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INHOMOGENEOUS QUADRATIC CONGRUENCES

S. Baier, T.D. Browning

Abstract: For given positive integers a, b, q we investigate the density of solutions (x, y) ∈ Z2

to congruences ax+ by2 ≡ 0 mod q.

Keywords: quadratic congruences, Manin’s conjecture, Gauss sums.

1. Introduction

Let a, b, q be non-zero integers with q > 1 and (ab, q) = 1. Let e, f be coprime
positive integers with e ̸= f and let X,Y > 1. A broad array of problems in
number theory can be reduced to estimating the number of solutions (x, y) ∈ Z2

to congruences of the shape

axe + byf ≡ 0 mod q,

with 0 < x 6 X and 0 < y 6 Y . It is often convenient to focus on those solutions
which are coprime to q. Let Me,f (X,Y ; a, b, q) denote the total number of such
solutions. A trivial upper bound is given by

Me,f (X,Y ; a, b, q) ≪ qε
(
XY

q
+min{X,Y }

)
,

for any ε > 0. Here the implied constant is allowed to depend at most upon the
choice of ε, and upon the exponents e and f , a convention that we adhere to for
the remainder of this work. One is usually concerned with situations for which
either of the ranges X or Y is substantially smaller than the modulus q, where
sharper estimates are sought.

This paper is inspired by work of Pierce [11], together with our own recent
contribution [1] to the topic. In [11, Theorem 3], under the assumption that q is
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square-free and max{X, 2Y } 6 q, it is shown that there is a positive constant A
such that

Me,f (X,Y ; 1,−1, q) ≪ τ(q)A
(
XY

q
+

X
√
q
+
√
q log2 2q

)
, (1.1)

where τ is the divisor function. This estimate is used by Pierce to obtain a non-
trivial bound for the 3-part h3(D) of the class number of a quadratic number field
Q(

√
D), when |D| admits a divisor of suitable magnitude. In [1] a substantial im-

provement is obtained when (e, f) = (2, 3) and q is far from being square-free. This
in turn is used to study the density of elliptic curves with square-free discriminant
and to count Q-rational points on some singular del Pezzo surfaces. The goal of this
paper is to undertake a careful analysis of the easier quantity M1,2(X,Y ; a, b, q)
with a view to providing a useful technical tool in future resolutions of the Manin
conjecture for singular del Pezzo surfaces.

The above investigations of Me,f (X,Y ; a, b, q) use the orthogonality of additive
characters to encode the divisibility condition in the congruence. The resulting
complete exponential sums can be estimated using the Weil bound when the mod-
ulus is square-free. When (e, f) = (1, 2) the exponential sums that arise are
particularly simple to handle, being quadratic Gauss sums. We will establish the
following refinement of (1.1).

Theorem 1. Let a, b, q be non-zero integers with q > 1 and (ab, q) = 1 and let
X,Y > 1. Then we have

M1,2(X,Y ; a, b, q) =
φ(q)

q2
·XY

+O

(
X

q
· τ(q) + L(q)σ−1/2(q)

(
Y
√
q
· τ(q) +√

qL(q)

))
,

where L(n) := log(n+ 1), σα(n) :=
∑

d|n d
α and φ is the Euler totient function.

In recent years there has emerged a particularly fruitful approach to the Manin
conjecture for singular del Pezzo surfaces X defined over Q. There are two basic
stages:

— one constructs an explicit bijection between rational points of bounded height
on X and integral points in a region on a universal torsor TX ; and

— one estimates the number of integral points in this region on the torsor by
its volume and shows that the volume has the predicted asymptotic growth
rate.

A geometrically driven approach to the first part has been developed by Derenthal
and Tschinkel [4, §4]. The second part mainly relies on analytic number theory
and has been put on a general footing by Derenthal [3], whenever the torsor is
a hypersurface. In this case the torsor equation typically takes the form

αa0
0 α

a1
1 · · ·αai

i + βb0
0 β

b1
1 · · ·βbj

j + γ0γ
c1
1 · · · γckk = 0, (1.2)



Inhomogeneous quadratic congruences 269

with (a0, . . . , ai) ∈ Ni+1, (b0, . . . , bj) ∈ Nj+1 and (c1, . . . , ck) ∈ Nk. Work of
Hassett [7, Theorem 5.7] shows that there is a natural realisation of a universal
torsor as an open subset via TX ↪→ Spec(Cox(X̃)), where the coordinates of TX
correspond to generators of the Cox ring of the minimal desingularisation X̃ of X.
Torsor equations such as (1.2) are usually handled by viewing them as a con-
gruence modulo q = γc11 · · · γckk . An example of this is provided by our work [1]
on M2,3(X,Y ; a, b, q), which is pivotal in the resolution of the Manin conjecture
for a singular del Pezzo surface of degree 2. Experience suggests that there are
several examples of singular del Pezzo surfaces whose torsor equations produce
congruences of the shape

rulx+ svmy2 = 0 mod tw,

for fixed l,m ∈ N. A case in point is the cubic surface with D5 singularity type
which is studied jointly by the first author and Derenthal [2]. Here the relevant
congruence that emerges is precisely of this form with l = 2 and m = 1. Using
a result of similar strength to Theorem 1 the Manin conjecture is established for
this surface but only with a modest logarithmic saving in the error term.

Returning to the counting function M1,2(X,Y ; a, b, q), one might hope to do
better by averaging the counting function over suitably constrained values of a, b
and q. That such an approach is available to us follows from the fact that the
underlying quadratic Gauss sums arising in the proof of Theorem 1 satisfy explicit
formulae. This will allow us to study quite general expressions of the form

S :=
∑

(a,b,q)∈S

ca,b,q
∑
y∈J

(y,q)=1

∑
x∈I(a,b,q,y)

ax+by2≡0 mod q

1, (1.3)

for ca,b,q ∈ C. Here S ⊂ Z2×N is a finite set of triples (a, b, q) such that (ab, q) = 1,
J = (y0, y0 + Y ] is a fixed interval of length Y > 1, and

I(a, b, q, y) =
(
f−(a, b, q, y), f+(a, b, q, y)

]
(1.4)

is an interval depending on a, b, q, y. Theorem 1 will be an easy consequence of a
general estimate for S, which is presented in §3. There are two main ingredients
at play here: Vaaler’s trigonometric formula for the saw-tooth function ψ(x) :=
{x} − 1/2, where {x} = x − [x] denotes the fractional part of x, and the explicit
formulae for the quadratic Gauss sum. These will be recalled in §2.

When further restrictions are placed on S and ca,b,q one can go even further.
Motivated by our discussion above we set

S =
{
(rul, svm, tw) : U < u 6 2U, V < v 6 2V, W < w 6 2W, (rsuv, tw) = 1

}
,

(1.5)
where U, V,W > 1/2 and l,m, r, s, t are fixed non-zero integers for which l,m, t > 1
and (rs, t) = 1. We shall think of r, s, t as being parameters, whose dependence we
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want to keep track of, but l and m are fixed once and for all. We further assume
that ca,b,q factorises in the form

ca,b,q = crul,svm,tw = du,vew, with |du,v|, |ew| 6 1. (1.6)

We also entertain the possibility that there is a further factorisation

du,v = d′ud̃v, with |d′u|, |d̃v| 6 1. (1.7)

Moreover, we set
f̃±(u, v, w, y) := f±(rul, svm, tw, y).

We make the assumption that f̃±(u, v, w, y) are continuous functions and have
piecewise continuous partial derivatives with respect to the variables u, v, w. We
further assume that f̃+ > f̃− in the whole domain (U, 2U ]×(V, 2V ]×(W, 2W ]×J ,
with ∣∣∣∣∣ ∂i+j+kf̃±

∂ui∂vj∂yk
(u, v, w, y)

∣∣∣∣∣ 6 ρiσjτkF (1.8)

there, for i, j, k ∈ {0, 1} such that i + j + k ̸= 0, where ρ, σ, τ, F are suitable
non-negative numbers. For any H > 0 we set

∆H :=

(
1 +

HFρU

tW

)(
1 +

HFσV

tW

)(
1 +

HFτY

tW

)
(1.9)

and

Z :=

{
(tW + U)1/2(tW + V )1/2(UV )1/2W, if (1.7) holds and UV > tW ,
(tW )1/2UVW, in general.

We may now record the outcome of our analysis of the sum S in (1.3) in this
setting.

Theorem 2. Let ε > 0 and assume that

H > tW

F
. (1.10)

Then under the above hypotheses we have

S =
∑

U<u62U

∑
V <v62V

∑
W<w62W

(rsuv,tw)=1

du,vew
tw

∑
y0<y6y0+Y
(y,tw)=1

X̃(u, v, w, y)

+O

(
UVWY

H

)
+O(T ),

where X̃(u, v, w, y) := f̃+(u, v, w, y)− f̃−(u, v, w, y) and

T := ∆H

(
Y

(tW )1/2

(
U1−{l/2}V 1−{m/2}W + UVW 1/2

)
+ Z

)
(HtUVW )ε.
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Theorem 2 will be established in §4. The character sums that arise from the
explicit formulae for Gauss sums used in Theorem 1 are handled using a mixture
of the ordinary large sieve and the large sieve for real characters developed by
Heath-Brown [8]. A review of favourable conditions under which the main term
dominates the error term in Theorem 2 is saved for §4.3.

2. Technical tools

In this section we collect together the technical lemmas that will feature in our
proof of Theorems 1 and 2. We will use the following approximation of the function
ψ(x) using trigonometric polynomials due to Vaaler (see Graham and Kolesnik [6,
Theorem A.6], for example).

Lemma 1. Let H > 0. Then there exist coefficients ah ∈ R satisfying ah ≪ 1/|h|,
such that ∣∣∣∣∣∣ψ(x)−

∑
16|h|6H

ahe(hx)

∣∣∣∣∣∣ 6 1

H + 1

∑
|h|6H

(
1− |h|

H + 1

)
e(hx).

This result will lead to the intervention of exponential sums, which once eval-
uated will also produce certain types of character sums. To handle these we
will require the following variant of Heath-Brown’s large sieve for real characters
[8, Corollary 4].

Lemma 2. Let ε > 0, let M,N ∈ N, and let a1, ..., aM and b1, ..., bN be arbitrary
complex numbers satisfying |am|, |bn| 6 1. Then∑

m6M
(m,2)=1

∑
n6N

ambn

( n
m

)
≪ (MN)ε

(
MN1/2 +M1/2N

)
.

We end this section with an explicit evaluation of the quadratic Gauss sum

G(s, t;u) :=
u∑

n=1

e

(
sn2 + tn

u

)
, (2.1)

for given non-zero integers s, t, u such that u > 1. Let

δn :=

{
0, if n ≡ 0 mod 2,

1 if n ≡ 1 mod 2,
ϵn :=

{
1, if n ≡ 1 mod 4,

i, if n ≡ 3 mod 4.

The next lemma gives the value of G(s, t;u) if (s, u) = 1.
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Lemma 3. Suppose that (s, u) = 1. Then we have the following.
(i) If u is odd, then

G(s, t;u) = ϵu
√
u
( s
u

)
e

(
−4st2

u

)
. (2.2)

(ii) If u = 2v with v odd, then

G(s, t;u) = 2δtϵv
√
v

(
2s

v

)
e

(
−8st2

v

)
. (2.3)

(iii) If 4 | u, then

G(s, t;u) = (1 + i)ϵ−1
s (1− δt)

√
u
(u
s

)
e

(
−st

2

4u

)
. (2.4)

Proof. (i) Let u be odd and assume (s, u) = 1. Then, by Lemmas 3 and 9 in [5],
we have

G(s, t;u) = e

(
−4st2

u

)( s
u

)
G(1, 0;u).

Gauss proved (see Nagell [10, Theorem 99], for example) that

G(1, 0;n) =


(1 + i)

√
n, if n ≡ 0 mod 4,

√
n, if n ≡ 1 mod 4,

0, if n ≡ 2 mod 4,

i
√
n, if n ≡ 3 mod 4,

(2.5)

from which (2.2) follows.
(ii) Let 2∥u and assume (s, u) = 1. Write u = 2v and note that 2 - v. If 2 | t

then

G(s, t; 2v) = e

(
−st

2

4u

)
G(s, 0; 2v) = 0

by Lemmas 4 and 9 in [5]. If 2 - t, then

G(s, t; 2v) = 2e

(
−8st2

v

)
G(2s, 0; v)

by Lemma 6 in [5]. Now applying (2.2) gives (2.3).
(iii) Let 4 | u and assume (s, u) = 1. If 2 - t, then G(s, t;u) = 0 by Lemma 5

in [5]. Assume that 2 | t. Then, by Lemma 4 in [5], we have

G(s, t;u) = e

(
−st

2

4u

)
G(s, 0;u).

For (s, u) = 1, the Gauss sum satisfies the reciprocity law

G(s, 0;u)G(u, 0; s) = G(1, 0; su).

Noting that s is odd and 4 | su, and applying (2.2) to G(u, 0; s) and (2.5) to
G(1, 0; su), we deduce (2.4). �
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3. Analysis of S

In this section we begin in earnest our investigation of the sum S presented in
(1.3). Recall that ca,b,q are arbitrary complex numbers and S ⊂ Z2 ×N is a finite
set of triples (a, b, q) such that (ab, q) = 1, with J := (y0, y0 + Y ] and I(a, b, q, y)
given by (1.4). We henceforth stipulate that

domain(f+) = domain(f−) = R,

where
R = (a0, a0 +A]× (b0, b0 +B]× (q0, q0 +Q]× (y0, y0 + Y ] (3.1)

is a half-open cuboid in R4 such that S × J ⊂ R. We further suppose that
f±(a, b, q, y) are continuous, have piecewise continuous partial derivatives with
respect to the variables a, b, y, and satisfy f+ > f− in the whole domain R.
Moreover, we set

X(a, b, q, y) := |I(a, b, q, y)| = f+(a, b, q, y)− f−(a, b, q, y).

Our first step is to rewrite the congruence ax+ by2 ≡ 0 mod q in S as

x+ aby2 ≡ 0 mod q,

where a denotes the multiplicative inverse of a modulo q. It follows that∑
x∈I(a,b,q,y)

ax+by2≡0 mod q

1 =

[
f+(a, b, q, y)

q
+
aby2

q

]
−
[
f−(a, b, q, y)

q
+
aby2

q

]

=
X(a, b, q, y)

q
− ψ

(
f+(a, b, q, y)

q
+
aby2

q

)
+ ψ

(
f−(a, b, q, y)

q
+
aby2

q

)
.

We may therefore write
S = M−E+ + E−, (3.2)

where
M :=

∑
(a,b,q)∈S

ca,b,q
q

∑
y∈J

(y,q)=1

X(a, b, q, y) (3.3)

is the main term and

E± :=
∑

(a,b,q)∈S

ca,b,q
∑
y∈J

(y,q)=1

ψ

(
f±(a, b, q, y)

q
+
aby2

q

)

are error terms. The next result is an easy consequence of Lemma 1 and transforms
these error terms into exponential sums.
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Lemma 4. Let H > 0. Then we have |E±| ≪ E + F±, where

E :=
Y

H

∑
(a,b,q)∈S

|ca,b,q|, (3.4)

F± :=
∑

16h6H

1

h

∣∣∣∣∣∣
∑

(a,b,q)∈S

Ca,b,qS
±
h (a, b, q)

∣∣∣∣∣∣ , (3.5)

with Ca,b,q := ca,b,q + |ca,b,q| and

S±
h (a, b, q) :=

∑
y∈J

(y,q)=1

e

(
h · f

±(a, b, q, y)

q

)
e

(
h · aby

2

q

)
.

We proceed to reduce our exponential sums S±
h (a, b, q) to complete quadratic

Gauss sums. First we remove the factor e (h · f±(a.b, q, y)/q) using partial sum-
mation, obtaining

S±
h (a, b, q) = e

(
h · f

±(a, b, q, y0 + Y )

q

)
Th(a, b, q, y0 + Y )

− 2πih

q

y0+Y∫
y0

(
∂

∂t
f±(a, b, q, t)

)
e

(
h · f

±(a, b, q, t)

q

)
Th(a, b, q, t)dt,

where

Th(a, b, q, t) :=
∑

y0<y6t
(y,q)=1

e

(
h · aby

2

q

)
.

Next we remove the coprimality condition (y, q) = 1 using Möbius inversion, get-
ting

Th(a, b, q, t) :=
∑
e|q

µ(e)
∑

y0/e<y6t/e

e

(
he · aby

2

q/e

)
.

We remove common factors by writing

q′ =
q/e

(he, q/e)
, h′ =

he

(he, q/e)
(3.6)

and observing that

Th(a, b, q, t) =
∑
e|q

µ(e)
∑

y0/e<y6t/e

e

(
h′aby2

q′

)
,
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with (h′, q′) = 1. Here we note that q′ and h′ depend on e, q and h. The inner
sum is an incomplete quadratic Gauss sum which we complete by writing

∑
y0/e<y6t/e

e

(
h′aby2

q′

)
=

q′∑
n=1

e

(
h′abn2

q′

)
· 1

q′
·

q′∑
k=1

∑
y0/e<l6t/e

e

(
k · n− l

q′

)

=
1

q′
·

q′∑
k=1

re(k, q
′; t)G(h′ab, k; q′),

where G(h′ab, k; q′) is given by (2.1) and

re(k, q
′; t) :=

∑
y0/e<l6t/e

e

(
−kl
q′

)
≪ min

{
Y/e, ∥k/q′∥−1

}
,

if y0 6 t 6 y0 + Y .
Let

g±h (a, b, q, t) :=

(
∂

∂t
f±(a, b, q, t)

)
e

(
h · f

±(a, b, q, t)

q

)
.

Our work so far has shown that

S±
h (a, b, q) =

∑
e|q

µ(e)

q′
·

q′∑
k=1

G(h′ab, k; q′)B(e, k),

with

B(e, k) := e

(
h · f

±(a, b, q, y0 + Y )

q

)
re(k, q

′; y0 + Y )

− 2πih

q

y0+Y∫
y0

g±h (a, b, q, t)re(k, q
′; t)dt.

Returning to the error terms F± in (3.5), we deduce that

F± ≪
∑
h6H

∑
q

∑
e|q

1

hq′

q′∑
k=1

min
{
Y/e, ∥k/q′∥−1

}
(R1(e, h, q, k) +R2(e, h, q, k)) ,

with

R1(e, h, q, k) :=

∣∣∣∣∣∣∣∣
∑
a,b

(a,b,q)∈S

Ca,b,qG(h′ab, k; q′)e
(
h · f

±(a, b, q, y0 + Y )

q

)∣∣∣∣∣∣∣∣ ,

R2(e, h, q, k) :=
h

q

y0+Y∫
y0

∣∣∣∣∣∣∣∣
∑
a,b

(a,b,q)∈S

Ca,b,qG(h′ab, k; q′)g±h (a, b, q, t)

∣∣∣∣∣∣∣∣dt.
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Now we are ready to evaluate R1 and R2 using the formulae for Gauss sums
in Lemma 3. Since we get slightly different formulae in the cases (i), (ii), (iii),
it is reasonable to break the term on the right-hand side of our estimate for F±

into F±
1 , F±

2 and F±
4 , where F±

1 denotes the contribution of odd moduli q′, F±
2

denotes the contribution of moduli with 2∥q′, and F±
4 denotes the contribution of

moduli with 4 | q′. For i = 1, 2, 4, we define

ξi(q
′) :=


1, if i = 1 and q′ is odd,
1, if i = 2 and 2∥q′,
1, if i = 4 and 4 | q′,
0, otherwise.

We may therefore write

F±
i =

∑
h6H

∑
q

∑
e|q

ξi(q
′)

hq′

q′∑
k=1

min
{
Y/e, ∥k/q′∥−1

}
(R1(e, h, q, k) +R2(e, h, q, k)) ,

(3.7)
for i = 1, 2, 4.

For brevity, we only evaluate R1 and R2 when q′ is odd, which is the relevant
case for the treatment of F±

1 . The cases 2∥q′ and 4 | q′ can each be handled
similarly. If (q′, 2h′) = 1, then Lemma 3(i) yields

G(h′ab, k; q′) = ϵq′
√
q′ ·
(
h′ab

q′

)
e

(
−4bh′ · ak2

q′

)
.

Hence, in this case we have

R1 =
√
q′

∣∣∣∣∣∣∣∣
∑
a,b

(a,b,q)∈S

Ca,b,q

(
ab

q′

)
e

(
−4bh′ · ak2

q′

)
e

(
h · f

±(a, b, q, y0 + Y )

q

)∣∣∣∣∣∣∣∣
(3.8)

and

R2 =
h

q
·
√
q′

y0+Y∫
y0

∣∣∣∣∣∣∣∣
∑
a,b

(a,b,q)∈S

Ca,b,q

(
ab

q′

)
e

(
−4bh′ · ak2

q′

)
g±h (a, b, q, t)

∣∣∣∣∣∣∣∣dt, (3.9)

where R1 = R1(e, h, q, k) and R2(e, h, q, k). To proceed further, we need to remove
the weight functions f± and g±h .

Recall (3.1). We are now ready to impose a suitable constraint on the partial
derivatives of f±, wherever they are defined. We will assume that∣∣∣∣ ∂i+j+kf±

∂ai∂bj∂yk
(a, b, q, y)

∣∣∣∣ 6 αiβjτkF (3.10)
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in R for i, j, k ∈ {0, 1} such that i + j + k ̸= 0, where α, β, γ, F are suitable
non-negative numbers. We shall also suppose that

H > q0
F

(3.11)

and set

∆H :=

(
1 +

HFαA

q0

)(
1 +

HFβB

q0

)(
1 +

HFτY

q0

)
. (3.12)

We now repeatedly apply partial summation with respect to a and b to remove the
weight functions f± and g±h in (3.8) and (3.9). Then we interchange the integrals
arising in this process with the sums on the right-hand side of (3.7). Finally, we
estimate the resulting integrals by multiplying their lengths with the supremums
of their integrands, which we bound using (3.10). Taking (3.11) into consideration,
we arrive at the bound for F±

1 in the following Theorem. Likewise, we obtain the
corresponding bounds for F±

2 and F±
4 .

Theorem 3. Assume the condition (3.10) and let H satisfy (3.11). Then we have

F± ≪ F±
1 + F±

2 + F±
4 ,

where

F±
i ≪ ∆H sup

(η,θ)∈R2

∑
h6H

∑
q

∑
e|q

ξi(q
′)

h
√
q′

q′−1∑
k=0

min
{
Y/e, ∥k/q′∥−1

}
|R(i)(η, θ; e, h, q, k)|

for i = 1, 2, 4, with

R(1)(η, θ; e, h, q, k) :=
∑

a6η, b6θ
(a,b,q)∈S

Ca,b,q

(
ab

q′

)
e

(
−4bh′ · ak2

q′

)
, (3.13)

R(2)(η, θ; e, h, q, k) := δk
∑

a6η, b6θ
(a,b,q)∈S

Ca,b,q

(
ab

q′/2

)
e

(
−8bh′ · ak2

q′/2

)
, (3.14)

R(4)(η, θ; e, h, q, k) := (1− δk)
∑

a6η, b6θ
(a,b,q)∈S

ϵ−1
h′abCa,b,q

(
q′

ab

)
e

(
−bh

′ · ak2

4q′

)
. (3.15)

We are now in a position to deduce the bound in Theorem 1 for fixed non-
zero integers a, b, q such that q > 1 and (ab, q) = 1. In fact there is little extra
effort required to handle a more general quantity. Let J = (y0, y0 + Y ] be an
interval with Y > 1 and assume that f± : J → R are continuously differentiable
functions with f+(y) > f−(y) for all y ∈ J . Set I(y) := (f−(y), f+(y)] and
X(y) := f+(y) − f−(y). Assume that |df

±

dy (y)| 6 T for all y ∈ J . Then we have
the following result.
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Corollary. Let H > 0 and ∆H := 1 +HTY/q. We have∑
y∈J

(y,q)=1

∑
x∈I(y)

ax+by2≡0 mod q

1 =
1

q

∑
y∈J

(y,q)=1

X(y) +O

(
Y

H

)

+O

(
∆HL(H)σ−1/2(q)

(
Y
√
q
· τ(q) +√

qL(q)

))
.

where L and σ−1/2 are as in the statement of Theorem 1.

Proof. Recall (3.3) and (3.4). We set f±(a, b, q, y) = f±(y), q0 = q, F = q, τ =
T/F and α = β = 0 in the build-up to Theorem 3 . Estimating R(i)(η, θ; e, h, q, k)
trivially by O(1), and combining this with our work so far, we readily obtain the
asymptotic estimate

1

q

∑
y∈J

(y,q)=1

X(y) +O

(
Y

H

)

+O

∆H

∑
h6H

1

h

∑
e|q

e1/2(he, q/e)1/2

q1/2

q−1∑
k=0

min

{
Y

e
,

q

e(he, q/e)k

}
for the double sum in the statement. The second O-term here is seen to be

≪ ∆H · Y

q1/2

∑
h6H

1

h

∑
e|q

(he, q/e)1/2

e1/2
+∆H(logH + 1)(log q + 1)σ−1/2(q)

√
q,

where the first term comes from the contribution of k = 0 and the second one from
the contribution of k ̸= 0. Since (he, q/e)1/2 6 (h, q)1/2e1/2, we have∑

h6H

1

h

∑
e|q

(he, q/e)1/2

e1/2
6 τ(q)

∑
h6H

(h, q)1/2

h
≪ τ(q)σ−1/2(q) log(H + 1).

This therefore completes the proof of the corollary. �

For Theorem 1 we take J = (0, Y ] and I = (0, X], so that f± are constant and
we can set T = 0 and ∆H = 1 in the corollary. Taking H = q we therefore obtain

M1,2(X,Y ; a, b, q) =
X

q

∑
y∈J

(y,q)=1

1 +O

(
L(q)σ−1/2(q)

(
Y
√
q
· τ(q) +√

qL(q)

))
.

On noting that ∑
y∈J

(y,q)=1

1 =
φ(q)

q
· Y +O (τ(q)) ,

this completes the proof of Theorem 1 .
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4. Proof of Theorem 2

We now place ourselves in the setting of Theorem 2, which is concerned with
estimating S in (1.3) when S is given by (1.5) for fixed non-zero integers l,m, r, s, t
for which l,m, t > 1 and (rs, t) = 1. Assume furthermore that (1.6) holds. Now
we can set

a0 := rU l, A := (2l − 1)rU l, b0 := sV m,

B := (2m − 1)sV m, q0 := tW, Q := tW

in (3.1). With f̃± as in §1, we also set

Ĩ(u, v, w, y) := I(rul, svm, tw, y), X̃(u, v, w, y) := X(rul, svm, tw, y)

and
Du,v = du,v + |du,v|. (4.1)

Next we observe that (3.10) is equivalent to (1.8) in (U, 2U ]×(V, 2V ]×(W, 2W ]×J
for i, j, k ∈ {0, 1} such that i+ j + k ̸= 0, where

ρU =
l

2l − 1
· αA, σV =

m

2m − 1
· βB.

In particular (3.12) has the same order of magnitude as (1.9) under this assump-
tion, where we recall that l and m are viewed as absolute constants.

We may now write

S =
∑

U<u62U

∑
V <v62V

∑
W<w62W

(rsuv,tw)=1

du,vew
∑

y0<y6y0+Y
(y,tw)=1

∑
x∈Ĩ(u,v,w,y)

rulx+svmy2≡0 mod tw

1,

and recall the decomposition in (3.2). Using (3.3), the main term equals

M =
∑

U<u62U

∑
V <v62V

∑
W<w62W

(rsuv,tw)=1

du,vew
tw

∑
y0<y6y0+Y
(y,tw)=1

X̃(u, v, w, y). (4.2)

Using (3.4) and (1.6), the error term E is bounded by

E =
Y

H

∑
U<u62U

∑
V <v62V

∑
W<w62W

(rsuv,tw)=1

|du,vew| ≪
UVWY

H
. (4.3)

We now turn to the error term F±
1 . Using (1.6), Theorem 3 and (4.1), we see

that

F±
1 ≪ ∆H sup

U6η62U
V6θ62V

∑
h6H

∑
W<w62W
(2rs,tw)=1

∑
e|tw

1

h
√
q′

×
q′−1∑
k=0

min
{
Y/e, ∥k/q′∥−1

}
|R(η, θ;h′, q′, k)|,



280 S. Baier, T.D. Browning

where

R(η, θ;h′, q′, k) =
∑

U<u6η

∑
V <v6θ

(uv,tw)=1

Du,v

(
ulvm

q′

)
e

(
−4svmh′ · rulk2

q′

)
.

An application of (3.6) therefore yields

F±
1 ≪ ∆H

(tW )1/2
sup

U6η62U
V6θ62V

∑
d

∑
e

∑
h6H
d|he

d1/2e1/2

h

×
∑

W<w62W
(2rs,tw)=1

de|tw
(he,tw/e)=d

q′−1∑
k=0

min
{
Y/e, ∥k/q′∥−1

}
|R(η, θ;h′, q′, k)|,

(4.4)

where
d = (he, tw/e), q′ =

tw

de
, h′ =

he

d
. (4.5)

One derives similar bounds for F±
2 and F±

4 using (3.14) and (3.15) instead of
(3.13). It will suffice to estimate F±

1 since the treatments of F±
2 and F±

4 will
essentially be the same. We note that the right-hand side of (4.4) is empty if t is
even, so we may assume that t is odd.

In the next sections, we shall treat the contributions of k = 0 and k ̸= 0 to the
right-hand side of (4.4) separately. To this end, we define

K0 :=
∆HY

(tW )1/2
sup

U6η62U
V6θ62V

∑
d

∑
e

∑
h6H
d|he

d1/2

e1/2h

∑
W<w62W
(2rs,w)=1

de|tw

∣∣∣∣∣∣∣∣∣
∑

U<u6η

∑
V <v6θ

(uv,tw)=1

Du,v

(
ulvm

q′

)∣∣∣∣∣∣∣∣∣
(4.6)

and

K1 := ∆H(tW )1/2 sup
U6η62U
V6θ62V

∑
d

∑
e

∑
h6H
d|eh

1

d1/2e1/2h

∑
W<w62W
(2rs,w)=1

de|tw
(he,tw/e)=d

[q′/2]∑
k=1

1

k
|R(η, θ;h′, q′, k)|.

(4.7)
Note that we have dropped the condition (he, tw/e) = d in K0 but kept it in K1

since R(η, θ;h′, q′, k) is not well-defined if (h′, q′) > 1.
As a rule of thumb we expect K0 to dominate if Y is large compared to q0 and

K1 to dominate otherwise. Therefore, one would like to obtain non-trivial bounds
for K0 if Y is large and non-trivial bounds for K1 if Y is small. Here we are mainly
interested in the case of large Y .
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4.1. The contribution of k = 0

We aim to exploit cancellations coming from the Jacobi symbol. Our result will
clearly depend on the parities of the exponents l and m. We will establish the
following bound.

Proposition 1. We have

K0 ≪ ∆HY

(tW )1/2
· (HtUVW )ε

(
UVW 1/2 + U1−{l/2}V 1−{m/2}W

)
.

We will achieve this result by considering four different cases. Suppose first
that l and m are odd. In this case, we shall treat the term K0 using Heath-Brown’s
large sieve for real characters. First, we recall our assumption that t is odd and
note that de is also necessarily odd by our summation conditions (w, 2) = 1 and
de | tw. Now, using the oddness of the exponents l and m, the multiplicativity of
the Jacobi symbol and (4.5), we observe that(

ulvm

q′

)
=
( uv
tde

)(uv
w

)
since (uv, tw) = 1. Furthermore we write

βz :=
( z

tde

) ∑
U<u6η
V <v6θ
uv=z

Du,v.

Then it follows that∑
U<u6η

∑
V <v6θ

(uv,tw)=1

Du,v

(
ulvm

q′

)
=

∑
UV <z64UV

βz

( z
w

)
,

where we note that the coprimality condition (uv, tw) = 1 is implied by the Jacobi
symbol. We further note that βz = O(zε) by (1.6) and (4.1). Next we write∣∣∣∣∣∣

∑
UV <z64UV

βz

( z
w

)∣∣∣∣∣∣ = αw

∑
UV <z64UV

βz

( z
w

)
,

where αw is a suitable complex number with |αw| = 1. The inner triple sum in
(4.6) now takes the form

∑
W<w62W
(2rs,w)=1

de|tw

∣∣∣∣∣∣∣∣∣
∑

U<u6η

∑
V <v6θ

(uv,tw)=1

Du,v

(
ulvm

q′

)∣∣∣∣∣∣∣∣∣ =
∑

W<w62W
(2rs,w)=1

de|tw

αw

∑
UV <z64UV

βz

( z
w

)
.
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We observe that tw ≡ 0 mod de if and only if w ≡ 0 mod de/(de, t). Hence∑
W<w62W
(2rs,w)=1

de|tw

αw

∑
UV <z64UV

βz

( z
w

)
=

∑
W/j<w62W/j
(2rs,jw)=1

α̃w

∑
UV <z64UV

β̃z

( z
w

)
,

where
j =

de

(de, t)
, α̃w = αjw, β̃z = βz ·

(
z

j

)
.

Recalling that βz = O(zε) and applying Lemma 2, we deduce that∑
W/j<w62W/j
(2rs,jw)=1

α̃w

∑
UV <z64UV

β̃z

( z
w

)
≪ (UVW )ε

(
UVW 1/2

j1/2
+
U1/2V 1/2W

j

)
.

Combining our work in (4.6), and noting that de | tw, we obtain the preliminary
bound

K0 ≪ ∆HY

(tW )1/2
· (UVWH)ε

(
UVW 1/2 + U1/2V 1/2W

) ∑
d,e

de62tW

∑
h6H
d|he

d1/2

e1/2hj1/2
.

But∑
d,e

de62tW

∑
h6H
d|he

d1/2

e1/2hj1/2
=

∑
d,e

de62tW

∑
h6H
d|he

(de, t)1/2

eh
≪ (HtW )ε

∑
e62tW

∑
h6H

(he2, t)1/2

eh

6 (HtW )ε
∑

e62tW

(e, t)

e

∑
h6H

(h, t)1/2

h

≪ (HtW )2ε.

This therefore gives

K0 ≪ ∆HY

(tW )1/2
· (HtUVW )ε

(
UVW 1/2 + U1/2V 1/2W

)
, (4.8)

which is satisfactory for Proposition 1.
Next suppose that m is odd and l is even. Then we have(

ulvm

q′

)
= χ0(u)

(
v

q′

)
,

where χ0 is the principal character modulo q′. Hence, it is not possible to exploit
the summation over u. Therefore, we sum over u trivially and estimate the term

∑
W<w62W
(2rs,w)=1

de|tw

∣∣∣∣∣∣∣∣
∑

V <v6θ
(v,tw)=1

Du,v

(
v

q′

)∣∣∣∣∣∣∣∣
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using Lemma 2, just as above. In this way we arrive at the same bound for K0,
where the term U1/2 in (4.8) is replaced by U , as required. If l is odd and m is
even then the situation is the same, with the roles of u and v being interchanged.
Thus, in this case, the term V 1/2 in (4.8) needs to be replaced by V .

Finally suppose that l and m are both even. Then(
ulvm

q′

)
= χ0(uv),

where χ0 is the principal character modulo q′. Hence, in this case we have no
cancellations at all in K0, and the only possibility is to estimate trivially. Here the
term UVW 1/2 + U1/2V 1/2W in (4.8) needs to be replaced by UVW .

This completes the proof of Proposition 1. We note from (3.15) that when
dealing with the contribution corresponding to K0 in F±

4 , the roles of ab and q in
the Jacobi symbol are flipped. The oddness condition on m = ab in Lemma 2 will
be satisfied since (ab, q)=1 and 4 | q, whence (ab, 2) = 1 in this case.

4.2. The contribution of k ̸= 0

We first estimate the contribution K1 of k ̸= 0 trivially, by bounding all coefficients
Du,v and ew and the characters occurring in R(η, θ;h′, q′, k) by O(1). Rearranging
summations and dropping several summation conditions, we obtain

K1 ≪ ∆H(tW )1/2UV
∑
h6H

1

h

∑
W<w62W

∑
k6tw

1

k

∑
d,e

de|tw

1

d1/2e1/2
,

which therefore implies the following bound.

Proposition 2. We have K1 ≪ ∆H(tW )1/2UVW (HtW )ε.

A non-trivial saving can be obtained if UV is large compared to q0 and,
furthermore, du,v factorises in the form (1.7), which we now assume. By (4.1)
we have

R(η, θ;h′, q′, k) = R1(η, θ;h
′, q′, k) +R2(η, θ;h

′, q′, k),

where

R1(η, θ;h
′, q′, k) :=

∑
U<u6η

∑
V <v6θ

(uv,tw)=1

d′ud̃v

(
ulvm

q′

)
e

(
−4svmh′ · rulk2

q′

)
,

R2(η, θ;h
′, q′, k) :=

∑
U<u6η

∑
V <v6θ

(uv,tw)=1

|d′u| · |d̃v|
(
ulvm

q′

)
e

(
−4svmh′ · rulk2

q′

)
.

We focus here on bounding R1, the estimation of R2 being similar.
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We begin by writing

e

(
−4svmh′ · rulk2

q′

)
= e

(
−4svmh′ · rulk′

q′′

)
,

where

k′ :=
k2

(q′, k2)
, q′′ =

q′

(q′, k2)
. (4.9)

Now we write the additive character in terms of multiplicative characters via

e

(
−4svmh · rulk′

q′′

)
=

1

φ(q′′)

∑
χ mod q′′

χ(−4svmh · rulk′)τ(χ)

=
1

φ(q′′)

∑
χ mod q′′

χ(−4shrk′)χl(u)χm(v)τ(χ).

It follows that

R1(η, θ;h
′, q′, k) =

1

φ(q′′)

∑
χ mod q′′

χ(−4shrk′)τ(χ)
∑

U<u6η
(u,tw)=1

d′′uχ
l(u)

∑
V <v6θ
(v,tw)=1

˜̃
dvχ

m(v),

where d′′u := d′u(
u
q′ )

l and ˜̃
dv := d̃v(

v
q′ )

m. Note that for every fixed n ∈ N and every
character χ1 mod q′′ there are at most O

(
q′′

ε) characters χ mod q′′ with χ1 = χn.
Therefore, using Cauchy–Schwarz and the well-known bounds |τ(χ)| 6

√
q′′ and

φ(q′′) ≫ q′′1−ε, we deduce that

|R1(η, θ;h
′, q′, k)| ≪ q′′

−1/2+ε

 ∑
χ mod q′′

∣∣∣∣∣∣∣∣
∑

U<u6η
(u,tw)=1

d′′uχ(u)

∣∣∣∣∣∣∣∣
2

1/2

×

 ∑
χ mod q′′

∣∣∣∣∣∣∣∣
∑

V <v6θ
(v,tw)=1

˜̃
dvχ(v)

∣∣∣∣∣∣∣∣
2

1/2

.

Now using the large sieve for fixed modulus (see Iwaniec and Kowalski [9, page 179],
for example), together with |d′′u|, |

˜̃
dv| 6 1, we deduce that

|R1(η, θ;h
′, q′, k)| ≪q′′

−1/2+ε
(q′ + U)1/2(q′ + V )1/2(UV )1/2.

The same estimate holds for R2(η, θ;h
′, q′, k) on redefining d′′u and ˜̃

dv accordingly.
Hence, using (4.5) and (4.9), it follows that

[q′/2]∑
k=1

1

k
|R(η, θ;h′, q′, k)| ≪ q′−1/2+ε(q′ + U)1/2(q′ + V )1/2(UV )1/2

[q′/2]∑
k=1

(q′, k2)1/2

k

≪ d1/2e1/2(tW )−1/2+2ε(tW + U)1/2(tW + V )1/2(UV )1/2,
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where we have estimated the k-sum by O
(
q′

ε). Plugging the last line into (4.7),
rearranging the summations and dropping several summation conditions, we ob-
tain

K1 ≪ ∆H(tW )ε(tW + U)1/2(tW + V )1/2(UV )1/2
∑
h6H

1

h

∑
W<w62W

∑
d,e

de|tw

1.

This yields the following result, which improves Proposition 2 if UV is larger than
q0 = tW .

Proposition 3. We have K1 ≪ ∆H(tW + U)1/2(tW + V )1/2(UV )1/2W (HtW )ε,
if (1.7) holds.

4.3. Conclusion

Now we are ready to prove our final asymptotic estimate for S. First, combining
Propositions 1, 2 and 3, we get

F±
1 ≪ K0 +K1 ≪ T ,

where T is as in the statement of Theorem 2. The same bound holds for F±
2 and

F±
4 . Hence, using Theorem 3, we obtain F± ≪ T . Combining this with (3.2),

(4.2) and (4.3), we arrive at the statement of Theorem 2.
We end this section by discussing conditions under which we may expect the

main term to dominate the error term in Theorem 2. In many applications, the
length X̃(u, v, w, y) of the x-interval will be of size X̃(u, v, w, y) ≍ X 6 q0 = tW,
for some fixed X > 0, and the parameters in (1.8) will satisfy

F ≍ X, ρ ≍ U−1, σ ≍ V −1, τ ≍ Y −1. (4.10)

Moreover, in generic applications U and V will be shorter than the modulus, and
so we further suppose that U 6 tW and V 6 tW .

If there is not much cancellation in the sums over the coefficients, then the
expected size of the main term in (4.2) is

M ≍ UVWXY

q0
.

For the first O-term on the right side of the asymptotic formula in Theorem 2 to
be dominated by this we need H just slightly larger than q0/X. The choice

H =
q1+ε
0

X

would be satisfactory. Then ∆H ≪ qε0, by (1.9) and (4.10). Now, for T to be
smaller than M, we need

q1+ε
0 6 min

{
U2{l/2}V 2{m/2}X2, Z

}
and qε0t

1/2 6 X,
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where

Z :=

{
(UV )1/4(XY )1/2, if (1.7) holds and UV = tW ,
(XY )2/3, in general.
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