ell_1(w)$ denotes the Banach space of all sequences x = (x(n)) such that $\|x\|_{\ell_1(w)} = \sum_{n=1}^{\infty} |x(n)| w(n) < \infty$ where w = (w(n)) > 0. Similarly for a positive $w \in L^0$, $L_1(w)$ consists of all $f \in L^0$ with $\|f\|_{L_1(w)} = \int |f| w < \infty$.

For any p-Banach lattice $(E, \|\cdot\|_E)$ denote its positive cone by $E^+ = \{f \in E : f \ge 0\}$. If Q is a cone in E then E is said to be 1-concave on Q whenever there is C > 0 such that for any $f_1, \ldots, f_n \in Q$, we have

$$||f_1 + \dots + f_n||_E \ge C(||f_1||_E + \dots + ||f_n||_E).$$

In the paper [7] the Banach envelope was characterized in the quasi-Banach rearrangement invariant space whose cone of decreasing functions is 1-concave. Here, we will find Banach envelopes of sequence and function p-Banach spaces that are 1-concave on the cone of non-negative elements.

First we start with some auxiliary lemmas.

Lemma 1. If E is a p-Banach lattice which is 1-concave on E^+ then E is order continuous.

Proof. Let $(f_n) \subset E$ and $f_n \downarrow 0$ a.e.. We first show that (f_n) is a Cauchy sequence in E. Suppose otherwise, so for some $\epsilon > 0$ and some subsequences (n_k) and (m_k) of \mathbb{N} we have that for all $k \in \mathbb{N}$,

$$||f_{n_k} - f_{m_k}||_E \geqslant \epsilon.$$

We can assume that $n_k < m_k < n_{k+1}$ for all $k \in \mathbb{N}$. Then all differences $f_{m_k} - f_{n_{k+1}}$ and $f_{n_k} - f_{m_k}$ are non-negative and so

$$f_{n_1} = \sum_{k=1}^{\infty} (f_{m_k} - f_{n_{k+1}}) + \sum_{k=1}^{\infty} (f_{n_k} - f_{m_k}).$$

Now by 1-concavity of E^+ ,

$$||f_{n_1}||_E \geqslant C \sum_{k=1}^{\infty} ||f_{n_k} - f_{m_k}||_E.$$

Hence $\sum_{k=1}^{\infty} ||f_{n_k} - f_{m_k}||_E < \infty$ which contradicts the inequality $||f_{n_k} - f_{m_k}||_E \ge \epsilon$ and thus (f_n) is a Cauchy sequence in E.

Now by completeness of E there exists $f \in E$ such that $||f_n - f||_E \to 0$. The embedding $E \hookrightarrow L^0$ is continuous in the topology of local convergence in measure considered in L^0 (compare the proof of Theorem 1 in [9] on page 96). It follows that there exists a subsequence (f_{n_k}) such that $f_{n_k} \to f$ a.e.. Thus f = 0 and $||f_n||_E \downarrow 0$, and the proof is complete.

Lemma 2. If the p-Banach lattice E is order continuous then its Banach envelope \widehat{E} is also order continuous.

Proof. Let $0 \leqslant f \in \widehat{E}$. By definition of the norm $\|\cdot\|_{\widehat{E}}$ we find $f_j \in E$, $j = 1, 2, \ldots, m$, such that $f = \sum_{j=1}^m f_j$, $f_j \geqslant 0$, $f_j \wedge f_k = 0$ for $j \neq k$, and $\|f\|_{\widehat{E}} \leqslant \sum_{j=1}^m \|f_j\|_E$. Let $(h_n) \subset \widehat{E}$, $0 \leqslant h_n \leqslant f$ and $h_n \downarrow 0$ a.e.. Then $h_n \chi_{\text{supp } f_j} \leqslant f_j \chi_{\text{supp } f_j}$ and $h_n \chi_{\text{supp } f_j} \downarrow 0$ for each $j = 1, 2, \ldots, m$. Hence $\|h_n \chi_{\text{supp } f_j}\|_E \downarrow 0$ by order continuity of E, and so

$$||h_n||_{\widehat{E}} \leqslant \sum_{j=1}^m ||h_n \chi_{\text{supp } f_j}||_{\widehat{E}} \leqslant \sum_{j=1}^m ||h_n \chi_{\text{supp } f_j}||_E \to 0,$$

as $n \to \infty$, and the proof is finished.

The next result is a description of the Banach envelope \widehat{E} of a sequence space E.

Theorem 3. Let E be a p-Banach sequence space 1-concave on the cone E^+ . Define a sequence w = (w(n)) by

$$w(n) = ||e_n||_E.$$

Then the Banach envelope \widehat{E} of E coincides up to equivalence of norms with the the weight space $\ell_1(w)$. If the 1-concave constant is 1, then the Banach envelope \widehat{E} of E is isometrically isomorphic to $\ell_1(w)$.

Proof. Let $x = \sum_{i=1}^{n} a_i e_i$ be any element in E. It is clear that

$$||x||_{\widehat{E}} \leqslant \sum_{i=1}^{n} |a_i| ||e_i||_E = \sum_{i=1}^{n} |a_i| w(i).$$

For any $\epsilon > 0$ there is a finite sequence $(y_j)_{j=1}^m$ in E such that $x = \sum_{j=1}^m y_j$ and

$$||x||_{\widehat{E}} + \epsilon \geqslant \sum_{j=1}^{m} ||y_j||_E.$$

First observe that we may assume that $x \ge 0$, $y_j \ge 0$ and $\operatorname{supp}(y_j) \subset \{1, 2, \dots, n\}$ for $j = 1, \dots, m$. Indeed it is easy to show that for any $x, x_j \in E$ such that $x = \sum_{j=1}^m x_j$ we can find y_j such that $\operatorname{supp}(y_j) \subset \operatorname{supp} x$, $|x| = \sum_{j=1}^m y_j$ and $0 \le y_j \le |x_j|$ for each $j = 1, 2, \dots, m$. Let thus for some $b_{ij} \ge 0$,

$$y_j = \sum_{i=1}^n b_{ij} e_i.$$

Then

$$|a_i| = a_i = \sum_{j=1}^m b_{ij} = \sum_{j=1}^m |b_{ij}|,$$

and

$$||x||_{\widehat{E}} + \epsilon \geqslant \sum_{j=1}^{m} \left\| \sum_{i=1}^{n} b_{ij} e_{i} \right\|_{E} \geqslant C \sum_{j=1}^{m} \sum_{i=1}^{n} |b_{ij}| ||e_{i}||_{E}$$
$$= C \sum_{i=1}^{n} \sum_{j=1}^{m} |b_{ij}| w(i) = C \sum_{i=1}^{n} |a_{i}| w(i).$$

Since this is true for arbitrary $\epsilon > 0$, we showed that for any $x = \sum_{i=1}^{n} a_i e_i$ we have $C\|x\|_{\ell_1(w)} \leq \|x\|_{\widehat{E}} \leq \|x\|_{\ell_1(w)}$, and if the 1-concave constant C = 1, then $\|x\|_{\widehat{E}} = \|x\|_{\ell_1(w)}$.

By Lemmas 1 and 2 the space \widehat{E} is order continuous, and so the sequence (e_n) is a Schauder basis in \widehat{E} . Therefore by density of $\mathrm{span}(e_n)$ in both \widehat{E} and $\ell_1(w)$ we finish the proof.

Recall that $h \in L^0$ is called a step function whenever it assumes a finite number of values on a finite union of disjoint intervals of finite measure. It is well known that by regularity of the Lebesgue measure on \mathbb{R} , for every non-negative $f \in L^0$ there exists a monotone sequence of non-negative step functions h_n such that $h_n \uparrow f$ a.e.. Hence if E is order continuous then step functions are dense in E.

Theorem 4. Let E be a p-Banach function space over $(0, \infty)$. Assume that E is 1-concave on E^+ and $\chi_{(a,b)} \in E$ for every $0 < a < b < \infty$. Suppose also that for any

 $\epsilon > 0, \alpha > 0$ there exists $\delta > 0$ such that for any two intervals $(a, b), (c, d) \subset (\alpha, \infty)$ with $|b \lor d - a \land c| < \delta$ we have

$$\left| \frac{1}{b-a} \| \chi_{(a,b)} \|_E - \frac{1}{d-c} \| \chi_{(c,d)} \|_E \right| < \epsilon. \tag{1}$$

Define the function w by

$$w(t) = \lim_{n \to \infty} \frac{n}{2} \|\chi_{(t - \frac{1}{n}, t + \frac{1}{n})}\|_{E}.$$

Then the Banach envelope \widehat{E} of E coincides up to equivalence of norms with the space $L_1(w)$. If the 1-concave constant C=1, then the Banach envelope \widehat{E} of E is isometrically isomorphic to the space $L_1(w)$.

Proof. The space E is order continuous by Lemma 1. By the assumption (1) the function w is well defined. It is also measurable since the function $h(t) := \|\chi_{(t-a,t+a)}\|_E$ is continuous on $(0,\infty)$. Indeed taking $0 < t_n < t$ and $t_n \to t$ as $n \to \infty$, we get by order continuity of E,

$$\|\chi_{(t-a,t+a)} - \chi_{(t_n-a,t_n+a)}\|_E^p \leqslant \|\chi_{(t_n-a,t-a)}\|_E^p + \|\chi_{(t_n+a,t+a)}\|_E^p \to 0,$$

as $n \to \infty$. Consequently

$$|h^p(t) - h^p(t_n)| \le ||\chi_{(t-a,t+a)} - \chi_{(t_n-a,t_n+a)}||_E^p \to 0.$$

By Lemma 2, \widehat{E} is also order continuous. Let $f \in \widehat{E}$ and assume without loss of generality that $f \geqslant 0$. By order continuity of the norm $\|\cdot\|_{\widehat{E}}$ for any $\epsilon > 0$ there exists $\alpha > 0$ such that

$$||f\chi_{(0,\alpha)}||_{\widehat{E}} < \epsilon. \tag{2}$$

Define

$$S = \{h : h \text{ step function}, \ 0 \leqslant h \leqslant f\chi_{(\alpha,\infty)}, \ \|(f-h)\chi_{(\alpha,\infty)}\|_{\widehat{E}} < \epsilon \}.$$
 (3)

Then

$$\int_{\alpha}^{\infty} fw = \sup_{h \in S} \int_{\alpha}^{\infty} hw. \tag{4}$$

Let $h \in S$. By the assumption (1) there is $\delta > 0$ such that if $m(B) < \delta$ and $B \subset (\alpha, \infty)$ is an interval, then for $t \in B$,

$$\left| w(t) - \frac{\|\chi_B\|_E}{m(B)} \right| < \frac{\epsilon}{\int h} \ . \tag{5}$$

Let now $h = \sum_{j=1}^m a_j \chi_{A_j}$, where $a_j > 0$, $A_j \subset (\alpha, \infty)$ are disjoint intervals with

 $m(A_i) < \delta$ for all j = 1, ..., m. Thus by (2), (3) and (5) we have

$$||f||_{\widehat{E}} \leqslant ||f\chi_{(\alpha,\infty)}||_{\widehat{E}} + \epsilon \leqslant 2\epsilon + ||h||_{\widehat{E}} \leqslant 2\epsilon + \sum_{j=1}^{m} a_j ||\chi_{A_j}||_{E}$$

$$= 2\epsilon + \sum_{j=1}^{m} \left(\int_{A_j} h \frac{||\chi_{A_j}||_{E}}{m(A_j)} \right) \leqslant 2\epsilon + \sum_{j=1}^{m} \left(\int_{A_j} h \left(w + \frac{\epsilon}{\int h} \right) \right)$$

$$= 2\epsilon + \sum_{j=1}^{m} \int_{A_j} hw + \sum_{j=1}^{m} \left(\int_{A_j} h \right) \frac{\epsilon}{\int h} = 3\epsilon + \int hw \leqslant 3\epsilon + \int fw.$$

It follows that

$$||f||_{\widehat{E}} \leqslant \int fw.$$

Now we will show the opposite inequality. Let $\epsilon > 0$ and $\alpha > 0$ be arbitrary. Take any step function $h \in S$. Applying (3) and definition of the norm $\|\cdot\|_{\widehat{E}}$ there exist $h_j \in E^+$, $j = 1, \ldots, m$ such that $h = \sum_{j=1}^m h_j$ and

$$||f||_{\widehat{E}} \geqslant ||f\chi_{(\alpha,\infty)}||_{\widehat{E}} \geqslant ||h||_{\widehat{E}} \geqslant \sum_{j=1}^{m} ||h_j||_E - \epsilon.$$

Further for each j there exists a sequence $(h_j^{(n)})$ of non-negative step functions such that

 $h_j^{(n)} = \sum_i b_{ij}^{(n)} \chi_{B_{ij}^{(n)}} \qquad \text{with} \ \ h_j^{(n)} \uparrow h_j \ \ a.e., \label{eq:hj}$

where $B_{ij}^{(n)} \subset (\alpha, \infty)$ are intervals of finite measure. By possible refining assume also that $m(B_{ij}^{(n)}) < \delta$ for all i, j and $n \in \mathbb{N}$. Let $\epsilon_0 = \frac{\epsilon}{\int h}$. Therefore in view of 1-concavity of E^+ and inequality (5) we get

$$||f||_{\widehat{E}} \geqslant \sum_{j=1}^{m} ||h_{j}||_{E} - \epsilon \geqslant \sum_{j=1}^{m} ||h_{j}^{(n)}||_{E} - \epsilon = \sum_{j=1}^{m} ||\sum_{i} b_{ij}^{(n)} \chi_{B_{ij}^{(n)}}||_{E} - \epsilon$$

$$\geqslant C \sum_{j=1}^{m} \sum_{i} \int_{B_{ij}^{(n)}} \left(h_{j}^{(n)} \frac{||\chi_{B_{ij}^{(n)}}||_{E}}{m(B_{ij}^{(n)})} \right) - \epsilon \geqslant C \sum_{j=1}^{m} \sum_{i} \int_{B_{ij}^{(n)}} (h_{j}^{(n)}(w - \epsilon_{0})) - \epsilon$$

$$= C \sum_{j=1}^{m} \int h_{j}^{(n)} w - C \epsilon_{0} \sum_{j=1}^{m} \int h_{j}^{(n)} - \epsilon \geqslant C \int \sum_{j=1}^{m} h_{j}^{(n)} w - C \epsilon_{0} \int \sum_{j=1}^{m} h_{j} - \epsilon$$

$$= C \int \sum_{j=1}^{m} h_{j}^{(n)} w - C \epsilon_{0} \int h - \epsilon = C \int \sum_{j=1}^{m} h_{j}^{(n)} w - (C + 1) \epsilon.$$

Now in view of $h_j^{(n)} \uparrow h_j$ we obtain that $\int \sum_{j=1}^m h_j^{(n)} w \uparrow \int hw$, and so

$$||f||_{\widehat{E}} \geqslant C \int_{\alpha}^{\infty} hw - (C+1)\epsilon.$$

Finally since the above inequality is satisfied for every $\epsilon, \alpha > 0$ and every $h \in S$ we get by (4),

$$||f||_{\widehat{E}} \geqslant C \int fw.$$

Clearly if C=1 then we obtain $||f||_{\widehat{E}}=\int fw$, which completes the proof.

Example 5 ([5]). Let $0 and let <math>E = \ell_p$ with the standard p-norm $||x||_p = \left(\sum_{n=1}^{\infty} |x(n)|^p\right)^{1/p}$. Then ℓ_p is a 1-concave Banach lattice on E^+ . Since the 1-concave constant is 1 and $||e_n||_E = 1$ for all $n \in \mathbb{N}$, so \widehat{E} is isometrically isomorphic to ℓ_1 .

Example 6. Let $0 and define the operator <math>G : \ell^0 \to \ell^0$ for x = (x(n)) by

$$Gx(n) = \frac{1}{n} \sum_{i=1}^{n} |x(i)|, \qquad n \in \mathbb{N}.$$

Let v=(v(n)) be a weight sequence with v(n)>0 for each $n\in\mathbb{N}$. Then the Cesàro weighted sequence space $\operatorname{ces}_p(v)$ is the set of all $x\in\ell^0$ with $G(x)\in\ell_p(v)$. This space is equipped with the p-norm

$$||x||_{\operatorname{ces}_p(v)} = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\sum_{i=1}^n |x(i)|\right)^p v(n)\right)^{1/p}.$$

It is easy to see that $ces_p(v)$ is non-trivial if and only if

$$\sum_{n=1}^{\infty} \frac{v(n)}{n^p} < \infty.$$

Thus for the constant weight sequence v(n) = 1, the space denoted by \cos_p is trivial for any 0 . Clearly there exist weight sequences <math>v that make the space non-trivial. We also observe that $\cos_p(v)$ is 1-concave with concavity constant equal to 1 on the cone of non-negative elements. Thus applying Theorem 3, the Banach envelope $\cos_p(v)$ is isometrically isomorphic to the space $\ell_1(w)$, where

$$w(n) = ||e_n||_{\text{CeS}_p(v)} = \left(\sum_{i=n}^{\infty} \frac{v(i)}{i^p}\right)^{1/p}.$$

In particular if $v(n) = \frac{1}{n}$ then for each $n \in \mathbb{N}$,

$$w(n) = \left(\sum_{i=n}^{\infty} \frac{1}{i^{p+1}}\right)^{1/p} < \infty,$$

the space $ces_p(v)$ is non-trivial and $ces_p(v) = \ell_1(w)$.

Example 7. Similarly as for sequence spaces for $f \in L^0$ define the operator G for s > 0 as

$$G(f)(s) = \frac{1}{s} \int_0^s |f(t)| dt.$$

Let 0 and <math>v be a weight function that is $v \in L^0$ and v > 0 a.e.. Then the Cesàro weighted function space $\operatorname{Ces}_p(v)$ is the set of all $f \in L^0$ with $G(f) \in L_p(v)$. We shall assume further that for every $\alpha > 0$,

$$\int_{\alpha}^{\infty} \frac{v(t)}{t^p} \, dt < \infty.$$

This condition is equivalent to the fact that $\operatorname{Ces}_p(v)$ contains a positive function on $(0, \infty)$ [6]. The space $\operatorname{Ces}_p(v)$ is equipped with the *p*-norm

$$||f||_{\text{Ces}_p(v)} = \left(\int G(f)^p v\right)^{1/p} = \left(\int \left(\frac{1}{t} \int_0^t |f|\right)^p v(t) dt\right)^{1/p}.$$

We will show that this space satisfies all assumptions of Theorem 4. Let $0 < a < b < \infty$. Then

$$(b-a)^p \int_b^\infty \frac{v(t)}{t^p} dt \leqslant \|\chi_{(a,b)}\|_{\operatorname{Ces}_p(v)}^p$$

$$= \int_a^b \left(\frac{t-a}{t}\right)^p v(t) dt + (b-a)^p \int_b^\infty \frac{v(t)}{t^p} dt$$

$$\leqslant (b-a)^p \int_a^\infty \frac{v(t)}{t^p} dt < \infty,$$

and so every characteristic function $\chi_{(a,b)}$ belongs to $\operatorname{Ces}_p(v)$. We also have that for any s > 0,

$$w(s) = \lim_{n \to \infty} \left(\left(\frac{n}{2} \right)^p \int_{s - \frac{1}{n}}^{s + \frac{1}{n}} \left(\frac{t - s + \frac{1}{n}}{t} \right)^p v(t) dt + \int_{s + \frac{1}{n}}^{\infty} \frac{v(t)}{t^p} dt \right)^{1/p}$$
$$= \left(\int_s^{\infty} \frac{v(t)}{t^p} dt \right)^{1/p}.$$

Now we will show condition (1). Let $\alpha > 0$ and $\alpha < a < b$, $\alpha < c < d$. Without loss of generality assume $a \wedge c = a$, $b \vee d = d$ and $\|\chi_{(a,b)}\|_{\operatorname{Ces}_p(v)} \geqslant \|\chi_{(c,d)}\|_{\operatorname{Ces}_p(v)}$. Let $\epsilon > 0$. There exists $A > \alpha$ such that $\int_A^\infty \frac{v(t)}{t^p} \, dt < \frac{\epsilon}{2}$. Denote $\phi(s) = \int_s^A \frac{v(t)}{t^p} \, dt$, $s \in [\alpha, A]$. Now it is enough to assume that $\alpha \leqslant a < d \leqslant A$. Then

$$L := \left| \frac{\|\chi_{(a,b)}\|_{\text{Ces}_{p}(v)}}{b - a} - \frac{\|\chi_{(c,d)}\|_{\text{Ces}_{p}(v)}}{d - c} \right|$$

$$\leq \left(\int_{a}^{\infty} \frac{v(t)}{t^{p}} dt \right)^{1/p} - \left(\int_{d}^{\infty} \frac{v(t)}{t^{p}} dt \right)^{1/p} \leq \left(\phi(a) + \frac{\epsilon}{2} \right)^{1/p} - \phi(d)^{1/p}.$$

Since ϕ is uniformly continuous on $[\alpha, A]$, there is $\delta > 0$ such that if $|d - a| < \delta$ then $\phi(a) \leq \phi(d) + \epsilon/2$. Observe also that the function $f(y) = (y + \epsilon)^{1/p} - y^{1/p}$ is increasing for $y \in [0, \phi(\alpha)]$ since $y^{1/p}$ is convex. Hence for $d \in [\alpha, A]$, $\phi(d) \leq \phi(\alpha)$, and so

$$L \leqslant (\phi(d) + \epsilon)^{1/p} - \phi(d)^{1/p} \leqslant (\phi(\alpha) + \epsilon)^{1/p} - \phi(\alpha)^{1/p},$$

where the right side above approaches 0 if $\epsilon \to 0$. Therefore condition (1) is satisfied.

Consequently, $\widehat{\operatorname{Ces}_p(v)}$ is isometrically isomorphic to the space $L_1(w)$ for $w(s) = \left(\int_s^\infty \frac{v(t)}{t^p}\right)^{1/p}$, s > 0.

References

- [1] L. Drewnowski, Compact operators on Musielak-Orlicz spaces, Commentationes Mathematicae 27 (1988), 225–232.
- [2] L. Drewnowski, M. Nawrocki, On the Mackey topology of Orlicz sequence spaces, Arch. Math. **39** (1982), 59–68.
- [3] N.J. Kalton, Compact and strictly singular operators on Orlicz spaces, Israel J. Math. 26 (1977), no. 2, 126–136.
- [4] N.J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Camb. Phil. Soc. 81 (1977), no. 2, 253–277.
- [5] N.J. Kalton, N.T. Peck and J.W. Roberts, An F-space Sampler, London Math. Society, Lecture Notes series 89, Cambridge University Press 1984.
- [6] A. Kamińska and D.M. Kubiak, On the dual of Cesàro function space, Nonlinear Analysis **75** (2012), 2760–2773.
- [7] A. Kamińska and M. Mastyło, Abstract duality Sawyer's formula and its applications, Monatsh. Math 151 (2007), 223–245.
- [8] A. Kamińska and Y. Raynaud, New formulas for decreasing rearrangements and a class of Orlicz-Lorentz spaces, Rev. Mat. Complut. (2013), in press.
- [9] V. Kantorovich and G.P. Akilov, *Functional Analysis*, Pergamon Press and Nauka, Second Edition, 1982.
- [10] M. Nawrocki, Fréchet envelopes of locally concave F-spaces, Arch. Math. 51 (1988), 363–370.
- [11] M. Nawrocki and A. Ortyński, The Mackey topology and complemented subspaces of Lorentz sequence spaces d(w, p) for 0 , Trans. Amer. Math. Soc.**287**(1985), 713–722.
- [12] A. Pietsch, About the Banach envelope of $l_{1,\infty}$, Rev. Mat. Complut. **22** (2009), no. 1, 209–226.
- [13] N. Popa, Basic sequences and subspaces in Lorentz sequence spaces without local convexity, Trans. Amer. Math. Soc. 263 (1981), 431–455.
- [14] J.H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187–202.

306 – Anna Kamińska, Pei-Kee Lin

Address: Anna Kamińska and Pei-Kee Lin: Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA.

E-mail: kaminska@memphis.edu, pklin@memphis.edu **Received:** 2 September 2013; **revised:** 30 October 2013