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COUNTING POINTS OVER FINITE FIELDS
AND HYPERGEOMETRIC FUNCTIONS

Adriana Salerno

Abstract: It is a well known result that the number of points over a finite field on the Legendre
family of elliptic curves can be written in terms of a hypergeometric function modulo p. In this
paper, we extend this result, due to Igusa, to a family of monomial deformations of a diago-
nal hypersurface. We find explicit relationships between the number of points and generalized
hypergeometric functions as well as their finite field analogues.
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1. Introduction

For each λ ∈ P1 − {0, 1,∞} we can define an elliptic curve

Eλ : y2 = x(x− 1)(x− λ).

These form the so-called Legendre family. There is a classical result by Igusa [4]
that states that for λ ∈ Z the number of Fp-points on these curves, NFp(λ),
is a hypergeometric function of the parameter λ (modulo p). In fact, a simple
computation (cf. [2]) shows that

NFp(λ) ≡ (−1)(p+1)/2

p−1
2∑

r=0

(
−1/2
r

)2

λr mod p

≡ (−1)(p−1)/2

p−1
2∑

r=0

(1/2)r(1/2)r
r!r!

λr mod p,

where the last sum is the hypergeometric function

2F1

(
1

2
,
1

2
; 1

∣∣∣∣λ)
truncated at p−1

2 .
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We believe we can find results like Igusa’s in general, that is, that hypergeo-
metric functions should appear in some capacity when counting Fq-rational points.
In this paper, we study the relationship between the number of Fq-rational points
and hypergeometric functions for a family of monomial deformations of diagonal
hypersurfaces. These families are of the form:

Xλ : xd1 + · · ·+ xdn − dλx
h1
1 · · ·xhn

n = 0 (1.1)

where
∑
hi = d, gcd(d, h1, . . . , hn) = 1. For λ ∈ Z, let NFq (λ) denote the number

of points on the hypersurface in Pn−1
Fq

.
We have explored the relationship between NFq (λ) and hypergeometric func-

tions in two ways. The basis for our approach in both cases is an important result
by Koblitz [8] (Theorem 3.3 in this paper).

First, we use Koblitz’s formula to relate NFq (λ) to the finite field version of
a hypergeometric function as defined by Katz [6]. In this case, we see that the
number of Fq-points cannot be written in terms of a single hypergeometric func-
tion, but as a sum of several hypergeometric functions. This is the content of
Theorem 4.1.

We will then use Koblit’s result and the Gross-Koblitz formula to find an
explicit relationship between NFp(λ) (restricting our attention to fields of prime
order) and generalized hypergeometric functions in some special cases. The first
case is a zero-dimensional variety, and the surprising result (Theorem 5.5) is that
even in this simple case there are many hypergeometric functions that appear. In
the second case, we look at a known computation, the famous Dwork family, using
our methods and see that it behaves much more like the Legendre family.

It is worth noting that there are many other ways in which one can approach
this problem. For example, in [7], Kloosterman computes the Zeta function (and
in consequence the generating function for NFq (λ)) using the geometry of these
hypersurfaces, and finds a relationship with hypergeometric functions. This geo-
metric approach was also used, to a certain extent, in [14]. Lennon, in her thesis
[9], related elliptic curves to Greene’s finite field version of hypergeometric func-
tions. This elliptic curves approach has led to the study of so-called hypergeometric
modular forms, as in Ono and Mahlburg’s work [10].

Our goal with our particular approach was to emulate the simple computation
of Igusa’s to find this relationship, and we were surprised to find how much more
difficult the calculation becomes when going outside of the Dwork family and the
Legendre family examples.

2. Background

The series ∑
k>0

(a)k(b)k
(c)k

zk

k!
,
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where we use the Pochhammer notation

(x)k = x(x+ 1) · · · (x+ k − 1) =
Γ(x+ k)

Γ(x)
,

is called the Gauss hypergeometric function.
Many variants of the definition of a hypergeometric function have arisen since

Gauss first defined it, a few of which will be used throughout this work. In this
section, we will introduce three versions of this function and present some of their
most important features and properties.

2.1. The generalized hypergeometric function

The most classical definition is the extension of Gauss’s hypergeometric function,
with notation due to Barnes, c.f. [15].

Definition 2.1. Let, A,B ∈ Z and α1, . . . , αA, β1, . . . , βB ∈ Q, with all of the
βi > 0. The generalized hypergeometric function is defined as the series (taking
z ∈ C)

AFB(α1, . . . , αA;β1, . . . , βB |z) =
∞∑
k=0

(α1)k · · · (αA)kz
k

(β1)k · · · (βB)kk!
. (2.1)

The αi will be referred to as “numerator parameters” and the βi as “denomi-
nator parameters”.

Notice that in this notation Gauss’s hypergeometric function becomes
2F1(α1, α2;β1|z).

Sometimes we will use the shortened notation

AFB(α;β|z) = AFB(α1, . . . , αA;β1, . . . , βB|z).

2.2. Hypergeometric weight systems

One can think of (2.1) in terms of ratios of factorials (rather than Pochhammer
symbols). In [13], Rodríguez-Villegas defines a hypergeometric weight system as a
formal linear combination

γ =
∑
ν>1

γν [ν], ν ∈ Z,

where the γν ∈ Z are zero for all but finitely many ν, satisfying the following
conditions:

1.
∑

ν>1 νγν = 0
2. d = d(γ) := −

∑
ν>1 γν > 0

To γ we can associate the formal power series

u(λ) :=
∑
n>0

unλ
n
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where
un =

∏
ν>1

(νn)!γν .

Lemma 2.2 (Rodríguez-Villegas). u is a hypergeometric function, that is, for
some minimal r we have

u(λ) = rFr−1

(
α1, . . . , αr;β1, . . . , βr−1

∣∣∣∣ λλ0
)

where λ−1
0 =

∏
ν>1 ν

νγν and α1, . . . , αr, β1, . . . , βr−1 are rational numbers.

Thus, we can think of a hypergeometric function as being associated to a
hypergeometric weight system and viceversa, provided that certain conditions are
satisfied.

There is a useful function associated to a hypergeometric weight system which
we will now define.

Definition 2.3. The Landau function associated to γ is defined by

L(x) = Lγ(x) := −
∑
ν>1

γν{νx}, x ∈ R

where {x} denotes the fractional part of x. This function is periodic of period 1.

The Landau function is useful for checking whether the coefficients of the series
u(z) are integers.

Proposition 2.4 (Landau). un ∈ Z for all n > 0 if and only if L(x) > 0 for all
x ∈ R.

We want to point out a crucial step of the proof because it will be used later.

Lemma 2.5. Let p be a prime and let vp(x) denote the p-adic valuation of x.

vp(un) =
∑
k>1

L
(
n

pk

)
So the Landau function encodes information about the p-adic valuation of the

coefficients of the series.
This function has many other properties as listed in [13]. Here we list a few

which will be useful in some of our computations later on.

Proposition 2.6.

1. L is right continuous with discontinuity points exactly at x ≡ αi mod 1 or
x ≡ βi mod 1 for some i = 1, . . . , r. More precisely,

L = #{j|αi 6 x} −#{j|0 < βj 6 x}.
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2. L takes only integer values.
3. Away from the discontinuity points of L we have

L(−x) = d− L(x)

and, in particular, for all x

L(x) 6 d, if un ∈ Z for all n.

2.3. A finite field analog

First, we establish notation, following [8]. Let χ1/(q−1) : F∗
q → K∗ be a fixed

generator of the character group of F∗
q , where K is an algebraically closed field of

characteristic zero (such as C or Cp).

Example 2.7.

1. If K = C fix a primitive root of F∗
q and define χ1/(q−1) by taking that root to

e2πi/(q−1).
2. If K = Cp we can take χ1/(q−1) to be the Teichmüller character. Recall that
ω : F∗

q → C∗
p is the Teichmüller character where ω(x) is defined as the unique

element of C∗
p which is a (q−1)-st root of unity and such that ω(x) ≡ x mod p.

For s ∈ 1
q−1Z/Z we let χs =

(
χ1/(q−1)

)s(q−1), and for any s set χs(0) = 0. Let
ψ : Fq → K∗ be a (fixed) additive character.

Definition 2.8. For s ∈ 1
(q−1)Z/Z we let g(s) denote the Gauss sum

g(s) =
∑
x∈Fq

χs(x)ψ(x)

Lemma 2.9. Gauss sums satisfy the following properties:

1. g(s)g(−s) = qχs(−1) if s ̸= 0, and g(0) = −1.
2. If d|q − 1,

d−1∏
j=0

g

(
s+

j

d

)
= χ−ds(d)g(ds)

d−1∏
j=1

g

(
j

d

)

For a proof of the lemma see, for example, [5].

Definition 2.10. If s1, . . . , sr ∈
1

q − 1
Z/Z and the sum of the si’s is not an

integer, we define the Jacobi sum

J(s1, . . . , sr) =
∑

x1,...,xr∈Fq

x1+···+xr=1

χs1(x1) · · ·χsr (xr), r > 1;J(s1) = 1.
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Jacobi sums can be expressed in terms of Gauss sums as follows:

J(s1, . . . , sr) =
g(s1) · · · g(sr)
g(s1 + · · ·+ sr)

.

A finite field analog of the hypergeometric function was defined by Katz [6] as
follows.

Definition 2.11. Let t ∈ F∗
q . Define the set

Vt =
{
x ∈ (F∗

q)
n, y ∈ (F∗

q)
m|x1 · · ·xn = ty1 · · · ym

}
Also, let ψ : Fq → K∗, be a (fixed) additive character where K is an al-

gebraically closed field (like C or Cp), let χ denote, as in the previous section,

a generator of the character group of F∗
q , and α1, . . . , αn, β1, . . . , βm ∈

1

q − 1
Z/Z

so that χα1 , . . . , χαn , χβ1 , . . . , χβm : F∗
q → K∗ are multiplicative characters. Then

we define the finite field version of a hypergeometric function as

H(α;β|t) :=
∑

x,y∈Vt

ψ(x1 + · · ·+ xn − (y1 + · · ·+ ym))χα1(x1) · · ·χαn(xn)

× χβ1
(y1) · · ·χβm

(ym)

It will be convenient to think of this definition in a different form which is given
by its Fourier series expansion.

Lemma 2.12. The Fourier series expansion of H(α;β|t) is

H(α;β|t) = 1

q − 1

∑
g(s+ α1) · · · g(s+ αn)g(−s− β1) · · · g(−s− βm)χs(t)

where the sum is taken over s ∈ 1
q−1Z/Z.

3. Koblitz’s formula

This section summarizes the main results in a paper by Koblitz [8], in which he
gives formulas for the number of points on monomial deformations of diagonal
hypersurfaces, in terms of Gauss and Jacobi sums. Much of the work is a gener-
alization of the proofs and ideas in a famous paper by Weil [16].

3.1. Weil’s theorem

Suppose we have an algebraic variety X defined over a finite field Fq and we want
to determine the number NFq (X) of Fq-points on it. Notice that these points are
the Fq-points of X fixed by the q-th power Frobenius map F : (. . . , xi, . . . ) 7→
(. . . , xqi , . . . ). Thus, we get

NFq (X) = #{x ∈ X|F (x) = x}.
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Suppose we have a group G acting on X. Then we can split up NFq (X) into
pieces NFq (X,χ), where χ : G→ K∗ is a character as in Section 2.3 . NFq (V, χ) is
thus defined by:

NFq (X,χ) =
1

#G

∑
ξ∈G

χ−1(ξ)#{x ∈ X|F ◦ ξ(x) = x}.

Since in all of our examples G will be abelian, the only irreducible represen-
tations will be one-dimensional characters χ. In that case, we have the following
lemma, which follows immediately from the previous definitions

Lemma 3.1.
NFq (X) =

∑
χ∈Characters(G)

NFq (X,χ).

The simplest example of a variety with a large group action is the diagonal
hypersurface of degree d in Pn−1

Fq
(here d|q − 1):

Dd,n : xd1 + · · ·+ xdn = 0

The group µn
d of n-tuples of d-th roots of unity in F∗

q acts on Dd,n by ξ =
(ξ1, . . . , ξn) taking the point (x1, . . . , xn) to (ξ1x1, . . . , ξnxn). Let ∆ be the diago-
nal elements of µn

d , i.e. elements of the form (ξ, · · · , ξ). Notice that ∆ acts trivially
on Dd,n and µn

d/∆ acts faithfully. The character group of µn
d/∆ is in one-to-one

correspondence with the n-tuples

w = (w1, . . . , wn), 0 6 wi < d, for which
∑

wi ≡ 0 mod d,

where
χw(ξ) := χ(ξw), ξw = ξw1

1 · · · ξwn
n

and χ is a fixed primitive character of µd, which we can get for example by re-
stricting χ1/(q−1) to µd. In [16], Weil proves:

Theorem 3.2 (Weil).

NFq
(Dd,n, χw) =


qn−1 − 1

q − 1
, if wi = 0, ∀i

−1

q
J
(w1

d
, . . . ,

wn

d

)
, if wi ̸= 0, ∀i

0, otherwise

3.2. Koblitz’s formula

The goal of Koblitz’s paper is to use Weil’s result and similar methods to find the
number of points on the monomial deformation (1.1). Notice that these hypersur-
faces allow an action of the group

G = {ξ ∈ µn
d |ξh = 1}/∆,

consisting of elements which preserve the monomial xh = xh1
1 · · ·xhn

n .
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The characters χw of µn
d/∆ which act trivially on G are precisely powers of

χh. Thus, Characters(G), the character group of G, corresponds to equivalence
classes of w in

W = {(w1, . . . , wn)|0 6 wi < d,
∑

wi ≡ 0 mod d},

where w′ ∼ w if w − w′ is a multiple (mod d) of h. Notice that, since
gcd(d, h1, . . . , hn) = 1, each equivalence class contains d n-tuples w′.

We are now ready to state the main theorem of Koblitz’s paper.
Assume d|q − 1 and let NFq (0) be the number of Fq-points on the diagonal

hypersurface Dd,n.

Theorem 3.3 (Koblitz).

NFq (λ) = NFq (0) +
1

q − 1

∑
s∈ d

q−1Z/Z
w∈W

g

(
w + sh

d

)
g(s)

χs(dλ),

where we denote g
(
w + sh

d

)
=
∏
i

g

(
wi + shi

d

)
.

4. Finite field results

In this section, we will see that NFq (λ)−NFq (0) is related to the finite field version
of a hypergeometric function. In [8], Koblitz shows that the number of points is an
analogue of a Barnes type integral, which is in turn analogous to the generalized
hypergeometric function. We use the same strategy but with a different endgame,
which is to relate Theorem 3.3 directly to Katz’s finite field hypergeometric func-
tion (as described in Lemma 2.12).

First, Koblitz considers for some fixed w the sum

∑
s∈ d

q−1Z/Z
w′∼w

g

(
w + sh

d

)
g(s)

χs(dλ)

It is not hard to check that if we replace d by ds and sum over s ∈ 1
(q−1)Z/Z

we obtain ∑
s∈ 1

q−1Z/Z

g
(
hs+

w

d

)
g(ds)

χds(dλ).

Using Lemma 2.9, one can rewrite the previous statement as

d−1∏
j=1

g

(
j

d

)∑
s

g
(
h1s+

w1

d

)
· · · g

(
hns+

wn

d

)
g(s)g

(
s+

1

d

)
· · · g

(
s+

d− 1

d

)χds(λ). (4.1)
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This is the expression which is analogous to a Barnes type integral and is thus
analogous to a hypergeometric function. Since we want explicit formulas, we take
this method of computation further. The result is the following theorem.

Theorem 4.1. Assume dh1h2 · · ·hn|q − 1.

NFq (λ)−NFq (0) = ξq
n−2d−1

2

×
∑

[w]∈W/∼

H

(
0,

1

d
, . . . ,

d− 1

d
; . . . , 1− wi + dj

dhi
, . . .

∣∣∣∣ n∏
i=1

hhi
i (−λ)d

)
,

where the denominator parameters run through the hi values wi+dj
dhi

, j = 0, . . . , hi−1
for each i, and no exponent appears if hj = 0, and modulo cancelation if the
numerator and denominator terms are the same. Here ξ is a q − 1 root of unity.

Proof. Koblitz’s computation, described above, gets us to equation (4.1). For
each hi, notice that we can use Lemma 2.9 again, but we need to assume dhi|q−1
for all i. Basically, this means that all of our upcoming computations will make
sense for a large enough q.

g
(
his+

wi

d

)
= g

(
hi

(
s+

wi

dhi

))

=

∏hi−1
j=0 g

(
s+

wi

dhi
+

j

hi

)
χ−(his+

wi
d )(hi)

∏hi−1
j=1 g

(
j

hi

)
Combining, we get that for a fixed w,

(4.1) =
c

q − 1

∑
s∈ 1

q−1Z/Z

∏n
i=1

∏hi−1
j=0 g

(
s+

wi + dj

dhi

)
g(s)g

(
s+

1

d

)
· · · g

(
s+

d− 1

d

)χs

(∏
i

hhi
i λ

d

)
,

where

c =

∏d−1
j=1 g

(
j

d

)
∏n

i=1

∏hi−1
j=1 g

(
j

hi

) .
Notice that over 1

q−1Z/Z, g(−s) = g(1 − s), and so property 2.9.1 of Gauss
sums can be rewritten as

g(s)g(1− s) = qχs(−1).

Using this, we can rewrite the products above as
d−1∏
j=1

g

(
j

d

)
= q

d−1
2 ξ1
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and
n∏

i=1

hi−1∏
j=1

g

(
j

hi

)
= q

∑ hi−1

2 ξ2 = q
d−n

2 ξ2,

where ξ1, ξ2 are q − 1 roots of unity. And so c becomes much simpler:

c = ξq
n−1
2 ,

where ξ is some root of unity which depends on d, n, hi.
We want to relate this last expression to Katz’s hypergeometric function. No-

tice that it is almost in the same form as Lemma 2.12, except that we need to add
over χs = χ−s, but we can change variables in the sum, so that we get

ξq
n−1
2

q − 1

∑
s∈ 1

q−1Z/Z

∏n
i=1

∏hi−1
j=0 g

(
−s+ wi + dj

dhi

)
g(−s)g

(
−s+ 1

d

)
· · · g

(
−s+ d− 1

d

)χ−s

(∏
i

hhi
i λ

d

)

=
ξq

n−1
2

q − 1

∑
s∈ 1

q−1Z/Z

∏n
i=1

∏hi−1
j=0 g

(
−
(
s− wi + dj

dhi

))
g(−s) · · · g

(
−
(
s− d− 1

d

)) χs

(∏
i

hhi
i λ

d

)
.

Now we can use property 2.9.1 of Gauss sums to change from expressions
involving g(−s) to expressions involving g(s) and viceversa by

g(−s) = qχs(−1)
g(s)

,

to get

c′

q − 1

∑
s∈ 1

q−1Z/Z

g(s)g

(
s− 1

d

)
· · · g

(
s− d− 1

d

)

×
n∏

i=1

hi−1∏
j=0

g

(
−
(
s− wi + dj

dhi

))
χ−s

(
(−1)d

∏
i

hhi
i λ

d

)

=
c′

q − 1

∑
s∈ 1

q−1Z/Z

g(s)g

(
s+ 1− 1

d

)
· · · g

(
s+ 1− d− 1

d

)

×
n∏

i=1

hi−1∏
j=0

g

(
−
(
s+ 1− wi + dj

dhi

))
χ−s

(
(−1)d

∏
i

hhi
i λ

d

)

= c′H

(
0,

1

d
, . . . ,

d− 1

d
; . . . , 1− wi + dj

dhi
, . . .

∣∣∣∣ n∏
i=1

hhi
i (−λ)d

)
,
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where the denominator parameters run through the hi values wi+dj
dhi

, j = 0, . . . ,
hi−1 for each i, and no exponent appears if hj = 0, and modulo some cancelation
if some of the numerator and denominator terms are the same. Notice that there
will be the same number of upper and lower exponents, since we required

∑
hi = d.

The constant term is now

c′ = ξq
n−1
2 ·

χ d−1
2
(−1)
qd

= ξq
n−2d−1

2 ,

where ξ still denotes a q − 1 root of unity.
To get the total number of points we would need to add over equivalence class

representatives, and so

NFq (λ)−NFq (0) = ξq
n−2d−1

2

×
∑

[w]∈W/∼

H

(
0,

1

d
, . . . ,

d− 1

d
; . . . , 1− wi + dj

dhi
, . . .

∣∣∣∣ n∏
i=1

hhi
i (−λ)d

)
.�

Remark. Notice that the above formula implies that the hypergeometric function
is independent of the choice of representative w. This is because the characters
that define H were defined modulo integer powers, and w′ ∼ w means that w′

i ≡
wi+khi mod d, so substituting by an equivalent w gives the same characters for H.

4.1. A 0-dimensional example

The most basic example of a family like (1.1) is the 0-dimensional family defined
by

Zλ : xd1 + xd2 − dλx1xd−1
2 = 0.

Notice that to put this in the situation of Koblitz’s theorem in the previous
section, we have to assume d(d − 1)|q − 1, and we have h = (1, d − 1). Also, we
can see that W = {(0, 0), (1, d − 1), . . . , (d − 1, 1)}, so in particular there is only
one equivalence class, that of (0, 0). So using the last equation, we get that

NFq (λ)−NFq (0) = ξq
3−2d

2

×H
(
1

d
, . . . ,

d− 1

d
; 0,

1

d− 1
, . . . ,

d− 2

d− 1

∣∣∣∣− (d− 1)(d−1)(−λ)d
)
.

In the case d = 3, the number of points is

NFq (λ)−NFq (0) = ξq−
3
2H

(
1

3
,
2

3
; 0,

1

2

∣∣∣∣ 22λ3) .
4.2. The Dwork family

The Dwork family is a family of the type (1.1) with n = d and hi = 1 for all i.
That is, the family

Yλ : xd1 + · · ·+ xdd − dλx1 · · ·xd = 0.
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The cases d = 3, 4 were studied extensively by Dwork while he was studying
the rationality of the Zeta function, for example in [3].

In this case, for each equivalence class we get that

∑
s∈ 1

q−1Z/Z

g
(
hs+

w

d

)
g(ds)

χds(dλ)

=

d−1∏
j=1

g

(
j

d

)∑
s

g
(
h1s+

w1

d

)
· · · g

(
hns+

wn

d

)
g(s)g

(
s+

1

d

)
· · · g

(
s+

d− 1

d

)χds(λ)

=
d−1∏
j=1

g

(
j

d

) ∑
s∈ 1

q−1Z/Z

g
(
s+

w1

d

)
· · · g

(
s+

wn

d

)
g(s)g

(
s+

1

d

)
· · · g

(
s+

d− 1

d

)χs(λ
d).

There will be cancelation when the wi coincide with 0, 1, . . . , d− 1. Again, we
replace s by −s and get that

NFq (λ)−NFq (0)

= ξq
−d−1

2

∑
[w]∈W/∼

H

(
0,

1

d
, . . . ,

d− 1

d
; 1− w1

d
, . . . , 1− wn

d

∣∣∣∣ (−λ)d) .
Let d = 3 (the family is actually a family of elliptic curves). In other words,

the family with d = 3 = n, h = (1, 1, 1).
We can see that

W = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (1, 2, 0), (2, 0, 1),
(0, 1, 2), (2, 1, 0), (0, 2, 1), (1, 0, 2)}.

And, in fact, there are three equivalence class representatives, (0, 0, 0), (1, 2, 0),
(2, 1, 0), but the latter two are of the same „type”, i.e., one is the permutation of
the other. Therefore, we obtain

NFq (λ)−NFq (0) = ξq−1H

(
1

3
,
2

3
; 1, 1

∣∣∣∣λ3)+
2ξq

(q − 1)

∑
s∈ 1

q−1Z/Z

χs(λ
3)

For the terms corresponding to the “type” (1, 2, 0), the wi’s completely cancel
out with the list 0, 1, 2, which means we have an empty parameter set. This also
means that H is the sum over all multiplicative characters of χs(λ

3), for λ ∈ F∗
q ,

which is zero unless λ3 = 1 in F∗
q , in which case we get (q − 1).

Remark. It is not difficult to check that the λ’s that make Yλ singular are exactly
the d-th roots of unity. And so for all λ such that Yλ is non-singular, the second
term in the above sum is zero, and we get that the number of points is written in
terms of a hypergeometric function.
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5. p-adic methods

The main goal of this section is to develop a p-adic version of Koblitz’s formula for
NFp(λ), where p is prime, so that we can find the relation between the number of
solutions over Fp and generalized hypergeometric functions. We will first summa-
rize the main ideas of the Gross-Koblitz formula, and then restrict our attention
to two special examples.

5.1. The Gross-Koblitz formula

The Gross-Koblitz formula was developed as a way of relating Gauss sums to the
p-adic version of the Γ function. For a more detailed account, see [11].

First, we will need to recall the following definition by Morita:

Definition 5.1. The p-adic gamma function is the continuous function

Γp : Zp → Zp

that extends
f(n) := (−1)n

∏
16j<n,p ̸|j

j (n > 2).

This function has properties that are reminiscent of those of the classical
gamma function.

Proposition 5.2. Let p be an odd prime.

1. Γp(0) = 1, Γp(1) = −1, Γp(2) = 1, Γp(n+ 1) = (−1)n+1n! (1 6 n < p).

2. Γp(x+ 1) =

{
−xΓp(x) if x ∈ Z∗

p,

−Γp(x) if x ∈ pZp

3. Γp(x)Γp(1− x) = (−1)R(x), where R(x) ∈ {1, 2, . . . , p}, R(x) ≡ x mod p.
4. (Gauss multiplication formula) Let m > 1 be an integer prime to p. Then

∏
06j<m

Γp

(
x+

j

m

)
= ϵm ·m1−R(mx) · (mp−1)s(mx) · Γp(mx),

where

ϵm =
∏

06j<m

Γp

(
j

m

)
,

R(y) ∈ {1, . . . , p}, R(y) ≡ y mod p,

s(y) =
R(y)− y

p
∈ Zp.
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Let s =
a

q − 1
∈ 1

q − 1
Z/Z, ω be the Teichmüller character and ψ be an

additive character of Fq, as before. Consider now the Gauss sum

g(s) =
∑

0̸=x∈Fq

ω(x)−s(q−1)ψ(x),

Suppose q = pf . Let π ∈ Cp be a root of πp−1 = −p. Define for 0 6 a

q − 1
=

s < 1, the sum Sp(a) =
∑

06j<f aj to be the sum of the digits in the p-adic
expansion of a, and the integers a(i) as having p-adic expansions obtained from
the cyclic permutations from the expansion of a (denoted a(0)).

Theorem 5.3 (Gross-Koblitz). Let 0 6 s =
a

q − 1
< 1. The value of the Gauss

sum g(s) is explicitely given by

g(s) = −πSp(a)
∏

06j<f

Γp

(
a(j)

q − 1

)
.

For a proof of this theorem see [12].
Over Fp, i.e. if we assume f = 1, the formula becomes much simpler, yielding

g(s) = −πaΓp

(
a

p− 1

)
= −πs(p−1)Γp(s) = −(−p)sΓp(s) (5.1)

We will use this theorem to produce precise formulas which will show the
relation between the number of points and generalized hypergeometric functions,
focusing our attention on Fp.

5.2. The 0-dimensional example

As seen in the previous section, the easiest example to deal with is the 0-dimensional
variety

Zλ : xd1 + xd2 − dλx1xd−1
2 = 0.

Recall that Koblitz’s theorem gives, in this case, that

NFp(λ)−NFp(0) =
1

p− 1

∑
s∈ 1

p−1Z/Z

g(s)g((d− 1)s)

g(ds)
χds(λ).

Assume that the generator of the multiplicative character group is ω−1 and p
is a prime such that d|p− 1. Using the Gross-Koblitz formula yields the following
formula.
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Lemma 5.4.

NFp(λ) = NFp(0)

+
−1
p− 1

p−2∑
a=0

(−p)η(a)Γp

(
a

p− 1

)
Γp

({
(d− 1)a

p− 1

})
Γp

({
da

p− 1

}) ω(dλ)−da

where η(a) =
(

a

p− 1
+

{
(d− 1)a

p− 1

}
−
{

da

p− 1

})
.

Proof. First, notice that we can rewrite NFp(λ)−NFp(0) by changing its summa-
tion indices as follows:∑

s∈ 1
p−1Z/Z

g(s)g((d− 1)s)

g(ds)
ω(dλ)−ds(p−1)

=

p−2∑
a=0

g

({
(d− 1)a

p− 1

})
g

(
a

p− 1

)
g

({
da

p− 1

}) ω(dλ)−da.

Using (5.1), we get

p−2∑
a=0

g

({
(d− 1)a

p− 1

})
g

(
a

p− 1

)
g

({
da

p− 1

}) ω(dλ)−da

=

p−2∑
a=0

(−p)({
(d−1)a
p−1 })Γp

({
(d− 1)a

p− 1

})
(−p)(

a
p−1 )Γp

(
a

p− 1

)
(−p)({

da
p−1})Γp

({
da

p− 1

}) ω(dλ)−da

=

p−2∑
a=0

(−p)(
a

p−1+{ (d−1)a
p−1 }−{ da

p−1})Γp

(
a

p− 1

)
Γp

({
(d− 1)a

p− 1

})
Γp

({
da

p− 1

}) ω(dλ)−da

And, thus

NFp(λ)−NFp(0)

=
−1
p− 1

p−2∑
a=0

(−p)η(a)Γp

(
a

p− 1

)
Γp

({
(d− 1)a

p− 1

})
Γp

({
da

p− 1

}) ω(dλ)−da �
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Suppose the have a hypergeometric weight system (see Section 2.2) given by
γ = [d]− [1]− [d− 1]. This is related to the power series with binomial coefficients(
dn
n

)
. The Landau function associated to this system is

L(x) = {x}+ {(d− 1)x} − {dx}.

Notice that the power of p that appears in Lemma 5.4 is exactly determined

by L
(

a

p− 1

)
. But this means that the valuation of the terms of the previous

sum is very similar to the valuation of the terms in the hypergeometric series with
coefficients

(
dn
n

)
.

Notice that∑
n>0

(
dn

n

)
zn = d−1Fd−2

(
1

d
, . . . ,

d− 1

d
;

1

d− 1
, . . . ,

d− 1

d− 2

∣∣∣∣ (d− 1)(d−1)

dd
z

)
.

The discontinuities of L are therefore the αi and βi parameters. In fact, it is
clear that the parameters interlace, that is,

0 <
1

d
<

1

d− 1
< · · · < d− 2

d− 1
<
d− 1

d
< 1.

By property 2.6.1 of the Landau function we get that L
(

a

p− 1

)
= 1 for

(p − 1)αi 6 a < (p − 1)βi and 0 on the other intervals. Therefore the terms
with (p − 1)βi = (p−1)i

d−1 6 a < (p − 1)αi+1 = (p−1)(i+1)
d are the only ones that

survive mod p. There are d− 1 of these intervals. For a fixed i,

(p−1)(i+1)
d −1∑

a=
(p−1)i
d−1

(−p)(
a

p−1+{ (d−1)a
p−1 }−{ da

p−1})Γp

(
a

p− 1

)
Γp

({
(d− 1)a

p− 1

})
Γp

({
da

p− 1

}) ω(dλ)−da

=

(p−1)(i+1)
d −1∑

a=
(p−1)i
d−1

Γp

(
a

p− 1

)
Γp

({
(d− 1)a

p− 1

})
Γp

({
da

p− 1

}) ω(dλ)−da

=

(p−1)(i+1)
d −1∑

a=
(p−1)i
d−1

Γp

(
a

p− 1

)
Γp

(
(d− 1)a

p− 1
− i
)

Γp

(
da

p− 1
− i
) ω(dλ)−da

≡

(p−1)(i+1)
d −1∑

a=
(p−1)i
d−1

Γp(−a)Γp(−(d− 1)a− i)
Γp(−da− i)

(dλ)−da mod p.
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And if we now use property 5.2.3 of the p-adic gamma function, we get

≡

(p−1)(i+1)
d −1∑

a=
(p−1)i
d−1

Γp(da+ i+ 1)

Γp(a+ 1)Γp((d− 1)a+ i+ 1)
(dλ)−da mod p

And by property 5.2.1

≡

(p−1)(i+1)
d −1∑

a=
(p−1)i
d−1

(da+ i)!

a!((d− 1)a+ i)!
(dλ)−da mod p

≡

(p−1)(i+1)
d −1∑

a=
(p−1)i
d−1

(
da+ i

a

)
(dλ)−da mod p.

And we have just shown that

NFp(λ)−NFp(0) ≡
d−2∑
i=0

(p−1)αi+1−1∑
a=(p−1)βi

(
da+ i

a

)
(dλ)−da mod p.

Notice that, for a fixed i,(
da+ i

a

)
=

(da+ i)(da+ i− 1) · · · (da+ 1)

((d− 1)a+ i)((d− 1)a+ i− 1) · · · ((d− 1)a+ 1)

(
da

a

)
=

(da+ i) · · · (da+ 1)

((d− 1)a+ i) · · · ((d− 1)a+ 1)
·

dda( 1d )a · · · (
d−1
d )a

(d− 1)(d−1)aa!( 1
d−1 )a · · · (

d−2
d−1 )a

=
di(a+ i

d ) · · · (a+
1
d )

(d− 1)i(a+ i
d−1 ) · · · (a+

1
d−1 )

·
dda( 1d )a · · · (

d−1
d )a

(d− 1)(d−1)aa!( 1
d−1 )a · · · (

d−2
d−1 )a

,

and we can combine the products so that the last expression equals

=
di 1d · · ·

i
d

(d− 1)i 1
d−1 · · ·

i
d−1

·
dda( 1d + 1)a · · · ( i

d + 1)a(
i+1
d )a · · · (d−1

d )a

(d− 1)(d−1)a( 1
d−1 + 1)a · · · ( i

d−1 + 1)a(
i+1
d−1 )a · · · (

d−2
d−1 )a

.

We have just proved:

Theorem 5.5. Let α(0) =
(
1
d , . . . ,

d−1
d

)
and β(0) =

(
1

d−1 , . . . ,
d−2
d−1

)
.

NFp(λ)−NFp(0) ≡
d−2∑
i=0

[
dFd−1(α

(i);β(i)|(d− 1)−(d−1)λ−d)
] (i+1)(p−1)

d −1

i(p−1)
d−1

mod p,

where α(i) = (α1 + 1, . . . , αi + 1, αi+1, . . . , αd−1), and β(i) = (β1 + 1, . . . , βi +
1, βi+1, . . . , βd−2), that is we add 1 to the numerator and denominator parameters
up to the i-th place.



154 Adriana Salerno

Notation. [(u(z)]ji denotes the polynomial which is the truncation of a series u(z)
from n = i to j.

So for example in the case d = 3 we get that

NFp(λ)−NFp(0) ≡
[
2F1

(
1

3
,
2

3
;
1

2

∣∣∣∣ 1

22λ3

)] p−1
3 −1

0

+

[
2F1

(
4

3
,
2

3
;
3

2

∣∣∣∣ 1

22λ3

)] 2(p−1)
3 −1

p−1
2

mod p.

Remark. Notice the difference between Theorem 5.4 and Igusa’s result: in our
situation, more than one hypergeometric function appears. As far as we know,
most of the known examples that have been computed have coincided with Igusa
in the sense that only one hypergeometric function appears modulo p. In the next
two examples (the Dwork family), we will show a known computation using our
methods, in which only one hypergeometric function appears.

5.3. The Dwork family when d = 3 (The elliptic curve case)

Recall that we have three equivalence classes, (0, 0, 0), (1, 2, 0), (2, 1, 0), and so we
can split the sum into three sums (although since the last two are permutations
of each other the sums will be the same), so we get:

NFp(λ)−NFp(0) =
1

p− 1

∑
s∈ 1

p−1Z/Z

g(s)3

g(3s)
χ3s(3λ)

+
2

p− 1

∑
s∈ 1

p−1Z/Z

g(s)g
(
s+ 1

3

)
g
(
s+ 2

3

)
g(3s)

χ3s(3λ)

Again, before using the formula it is convenient to change the summation:

NFp(λ)−NFp(0) =
1

p− 1

p−2∑
s=0

g
(

s
p−1

)3
g
({

3s
p−1

})ω(3λ)−3s

+
2

p− 1

p−2∑
s=0

g
(

s
p−1

)
g
({

s
p−1 + 1

3

})
g
({

s
p−1 + 2

3

})
g
({

3s
p−1

}) ω(3λ)−3s
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Substituting and simplifying, we get that

NFp(λ)−NFp(0) =
1

p− 1

p−2∑
s=0

(−p)(
3s

p−1−{ 3s
p−1})Γp

(
s

p−1

)3
Γp

({
3s
p−1

}) ω(3λ)−3s+

+
2

p− 1

p−2∑
s=0

(−p)γ(s)Γp

(
s

p−1

)
Γp

({
s

p−1 + 1
3

})
Γp

({
s

p−1 + 2
3

})
Γp

({
3s
p−1

}) ω(3λ)−3s,

where γ(s) =
(

s
p−1 +

{
s

p−1 + 1
3

}
+
{

s
p−1 + 2

3

}
−
{

3s
p−1

})
.

Once more, the power of p in the first part of the sum is determined by L
(

s
p−1

)
where L(x) is the Landau function associated to the hypergeometric weight system
[3] − 3[1]. The discontinuities are 0, 1/3, 2/3 and the function is zero only when
0 6 x < 1/3. So modp we get

NFp(λ)−NFp(0) ≡ −

p−1
3 −1∑
s=0

Γp(−s)3

Γp(−3s)
(3λ)−3s mod p

≡ −

p−1
3 −1∑
s=0

Γp(1 + 3s)

Γp(1 + s)3
(3λ)−3s mod p

≡ −

p−1
3 −1∑
s=0

(3s)!

s!3
(3λ)−3s mod p

≡ −
[
2F1

(
1

3
,
2

3
; 1

∣∣∣∣λ−3

)] p−1
3 −1

0

mod p.

5.4. The Dwork family when d = 4 (The K3-surface case)

This is the case

Xλ : x41 + x42 + x43 + x44 − 4λx1x2x3x4 = 0

In other words, the family with d = 4 = n, h = (1, 1, 1, 1).
The set W is made up of 64 vectors, but we can split them up into 16 orbits,

and of those there are only three "types". These are

(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3)

(0, 1, 1, 2), (1, 2, 2, 3), (2, 3, 3, 0), (3, 0, 0, 1)

(0, 0, 2, 2), (1, 1, 3, 3), (2, 2, 0, 0), (3, 3, 1, 1)

The rest are permutations of these. So there is one orbit of the first type, 12
orbits of the second type, and 3 orbits of the third type.
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This makes the formula look as follows:

NFp(λ)−NFp(0) =
1

p− 1

∑
s∈ 1

p−1Z/Z

g(s)4

g(4s)
χ4s(4λ) (S1)

+
12

p− 1

∑
s∈ 1

p−1Z/Z

g(s)g(s+ 1
4 )

2g(s+ 1
2 )

g(4s)
χ4s(4λ) (S2)

+
3

p− 1

∑
s∈ 1

p−1Z/Z

g(s)2g(s+ 1
2 )

2

g(4s)
χ4s(4λ). (S3)

Let’s focus on the first term of the sum, denoted by S1. Using Gross-Koblitz
we get

S1 =
1

p− 1

p−2∑
s=0

(−p)(
4s

p−1−{ 4s
p−1})Γp

(
s

p−1

)4
Γp

({
4s
p−1

}) ω(4λ)−4s

By inspecting the power of −p we can see that again it is determined by Lγ

where γ = [4]− 4[1]. Thus, the only terms that survive mod p are those for which
0 6 s < p−1

4 . So

S1 ≡ −

p−1
4 −1∑
s=0

Γp(−s)4

Γp(−4s)
(4λ)−4s mod p

≡

p−1
4 −1∑
s=0

Γp(1 + 4s)

Γp(1 + s)4
(4λ)−4s mod p

≡

p−1
4 −1∑
s=0

(4s)!

(s!)4
(4λ)−4s mod p

≡
[
3F2

(
1

4
,
1

2
,
3

4
; 1, 1

∣∣∣∣λ−4

)] p−1
4 −1

0

mod p.

Inspection shows that S2 and S3 are both zero modulo p.

Remark. Notice that in both the d = 3 and d = 4 examples, the only terms
to survive mod p are the ones related to the class of (0, . . . , 0). Clearly some
information is lost that might not be lost if we studied these cases modulo other
powers of p. One of our future plans is to try using the Gross-Koblitz formula
for the more general finite fields to compute these examples. In the case of the
elliptic curve, we believe p3 will be the right power, and we expect that for any
d, we should study the number of solutions modulo pd. This was actually checked
by Rodríguez-Villegas, Candelas and de la Ossa for d = 5 in [1].
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