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Abstract: In this note we characterize Banach envelopes of p-Banach lattices, 0 < p < 1,
such that their positive cones are 1-concave. In particular we show that the Banach envelope
of Cesàro sequence space ̂cesp(v), 0 < p < 1, coincides isometrically with the weighted `1(w)

space where w(n) = ‖en‖cesp(v) =
(∑∞

i=n i
−pv(i)

)1/p and en are the unit vectors. For Cesàro

function space Cesp(v), 0 < p < 1, its Banach envelope ̂Cesp(v) is isometrically equal to L1(w)

with w(t) =
(∫∞
t s−pv(s) ds

)1/p, t ∈ (0,∞).

Keywords: Banach envelopes, Mackey topology, p-Banach lattices for 0 < p < 1, Cesáro
function and sequence spaces.

Mackey topologies and in particular (Fréchet) Banach envelopes have been stud-
ied by several authors in the context of different spaces. Kalton in [3, 4] found
Banach envelopes of separable Orlicz function and sequence spaces, Drewnowski
[1] and Nawrocki [2] characterized Mackey topology and Banach envelope of sep-
arable Musielak-Orlicz function space and Orlicz sequence space in general case.
Nawrocki, Ortyński, Popa [10, 11, 13] advanced these studies for Lorentz function
and sequence spaces. Recently Pietsch [12] have investigated the Mackey topology
of Marcinkiewicz sequence space, and in [8] this topology has been examined in
certain class of Orlicz-Lorentz spaces. In [7], Mastyło and the first author found
an isomorphic description of Banach envelope of a rearrangement invariant space
whose cone of decreasing functions is 1-concave. The goal of this note is to study
Banach envelopes of p-Banach function and sequence lattices, 0 < p < 1. Under
the assumption that the lattice E is 1-concave on the cone of non-negative elements
and in function case under additional assumption that certain “uniform averaging
operation” is well defined we show that the Banach envelope Ê of E coincides with
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the space `1(w) or L1(w) respectively, for some positive weight w. We apply these
results to Cesàro sequence and function spaces cesp(v) and Cesp(v) respectively,
for 0 < p < 1, getting isometric representations of their Banach envelopes.

Let 0 < p 6 1. A p-norm on a vector space X is a map x 7→ ‖x‖ such that:
1. ‖x‖ > 0 if x 6= 0.
2. ‖tx‖ = |t|‖x‖ for all x ∈ X and all scalars t.
3. ‖x+ y‖p 6 ‖x‖p + ‖y‖p.

Let B = {x ∈ X : ‖x‖ 6 1}. Then the family {rB : r > 0} is a basis of neighbor-
hoods of 0 for a Hausdorff locally bounded vector space X. If X is complete, then
we say that X is a p-Banach space. The Mackey topology τ of a locally bounded
space X with separating dual is the strongest locally convex topology on X which
is weaker than the original one. The Minkowski functional of the set co(B) is called
the Mackey norm on X. The completion of the space (X, τ) is called the Mackey
completion of X and is denoted by X̂. X̂ equipped with the Mackey norm ‖ · ‖X̂
is also called a Banach envelope of X. There are well known several equivalent
formulas for the Mackey norm [5, 14, 7, 10]. In this paper we shall use that for
any x ∈ X̂,

‖x‖X̂ = inf

{
n∑
i=1

‖xi‖X :

n∑
i=1

xi = x

}
.

Let Ω be either N or (0,∞). Let L0 be the set of all (equivalence classes of)
Lebesgue-measurable real valued functions f on Ω, and `0 be the set of all real
sequences. We say that E ⊂ L0 or E ⊂ `0 is a p-Banach lattice, 0 < p 6 1,
whenever it is complete if equipped with a p-norm ‖ · ‖E such that if for any
f ∈ L0 or f ∈ `0 and g ∈ E with |f | 6 |g|, we have that f ∈ E and ‖f‖E 6 ‖g‖E .
Moreover we assume that there exists an element f > 0 which belongs to E. If
E ⊂ N then we say that E is a p-Banach sequence space and if E ⊂ L0 then
it is called a p-Banach function space. The lattice (E, ‖ · ‖E) is said to be order
continuous whenever for any fn ∈ E such that fn ↓ 0 a.e. we have ‖fn‖E → 0.
Recall that the symbol `1(w) denotes the Banach space of all sequences x = (x(n))
such that ‖x‖`1(w) =

∑∞
n=1 |x(n)|w(n) < ∞ where w = (w(n)) > 0. Similarly for

a positive w ∈ L0, L1(w) consists of all f ∈ L0 with ‖f‖L1(w) =
∫
|f |w <∞.

For any p-Banach lattice (E, ‖ · ‖E) denote its positive cone by E+ = {f ∈ E :
f > 0}. If Q is a cone in E then E is said to be 1-concave on Q whenever there is
C > 0 such that for any f1, . . . , fn ∈ Q, we have

‖f1 + · · ·+ fn‖E > C(‖f1‖E + · · ·+ ‖fn‖E).

In the paper [7] the Banach envelope was characterized in the quasi-Banach
rearrangement invariant space whose cone of decreasing functions is 1-concave.
Here, we will find Banach envelopes of sequence and function p-Banach spaces
that are 1-concave on the cone of non-negative elements.

First we start with some auxiliary lemmas.

Lemma 1. If E is a p-Banach lattice which is 1-concave on E+ then E is order
continuous.
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Proof. Let (fn) ⊂ E and fn ↓ 0 a.e.. We first show that (fn) is a Cauchy sequence
in E. Suppose otherwise, so for some ε > 0 and some subsequences (nk) and (mk)
of N we have that for all k ∈ N,

‖fnk − fmk‖E > ε.

We can assume that nk < mk < nk+1 for all k ∈ N. Then all differences fmk−fnk+1

and fnk − fmk are non-negative and so

fn1
=

∞∑
k=1

(fmk − fnk+1
) +

∞∑
k=1

(fnk − fmk).

Now by 1-concavity of E+,

‖fn1‖E > C
∞∑
k=1

‖fnk − fmk‖E .

Hence
∑∞
k=1 ‖fnk−fmk‖E <∞ which contradicts the inequality ‖fnk−fmk‖E > ε

and thus (fn) is a Cauchy sequence in E.
Now by completeness of E there exists f ∈ E such that ‖fn − f‖E → 0. The

embedding E ↪→ L0 is continuous in the topology of local convergence in measure
considered in L0 (compare the proof of Theorem 1 in [9] on page 96). It follows
that there exists a subsequence (fnk) such that fnk → f a.e.. Thus f = 0 and
‖fn‖E ↓ 0, and the proof is complete. �

Lemma 2. If the p-Banach lattice E is order continuous then its Banach envelope
Ê is also order continuous.

Proof. Let 0 6 f ∈ Ê. By definition of the norm ‖ · ‖Ê we find fj ∈ E, j =
1, 2, . . . ,m, such that f =

∑m
j=1 fj , fj > 0, fj ∧ fk = 0 for j 6= k, and ‖f‖Ê 6∑m

j=1 ‖fj‖E . Let (hn) ⊂ Ê, 0 6 hn 6 f and hn ↓ 0 a.e.. Then hnχsupp fj 6
fjχsupp fj and hnχsupp fj ↓ 0 for each j = 1, 2, . . . ,m. Hence ‖hnχsupp fj‖E ↓ 0 by
order continuity of E, and so

‖hn‖Ê 6
m∑
j=1

‖hnχsupp fj‖Ê 6
m∑
j=1

‖hnχsupp fj‖E → 0,

as n→∞, and the proof is finished. �

The next result is a description of the Banach envelope Ê of a sequence space E.

Theorem 3. Let E be a p-Banach sequence space 1-concave on the cone E+.
Define a sequence w = (w(n)) by

w(n) = ‖en‖E .

Then the Banach envelope Ê of E coincides up to equivalence of norms with the
the weight space `1(w). If the 1-concave constant is 1, then the Banach envelope
Ê of E is isometrically isomorphic to `1(w).
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Proof. Let x =
∑n
i=1 aiei be any element in E. It is clear that

‖x‖Ê 6
n∑
i=1

|ai|‖ei‖E =

n∑
i=1

|ai|w(i).

For any ε > 0 there is a finite sequence (yj)
m
j=1 in E such that x =

∑m
j=1 yj and

‖x‖Ê + ε >
m∑
j=1

‖yj‖E .

First observe that we may assume that x > 0, yj > 0 and supp(yj) ⊂ {1, 2, . . . , n}
for j = 1, . . . ,m. Indeed it is easy to show that for any x, xj ∈ E such that
x =

∑m
j=1 xj we can find yj such that supp(yj) ⊂ suppx, |x| =

∑m
j=1 yj and

0 6 yj 6 |xj | for each j = 1, 2, . . . ,m. Let thus for some bij > 0,

yj =

n∑
i=1

bijei.

Then

|ai| = ai =

m∑
j=1

bij =

m∑
j=1

|bij |,

and

‖x‖Ê + ε >
m∑
j=1

∥∥∥ n∑
i=1

bijei

∥∥∥
E
> C

m∑
j=1

n∑
i=1

|bij |‖ei‖E

=C

n∑
i=1

m∑
j=1

|bij |w(i) = C

n∑
i=1

|ai|w(i).

Since this is true for arbitrary ε > 0, we showed that for any x =
∑n
i=1 aiei we

have C‖x‖`1(w) 6 ‖x‖Ê 6 ‖x‖`1(w), and if the 1-concave constant C = 1, then
‖x‖Ê = ‖x‖`1(w).

By Lemmas 1 and 2 the space Ê is order continuous, and so the sequence (en)

is a Schauder basis in Ê. Therefore by density of span(en) in both Ê and `1(w)
we finish the proof. �

Recall that h ∈ L0 is called a step function whenever it assumes a finite number
of values on a finite union of disjoint intervals of finite measure. It is well known
that by regularity of the Lebesgue measure on R, for every non-negative f ∈ L0

there exists a monotone sequence of non-negative step functions hn such that
hn ↑ f a.e.. Hence if E is order continuous then step functions are dense in E.

Theorem 4. Let E be a p-Banach function space over (0,∞). Assume that E is 1-
concave on E+ and χ(a,b) ∈ E for every 0 < a < b <∞. Suppose also that for any
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ε > 0, α > 0 there exists δ > 0 such that for any two intervals (a, b), (c, d) ⊂ (α,∞)
with |b ∨ d− a ∧ c| < δ we have∣∣∣ 1

b− a
‖χ(a,b)‖E −

1

d− c
‖χ(c,d)‖E

∣∣∣ < ε. (1)

Define the function w by

w(t) = lim
n→∞

n

2
‖χ(t− 1

n ,t+
1
n )‖E .

Then the Banach envelope Ê of E coincides up to equivalence of norms with the
space L1(w). If the 1-concave constant C = 1, then the Banach envelope Ê of E
is isometrically isomorphic to the space L1(w).

Proof. The space E is order continuous by Lemma 1. By the assumption (1)
the function w is well defined. It is also measurable since the function h(t) :=
‖χ(t−a,t+a)‖E is continuous on (0,∞). Indeed taking 0 < tn < t and tn → t as
n→∞, we get by order continuity of E,

‖χ(t−a,t+a) − χ(tn−a,tn+a)‖pE 6 ‖χ(tn−a,t−a)‖pE + ‖χ(tn+a,t+a)‖pE → 0,

as n→∞. Consequently

|hp(t)− hp(tn)| 6 ‖χ(t−a,t+a) − χ(tn−a,tn+a)‖pE → 0.

By Lemma 2, Ê is also order continuous. Let f ∈ Ê and assume without loss of
generality that f > 0. By order continuity of the norm ‖ · ‖Ê for any ε > 0 there
exists α > 0 such that

‖fχ(0,α)‖Ê < ε. (2)

Define

S = {h : h step function, 0 6 h 6 fχ(α,∞), ‖(f − h)χ(α,∞)‖Ê < ε}. (3)

Then ∫ ∞
α

fw = sup
h∈S

∫ ∞
α

hw. (4)

Let h ∈ S. By the assumption (1) there is δ > 0 such that if m(B) < δ and
B ⊂ (α,∞) is an interval, then for t ∈ B,∣∣∣∣w(t)− ‖χB‖E

m(B)

∣∣∣∣ < ε∫
h
. (5)

Let now h =
∑m
j=1 ajχAj , where aj > 0, Aj ⊂ (α,∞) are disjoint intervals with
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m(Aj) < δ for all j = 1, . . . ,m. Thus by (2), (3) and (5) we have

‖f‖Ê 6 ‖fχ(α,∞)‖Ê + ε 6 2ε+ ‖h‖Ê 6 2ε+

m∑
j=1

aj‖χAj‖E

= 2ε+

m∑
j=1

(∫
Aj

h
‖χAj‖E
m(Aj)

)
6 2ε+

m∑
j=1

(∫
Aj

h

(
w +

ε∫
h

))

= 2ε+

m∑
j=1

∫
Aj

hw +

m∑
j=1

(∫
Aj

h

)
ε∫
h

= 3ε+

∫
hw 6 3ε+

∫
fw.

It follows that
‖f‖Ê 6

∫
fw.

Now we will show the opposite inequality. Let ε > 0 and α > 0 be arbitrary. Take
any step function h ∈ S. Applying (3) and definition of the norm ‖ · ‖Ê there exist
hj ∈ E+, j = 1, . . . ,m such that h =

∑m
j=1 hj and

‖f‖Ê > ‖fχ(α,∞)‖Ê > ‖h‖Ê >
m∑
j=1

‖hj‖E − ε.

Further for each j there exists a sequence (h
(n)
j ) of non-negative step functions

such that
h

(n)
j =

∑
i

b
(n)
ij χB(n)

ij
with h

(n)
j ↑ hj a.e.,

where B(n)
ij ⊂ (α,∞) are intervals of finite measure. By possible refining assume

also that m(B
(n)
ij ) < δ for all i, j and n ∈ N. Let ε0 = ε∫

h
. Therefore in view of

1-concavity of E+ and inequality (5) we get

‖f‖Ê >
m∑
j=1

‖hj‖E − ε >
m∑
j=1

‖h(n)
j ‖E − ε =

m∑
j=1

∥∥∥∥∥∑
i

b
(n)
ij χB(n)

ij

∥∥∥∥∥
E

− ε

> C
m∑
j=1

∑
i

∫
B

(n)
ij

(
h

(n)
j

‖χ
B

(n)
ij
‖E

m(B
(n)
ij )

)
− ε > C

m∑
j=1

∑
i

∫
B

(n)
ij

(h
(n)
j (w − ε0))− ε

= C

m∑
j=1

∫
h

(n)
j w − Cε0

m∑
j=1

∫
h

(n)
j − ε > C

∫ m∑
j=1

h
(n)
j w − Cε0

∫ m∑
j=1

hj − ε

= C

∫ m∑
j=1

h
(n)
j w − Cε0

∫
h− ε = C

∫ m∑
j=1

h
(n)
j w − (C + 1)ε.

Now in view of h(n)
j ↑ hj we obtain that

∫ ∑m
j=1 h

(n)
j w ↑

∫
hw, and so

‖f‖Ê > C
∫ ∞
α

hw − (C + 1)ε.
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Finally since the above inequality is satisfied for every ε, α > 0 and every h ∈ S
we get by (4),

‖f‖Ê > C
∫
fw.

Clearly if C = 1 then we obtain ‖f‖Ê =
∫
fw, which completes the proof. �

Example 5 ([5]). Let 0 < p < 1 and let E = `p with the standard p-norm
‖x‖p = (

∑∞
n=1 |x(n)|p)1/p. Then `p is a 1-concave Banach lattice on E+. Since

the 1-concave constant is 1 and ‖en‖E = 1 for all n ∈ N, so Ê is isometrically
isomorphic to `1.

Example 6. Let 0 < p < 1 and define the operator G : `0 → `0 for x = (x(n)) by

Gx(n) =
1

n

n∑
i=1

|x(i)|, n ∈ N.

Let v = (v(n)) be a weight sequence with v(n) > 0 for each n ∈ N. Then the
Cesàro weighted sequence space cesp(v) is the set of all x ∈ `0 with G(x) ∈ `p(v).
This space is equipped with the p-norm

‖x‖cesp(v) =

( ∞∑
n=1

(
1

n

n∑
i=1

|x(i)|

)p
v(n)

)1/p

.

It is easy to see that cesp(v) is non-trivial if and only if

∞∑
n=1

v(n)

np
<∞.

Thus for the constant weight sequence v(n) = 1, the space denoted by cesp is trivial
for any 0 < p < 1. Clearly there exist weight sequences v that make the space
non-trivial. We also observe that cesp(v) is 1-concave with concavity constant
equal to 1 on the cone of non-negative elements. Thus applying Theorem 3, the
Banach envelope ĉesp(v) is isometrically isomorphic to the space `1(w), where

w(n) = ‖en‖cesp(v) =

( ∞∑
i=n

v(i)

ip

)1/p

.

In particular if v(n) = 1
n then for each n ∈ N,

w(n) =

( ∞∑
i=n

1

ip+1

)1/p

<∞,

the space cesp(v) is non-trivial and ĉesp(v) = `1(w).
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Example 7. Similarly as for sequence spaces for f ∈ L0 define the operator G for
s > 0 as

G(f)(s) =
1

s

∫ s

0

|f(t)|dt.

Let 0 < p < 1 and v be a weight function that is v ∈ L0 and v > 0 a.e.. Then the
Cesàro weighted function space Cesp(v) is the set of all f ∈ L0 with G(f) ∈ Lp(v).
We shall assume further that for every α > 0,∫ ∞

α

v(t)

tp
dt <∞.

This condition is equivalent to the fact that Cesp(v) contains a positive function
on (0,∞) [6]. The space Cesp(v) is equipped with the p-norm

‖f‖Cesp(v) =

(∫
G(f)pv

)1/p

=

(∫ (
1

t

∫ t

0

|f |
)p

v(t) dt

)1/p

.

We will show that this space satisfies all assumptions of Theorem 4.
Let 0 < a < b <∞. Then

(b− a)p
∫ ∞
b

v(t)

tp
dt 6 ‖χ(a,b)‖pCesp(v)

=

∫ b

a

(
t− a
t

)p
v(t) dt+ (b− a)p

∫ ∞
b

v(t)

tp
dt

6 (b− a)p
∫ ∞
a

v(t)

tp
dt <∞,

and so every characteristic function χ(a,b) belongs to Cesp(v). We also have that
for any s > 0,

w(s) = lim
n→∞

((n
2

)p ∫ s+ 1
n

s− 1
n

(
t− s+ 1

n

t

)p
v(t) dt+

∫ ∞
s+ 1

n

v(t)

tp
dt

)1/p

=

(∫ ∞
s

v(t)

tp
dt

)1/p

.

Now we will show condition (1). Let α > 0 and α < a < b, α < c < d. Without
loss of generality assume a∧c = a, b∨d = d and ‖χ(a,b)‖Cesp(v) > ‖χ(c,d)‖Cesp(v).

Let ε > 0. There exists A > α such that
∫∞
A

v(t)
tp dt < ε

2 . Denote φ(s) =
∫ A
s

v(t)
tp dt,

s ∈ [α,A]. Now it is enough to assume that α 6 a < d 6 A. Then

L :=

∣∣∣∣∣‖χ(a,b)‖Cesp(v)

b− a
−
‖χ(c,d)‖Cesp(v)

d− c

∣∣∣∣∣
6

(∫ ∞
a

v(t)

tp
dt

)1/p

−
(∫ ∞

d

v(t)

tp
dt

)1/p

6
(
φ(a) +

ε

2

)1/p

− φ(d)1/p.
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Since φ is uniformly continuous on [α,A], there is δ > 0 such that if |d − a| < δ
then φ(a) 6 φ(d) + ε/2. Observe also that the function f(y) = (y+ ε)1/p − y1/p is
increasing for y ∈ [0, φ(α)] since y1/p is convex. Hence for d ∈ [α,A], φ(d) 6 φ(α),
and so

L 6 (φ(d) + ε)1/p − φ(d)1/p 6 (φ(α) + ε)1/p − φ(α)1/p,

where the right side above approaches 0 if ε → 0. Therefore condition (1) is
satisfied.

Consequently, Ĉesp(v) is isometrically isomorphic to the space L1(w) for w(s) =(∫∞
s

v(t)
tp

)1/p

, s > 0.
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