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CIRCULAR WORDS AND THREE APPLICATIONS:
FACTORS OF THE FIBONACCI WORD, F-ADIC NUMBERS,
AND THE SEQUENCE 1, 5, 16, 45, 121, 320,. . .

Benoît Rittaud, Laurent Vivier

Abstract: We introduce the notion of circular words with a combinatorial constraint de-
rived from the Zeckendorf (Fibonacci) numeration system, and get explicit group structures
for these words. As a first application, we establish a new result on factors of the Fibonacci
word abaababaabaab . . . Second, we present an expression of the sequence A004146 of [Sloane]
in terms of a product of expressions involving roots of unity. Third, we consider the equivalent
of p-adic numbers that arise by the use of the numeration system defined by the Fibonacci se-
quence instead of the usual numeration system in base p. Among such F-adic numbers, we give
a characterization of the subset of those which are rational (that is: a root of an equation of
the form qX = p, for integral values of p and q) by a periodicity property. Eventually, with the
help of circular words, we give a complete description of the set of roots of qX = p, showing in
particular that it contains exactly q F-adic elements.

Keywords: Fibonacci numeration system, words, Fibonacci substitution, adic representation.

Classically, a (finite) word is a finite sequence of elements (or letters) of a given set,
the alphabet. Here, we mean by circular word a finite word w0 . . . wn in which the
last letter, wn, is assumed to be followed by the first one, w0. This definition gives
rise to interesting properties when circular words are assumed to be admissible,
that is, made of letters in the alphabet {0, 1} without any two successive letters
equal to 1. These properties derive from an underlying algebraic structure: the set
of admissible circular words of fixed even length is an abelian group, which can be
explicitely written as a product of finite monogenetic groups. Some previous works
with links to this notion mainly adopted a dynamical point of view ([Sch], [S],[SV]),
whereas we consider here only number-theoretic aspects. In [FS], investigating the
links between the two natural representation of integers given by a Pisot number,
Christiane Frougny and Jacques Sakarovitch dealt with circular words of length 4
and some groups associated with automatas.
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One of the properties of circular admissible words of length 2ℓ is that their
cardinality cℓ is given by the sequence A004146 of [Sloane] (which starts by 1,
5, 16, 45, 121, 320,. . . ), which has many important combinatorial properties (see
[R]). The link between this sequence and admissible circular words appears also
in the sequence of determinants of a sequence of linear operators we consider for
our study. This fact gives rise to a formula that expresses each element of the
sequence A004146 as an explicit product of expressions of the form 1 − α − α2,
where α is a root of unity.

Another application of circular words is the study of factors of the Fibonacci
word M = abaababaabaab . . ., defined as the only fixed point of the substitution
a 7→ ab and b 7→ a. It appears that admissible circular words are closely linked to
this word, and the underlying arithmetic on these objects allows to write the word
bM in the form A(1) . . . A(q)M ′, where all the A(q)s are of length k and contain
the same number of a (and, thus, also the same number of b), where k and q are
explicit (and non-trivial) numbers.

A third application of circular words deals with what we call F-adic numbers.
For any integer p > 1, the set of p-adic integers is obtained by considering the
projective limit of the sequence of sets (Z/pnZ)n. In an intuitive way, it corre-
sponds to numbers whose “integral part” is made of infinitely many digits in base
p. Such a projective limit still makes sense for other numeration systems, as for
example numeration systems in non-integers bases (see [AF]). We consider here
the case of the Zeckendorf numeration system [Z]: define the Fibonacci sequence
(Fn)n by F0 = 1, F1 = 2 and Fn = Fn−1 + Fn−2 for any n > 2. For any integer
N , there exists a unique sequence (wn)n>0 of 0s and 1s such that wnwn+1 = 0
for any n (this property makes the sequence an admissible one) and such that
N =

∑
n wnFn (for a survey of numeration systems of this kind from a dynamical

point of view, see [BL]). Such a sequence has the property that, for some n0,
wn = 0 for all n > n0. Considering a sequence (wn)n without this latter property
leads to F-adic numbers. It is worth noting that, contrarily to the case of p-adic
numbers, we do not need to consider any “fractional part” to deal with F-adic
numbers.

In [GLT], Peter Grabner, Pierre Liardet and Robert Tichy investigated F-
adic numbers and generalizations by taking a dynamical standpoint. Here, we
take a number-theoretic perspective, considering the set of F-adic numbers as
a number set. We define an addition on the set of F-adic numbers and investigate
the properties of rational F-adic numbers, that is, F-adic numbers X such that,
for some integers p and q, qX = p. Circular words, then, appear to be a natural
tool to investigate such rational F-adic numbers, since their set corresponds to the
set of F-adic numbers whose expansion is ultimately periodic. The proof involves
tools from algebra and combinatorics on words. As an application of circular
words, together with the use of some more algebra, we show that the equation
qX = p (with X F-adic number and p, q integers) has q or (q + 1) F-adic roots,
depending only on whether p/q is an integer or not.
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Of course, it would be possible to consider other constraints on circular words
or F-adic numbers than the Zeckendorf one. We will not address here a general
theory, and postpone to another paper some results in some of these more general
cases.

1. General definitions and notations

1.1. Words

We will make use of the classical definitions on words, that are to be found for
example in [L]. Here, we consider words W on an alphabet A which will be always
made of integral numbers (with only one exception in section 3.1). We usually write
words in the form W = w0 . . . wn = wn

0 for a finite word, W = w∞
0 = w0 . . . wn . . .

for an infinite word (note that the set of indices always starts at 0), where the wis
are the letters. The notation ∅ stands for the empty word. Recall that |W | is the
length of W , |W |a is the number of occurrences of the letter a in W , and Wn is
the prefix of length n of the word W , with the convention W0 := ∅.

For W = wn
0 , we put Σ(W ) :=

∑n
i=0 wi =

∑
a∈A a|W |a.

As usual, the concatenation of W and W ′ (for W finite) is written WW ′, and
we put Wn := WWn−1 (with W 0 = ∅) and W∞ (resp. VW∞) for the periodic
(resp. ultimately periodic) infinite word of period W . Frequently in the sequel,
a finite word W of length ℓ will have to be considered as a word of length ℓ + ℓ′,
or even as an infinite word of period 0, by identifying W with W0ℓ

′
or W0∞.

Let W := wn
0 and W ′ := w′n′

0 be two words with (without loss of generality)
n > n′ (with n and n′ possibly infinite). The sum W +W ′ is the word such that
its i-th letter is wi +w′

i for i from 0 to n (the letter w′
i for i > n′ being defined as

0, identifying W with W0n
′−n as said previously).

1.2. Admissible words

A word W = wn
0 or w∞

0 on the alphabet {0, 1} is admissible iff wiwi+1 ̸= 11 for
any i.

We define (Fn)n as the following Fibonacci sequence: F0 = 1, F1 = 2 and,
for any n > 2, Fn := Fn−1 + Fn−2. The Zeckendorf numeration system is the
function that associates to each nonnegative integer k the only finite admissible
word Z(k) = w

n(k)
0 satisfying k =

∑n(k)
i=0 wiFi with wn(k) = 1. A classical result

asserts that the word Z(k) is obtained by the natural greedy algorithm, and that
Z is one-to-one from the set of nonnegative integers to the set of finite admissible
words ending with a 1. The reciprocal function of Z is written N .

Two finite words W := wn
0 and W ′ := w′

0
n′

on the alphabet N are equivalent iff∑
i wiFi =

∑
i w

′
iFi. We write W ≡W ′ in this case. What precedes indicates that

to any finite word W corresponds a unique admissible word equivalent to it, again
written Z(W ). For infinite words W and W ′, we write W ≡ W ′ iff there exists
two finite words X and X ′ and an infinite word Y such that X ≡ X ′, W = XY
and W ′ = X ′Y .
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For any finite admissible word V , we write V for the unique finite admissible
word such that Z(V + V ) = 0|V |1. (Of course, we cannot use the identification of
V and V 0n when considering V .)

Let W be a word on the alphabet {0, 1}, finite or infinite, different from the
null sequence. The valuation of W is the value

Val(W ) := min(n > 0 :Wn ̸= 0n).

Define the following transformations on words W = wn
0 on the alphabet N:

τ1(W ) :


w0 := w0 − 2,

w1 := w1 + 1,

wi unchanged for i > 2;

and, for k > 2:

τk(W ) :


wk := wk + 1,

wk−1 := wk−1 − 1,

wk−2 := wk−2 − 1,

wi unchanged for i /∈ {k − 2, k − 1, k}.

Let W := wn
0 be an admissible word, and let m > 0. The following reduction

algorithm takes W and m as input, and returns W := Z(W + 0m1) as an output
(the proof is a routine):

• Initialization: put wm := wm + 1, and i := m;
• while wi = 2 and i > 1, do

– put W := τi+1 ◦ τ−1
i (W );

– put i := i− 2;

• if w0 = 2 then put w0w1 := 01;
• while E := {k : wk−1wk−2 = 11} is non empty, do

– put i := max(E);

– put W := τi(W ).

We will very often make implicit use of the following result:

Proposition 1.1. [Ultimate stationnarity principle] For any finite word W on the
alphabet N there exists a finite admissible word A(W ) and a value a(W ) > 0 such
that, for any n > a(W ), we have Z(0nW ) = 0n−a(W )A(W ).

Proof. Assume that the ultimate stationnarity principle is true for any word W
such that Σ(W ) 6 j for some j, and consider a word W such that Σ(W ) = j + 1.
We find m > 0 such that W =W ′ +0m1, where W ′ is a word on N. By induction
hypothesis, for some admissible word A = A(W ′) and some a = a(W ′) > 0, for any
n > a, we have Z(0nW ′) = 0n−aA. Hence, we have Z(0nW ) = Z(0n−aA+0m+n1).



Circular words and three applications 211

Observe that, for any finite word W , any i > 2 and any m > 0, we have
τi+m(0mW ) = 0mτi(W ), so the ultimate stationnary principle is true for the finite
word W iff it is true for τi(W ) (i > 2). Hence, if, in the execution of the previous
reduction algorithm (when applied to the word 0n−aA and the value m + n), we
always get i > 2, then the proposition is true for W .

The case for which the algorithm leads to i = ε ∈ {0, 1} is when we get
this equality just after the end of the iteration of the first while loop. A simple
verification shows that this occurs only if 0n−aA+0m+n1 is of the form 0ε(10)k20X
with X admissible and k > 0. We hence have 0(n+2)−aA+ 0m+(n+2)1 of the form
02+ε(10)k20X, for which the reduction algorithm does never leads to w0 = 2 or
w1 = 2. We thus have proved that a(W ) 6 a(W ′) + 2. �

Lemma 1.1. If W and W ′ are finite admissible words, then Val(Z(WW ′)) >
Val(W ). Moreover, Val(Z(WW ′)) > Val(W ) iff W = 0n1 for some n > 0 and
Val(W ′) = 0.

Proof. Immediate. �

Lemma 1.2. Let V and V ′ be two finite admissible words. We have |Z(V +V ′)| 6
2 + max(|V |, |V ′|).

Proof. Since V and V ′ are admissible, we have N(V ) < F|V | and N(V ′) < F|V ′|,
so, assuming without loss of generality that |V | > |V ′|, we get N(V + V ′) 6
2(F|V | − 1) < F|V |+2, so we get the lemma. �

Lemma 1.3. Let W be a finite word on the alphabet {0, 1}. We have Val(Z(W )) >
Val(W ). Moreover, Val(Z(W ))− Val(W ) is even.

Proof. To get Z(W ) from W , we can apply the second loop of the previous
algorithm. Each time we apply some τi, the valuation either remains constant or
increases by two units, so we get the result. �

Proposition 1.2. Let W be a finite admissible word such that Val(W ) > 2, let
m > 2. There exists an integer n > −1 such that Val(Z(W+0m1)) = Val(W )+2n.
Moreover, n = −1 iff W + 0m1 is of the form 0r(10)s20W ′ with W ′ admissible.

Proof. For any i > 2, Val(τi(W )) is equal either to Val(W ) or to Val(W ) + 2
(and, so, Val(τ−1

i (W )) equal either to Val(W ) or to Val(W )− 2). By the previous
algorithm, we then get that Val(Z(W + 0m1)) ∈ Val(W ) + 2Z. The inequality
Val(Z(W + 0m1)) < Val(W ) can occur only if we need to go into the first loop of
the algorithm, to apply some τ−1

i . Consider the first iteration of this loop for which
the valuation of W decreases (of two units). This means that, at that moment of
the algorithm, W is of the form 0u20W ′ (with W ′ a word on {0, 1}) and becomes
0u−21001W ′. There is then no letter 2 anymore, and the iteration of the second
loop will only involve the part 1W ′ of the word and will not change the valuation.
Hence, we have proved that n > −1.
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Finally, if Val(Z(W + 0m1)) = Val(W ) − 2, then we must have went through
the first loop to get the form 0u20W ′; a simple induction shows that this forces
W + 0m1 to be of the required form. �

Corollary 1.4. Let W and W ′ be two finite admissible words such that m :=
min(Val(W ),Val(W ′)) > 2. There exists an integer i > −1 such that Val(Z(W +
W ′)) = m+ 2i. Moreover, we have

Val(Z(W +W ′)) = m− 2 ⇐⇒W +W ′ = 0m(10)n20(U + U ′)

where n > 0 and U (resp. U ′) is the suffix of W (resp. of W ′) of length
max(0, |W | − (m+ 2n+ 2)) (resp. max(0, |W ′| − (m+ 2n+ 2))).

The proof is left as an exercice.

2. Circular words

2.1. Generalities

A finite word W := wn
0 being given (on some alphabet), we denote by σ(W ) the

word w1 . . . wnw0. Define the circular equivalence ≈ between finite words by:

W ≈W ′ ⇐⇒ σk(W ) =W ′ for some k.

A circular word is an ordered set of the form [W,σ(W ), . . . , σ|W |−1(W )], for
a chosen finite word W . For any finite word W , we denote by W̃ the circular word
containing W as a first element. Its length, |W̃ |, is defined as the length of W . A
circular word is a power if we can write it of the form X̃k for some word X and
some integer k > 1. It is primitive if it is not a power. A circular word W̃ := w̃n

0

on the alphabet {0, 1} is admissible if wi mod (n+1)w(i+1) mod (n+1) ̸= 11 for any i.

For W̃ and W̃ ′ two circular words, we put W̃W̃ ′ := W̃W ′.
We define the transformations τ̃i on circular words W̃ on the alphabet N and

of length at least 3 (with W = w
|W |−1
0 ) by τ̃i(W̃ ) = W̃ ′, where W ′ = w′|W |−1

0 is
defined by:

w′
j :=


wi mod |W | + 1 for j = i mod |W |;
w(i−1) mod |W | − 1 for j = (i− 1) mod |W |;
w(i−2) mod |W | − 1 for j = (i− 2) mod |W |;
wj for any other j.

For W̃ and W̃ ′ belonging to the same orbit under the τis, we write W̃ ≡ W̃ ′

and say that these words are equivalent.
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For any circular word W̃ , we define Ñ(W̃ ) := N(W ).

Proposition 2.1. Let W̃ be a circular word on N of length at least 2 and not
equivalent to 12n+3 (n > 0). There exists a unique admissible circular word Z̃(W̃ )

equivalent to W̃ , assuming the identification (̃01)n = (̃10)n for any n.
If W̃ = 12n+3, then its orbit under the τis does not contains any admissible

circular word.

Proof. We start by the existence. Assume W̃ contains only 0s and 1s. If it does
contains at least one 0, then we write W as a circular concatenation of subwords
of the form 10k (with k > 1), 1k0n (with k > 1 and n > 1) and (10)n (with n > 1),
possibly adding the prefix 0k (with k > 1). We then make use of the τis to reduce
each 1k0n either into 0(01)k/20n−1 (for k even) or into 10(01)(k−1)/20n−1 (for k
odd). Such an operation makes the number of 1s becoming strictly less, so its
iteration eventually ends, and leads to a circular word with only 0s and 1s and
free of any factor of the form 11, so an admissible word. If W̃ = 12ℓ, then we have
τ0◦τ2◦· · ·◦τ2(ℓ−1)(W̃ ) = (10)ℓ; note that we also have τ1◦τ3◦· · ·◦τ2ℓ−1(W̃ ) = (01)ℓ,
which justifies the identification (̃01)n = (̃10)n.

Now, let W̃ be admissible and consider W̃ + 0i−110i−|W̃ | for some i > 0. This
latter word is either on {0, 1} (then we are done, by what precedes), or on {0, 1, 2}
with exactly one 2, surrounded by two 0s, and nowhere the factor 11. The rank of
the letter 2 is i. Apply τi+1 ◦ τ−1

i (from now, all the indices are to be understood
modulo |W̃ |). The factor wi−2020 of W̃ is then replaced by (wi−2 + 1)001. If
wi−2 = 0, then we are back to a word on {0, 1} and we are done. Otherwise, we
iterate the same process at the rank i − 2, then i − 4, etc., until we get a word
on {0, 1} (so we are done) or we get a 2 at the rank i+ 1. In this latter case, we
get that W̃ + 0i−110|W̃ |−i is of the form ˜(10)n200, which is equivalent to 12n+3.
Then, for any value j, we have W̃ + 0i−110|W̃ |−i + 0j−110|W̃ |−j ≡ 1j−121|W̃ |−j ≡
0j−310|W̃ |−(j+2), which is admissible.

Hence, iterating the process of adding words of the form 0i−110|W̃ |−i and re-
ducing the result either leads to an admissible word or leads to 12n+3; this gives
us the existence part of the proposition.

Now, let us consider the unicity part.

Lemma 2.1. The circular word 0ℓ is equivalent to no other circular word on N.

Proof. Let W be a finite word on N with W = wn
0 containing at least one letter

different from 0. For any τi or τ−1
i that can be applied to W̃ , the number of letters

different from 0 cannot become null, so we are done. �

Let W̃ and X̃ be two equivalent admissible circular words of length n + 1.
Regardless of the negative values possibly involved in the following expression,
write X̃ = τ̃a0

0 ◦ · · · ◦ τ̃an
n (W̃ ), with integer values for all the ais. Write A for the

vector (ai)06i6n and define the linear operator M = (mij)i,j on Rn+1 by mi,i = 1,
mi,((i+1) mod (n+1)) = −1 and mi,((i+2) mod (n+1)) = −1 for any 0 6 i 6 n.
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Lemma 2.2. For any i, we have −1 6 ai 6 1.

Proof. For any i, we have xi = wi + (MA)i. Hence, since wi and xi are equal
to 0 or 1, we have −1 6 (MA)i 6 1 for any i. Moreover, since xixi+1 ̸= 11, we
have (MA)i = 1 ⇒ (MA)i+1 6 0 and, since wiwi+1 ̸= 11, we have (MA)i =
−1 ⇒ (MA)i+1 > 0 (in the present proof, all the indices are to be understood
mod n+ 1).

Without loss of generality, assume a0 =: a = ||A||∞. We write MA =: B :=
(bi)

n
i=0. The inequalities |a − a1 − a2| = |b0| 6 1, |a1| 6 a and |a2| 6 a implies

|a1| > −1. The inequalities |an − a− a1| = |bn| 6 1, |an| 6 a and |a1| 6 a implies
a1 6 1. If a1 = 1, then bn = an− (a+1), so, since bn > −1, we get an = a. Hence,
since an−1 6 a, we get bn−1 = an−1 − an − a = an−1 − 2a 6 −a < −1, which
is forbidden. If a1 = 0, then |bn| = an − a, so an = a or a − 1. If an = a, then
bn−1 = an−1 − 2a 6 −a < −1, a contradiction. Hence, an = a − 1, which gives
bn = −1 and bn−1 = an−1 − 2a+ 1 < 0, also a contradiction.

Therefore, we have proved that a0 = a = ||A||∞ implies a1 = −1. Hence,
b1 = a+1−a2, so a2 = a. By induction, we then get that a2i+1 = −1 and a2i = a
for any i, so b1 = a1 − a2 − a3 = −a < −1, a contradiction, and the lemma is
proved. �

Lemma 2.3. Let W̃ be a circular word of length n > 3 on N. For any i, we have

N(τ̃i(W̃ )) =


N(W̃ ) for 2 6 i 6 n;
N(W̃ ) + 1− Fn for i = 1;
N(W̃ ) + 1− Fn+1 for i = 0.

Proof. Simple verification. �

By Lemma 2.3, there exists two integers a0 and a1 such that N(W̃ ) = N(X̃)+
a0(1 − Fn+1) + a1(1 − Fn). By Lemma 2.2, we also have max(|a0|, |a1|) 6 1.
Without loss of generality, we assume N(W̃ ) 6 N(X̃). Recall also that both
N(W̃ ) and N(X̃) are upper-bounded by Fn+1 − 1. All these conditions can be
satisfied only in the following cases: (a0, a1) = (0,−1), (−1, 0), (0, 0) and (−1, 1).

The case (a0, a1) = (0, 0) gives N(W̃ ) = N(X̃), that is N(W ) = N(X),
which implies W = X by unicity of the Zeckendorf expansion. For (a0, a1) =

(−1, 0), we get N(X̃) − N(W̃ ) = Fn+1 − 1, so W = 0n+1 and X is of the form
. . . 01010101 (which implies that n is even, otherwise X̃ would not be admissible).
By Lemma 2.1, W̃ and X̃ are not equivalent. For (a0, a1) = (−1, 1), the condi-
tion −1 6 (MA)i 6 1 for all i gives by a simple induction that ai = (−1)i+1

for all i. This gives that xi = wi + (−1)i+1 for any i, so W = (10)(n+1)/2 and
X = (01)(n+1)/2.

The last remaining case is (a0, a1) = (0,−1), for which we have N(X̃) −
N(W̃ ) = Fn − 1. Extending the definition of the τ̃is to circular words on Z
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makes the τis commuting, so we can write τ̃a0
0 ◦ · · · ◦ τ̃an

n (W̃ ) = X̃, and we can
apply the τ̃is in any order. Since a0 = 0 and a1 = −1, we get

X̃ = τ̃a2
2 ◦ · · · ◦ τ̃an

n ((w0 + 1)(w1 − 1)w2 . . . wn−1(wn + 1)) (2.1)

(in which we write circular words as classical words). Note that, for any i, the
only values j for which the application of τ̃j changes the letter of rank i are j = i,
i + 1 and i + 2 mod(n + 1). Hence, if w0 = 1 (so w1 = 0), then Equation (2.1)
forces a2 = 1, which gives

X̃ = τ̃a3
3 ◦ · · · ◦ τ̃an

n (1(−2)(w2 + 1)w3 . . . wn−1(wn + 1)).

The value −2 at the rank number 1 cannot become 0 or 1 with the remaining
τ̃is, since only the operation τ̃a3

3 can change its value, adding at most 1 to it.
Hence, we cannot have w0 = 1, so w0 = 0. Thus, we have

X̃ = τ̃a2
2 ◦ · · · ◦ τ̃an

n (1(w1 − 1)w2 . . . wn−1(wn + 1)). (2.2)

Since the latter word starts with a 1 and ends with wn + 1 > 1, and since the
only operation that can still be used to avoid these two successive (circularily)
positive letters is τ̃−1

n , we have an = −1, and:

X̃ = τ̃a2
2 ◦ · · · ◦ τ̃an−1

n−1 (1(w1 − 1)w2 . . . wn−3(wn−2 + 1)(wn−1 + 1)wn). (2.3)

The admissibility condition then gives that wn = 0. If wn−1 = 1 (then
wn−2 = 0), then a simple checking show that no pair (an−2, an−1) of numbers
among −1, 0 and 1 can transform this part of the word into an admissible word
(and the τ̃i for i < n−2 are of no effect on this part of the word). Hence, we must
have wn−1 = 0.

Now, if wn−2 = 1, then (wn−2 + 1)(wn−1 + 1)wn = 210 and, again, a checking
shows that no pair (an−2, an−1) of numbers among −1, 0 and 1 can transform
this part of the word into an admissible word. Hence, wn−2 = 0, so (wn−2 + 1)
(wn−1 + 1)wn = 110. Thus, we cannot have an−1 = 1. If an−1 = −1, then

X̃ = τ̃a2
2 ◦ · · · ◦ τ̃an−2

n−2 (1(w1 − 1)w2 . . . wn−4(wn−3 + 1)200), (2.4)

which leads to the same problem that appeared previously. Hence, an−1 = 0, so
an−2 = −1 and

X̃ = τ̃a2
2 ◦ · · · ◦ τ̃an−3

n−3 (1(w1 − 1)w2 . . . wn−5(wn−4 + 1)(wn−3 + 1)010). (2.5)

Iterating the reasoning eventually leads to:

X̃ =

{
τ̃a2
2 τ̃a3

3 (1(w1 − 1)(w2 + 1)(w3 + 1)01010 . . . 1010) if n is even;
τ̃a2
2 τ̃a3

3 τ̃a4
4 (1(w1 − 1)w2(w3 + 1)(w4 + 1)01010 . . . 1010) if n is odd,

with wi = 0 for all i > 4 for n odd and all i > 5 for n even.
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Take n even. By the same kind of reasoning, we successively get w3 = 0, then
w2 = 0, so 1(w1 − 1)(w2 + 1)(w3 + 1) = 1(w1 − 1)11. A check then shows that
no pair (a2, a3) can give an admissible circular word in the right hand side of the
previous equality.

Now, consider the case n odd. We also get successively w4 = 0, then w3 = 0,
then a4 = 0, then a3 = −1, then a2 = 0, then w2 = 0 and finally w1 = 0, so
W = 0|W | and X = (01)(n+1)/2, a contradiction with Lemma 2.1. Hence, the
unicity is proved.

Finally, let us consider the case W̃ = 1̃2n+3. Assume that 1̃2n+3 ≡ X̃, where
X̃ is admissible, and write X̃ = τ̃a0

0 ◦ · · · τ̃a2n+2

2n+2 (1̃2n+3). Since 1̃2n+3 is invariant
under σ, the words σk(X̃) are admissible and equivalent circular words for any k.
Moreover, since X is not of the form x2n+3 (x = 1 would give a non-admissible
word, and x = 0 would contradict Lemma 2.1), the set {σk(X̃) : k > 0} has
cardinality at least two, a fact which contradicts the unicity we just proved. �

2.2. Group structures

We define the operation ⊕ between circular admissible words of the same even
length, W̃ and W̃ ′, by: W̃ ⊕ W̃ ′ := Z̃(W̃ + W̃ ′). We will also write, for any n > 1,
n · W̃ := ((n− 1) · W̃ )⊕ W̃ , with 0 · W̃ := (01)|W |/2.

Theorem 2.4. Define the sequences (cℓ)ℓ>1 and (dℓ)ℓ>1 by:

c1 := 1 cℓ := F2ℓ−1 + F2ℓ−3 − 2 for ℓ > 2;

d1 := 1 dℓ :=

{
Fℓ−2 if ℓ > 1 is even;
Fℓ−1 + Fℓ−3 if ℓ > 1 is odd.

For any n > 1, we have c2k+1 = d22k+1 and c2k = 5d22k.

The set G∗
ℓ of circular admissible words of length 2ℓ excluding 0̃2ℓ and with the

identification (̃01)ℓ = (̃10)ℓ is an abelian group for the addition ⊕, with (̃01)ℓ =

(̃10)ℓ as identity element. More precisely, this group has cardinality cℓ and is
isomorphic to (Z/dℓZ)2 for odd ℓ, and isomorphic to (Z/5dℓZ) × (Z/dℓZ) for
even ℓ.

The star ∗ is here to recall that the word 02ℓ is not considered (in particular,
it is not the identity element).

It is worth noting that the sequence (cℓ)ℓ defined in Theorem 2.4 possesses
numerous combinatorial properties (see [R]); it corresponds to the integer sequence
A004146 in [Sloane].

Proof. The relations c2k+1 = d22k+1 and c2k = 5d22k are trivial consequences of the
classical Binet formula Fn = (φn+2 −φn+2)/

√
5 for any n (where φ = (1+

√
5)/2

and φ = (1−
√
5)/2).
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By Lemma 2.1, if W̃ and W̃ ′ are elements of G∗
ℓ , then W̃⊕W̃ ′ is also an element

of G∗
ℓ (that is: W̃ ⊕ W̃ ′ ̸= 0̃2ℓ), so ⊕ is well-defined in G∗

ℓ .
Observe that any element of G∗

ℓ can be written as a (unique and finite) sum

(in the usual sense) of words of the form ˜0k102ℓ−k−1. To prove that (̃01)ℓ =

(̃10)ℓ is the identity element, by the associativity (and commutativity) of ⊕, it
is therefore enough to show that ˜0k102ℓ−k−1 ⊕ (̃10)ℓ = ˜0k102ℓ−k−1 ⊕ (̃01)ℓ =

˜0k102ℓ−k−1, and these latter equalities are obtained by straightforward computa-
tions. Also, since ˜02k102(ℓ−k)−1 (resp. ˜02k+1102(ℓ−k−1)) admits ˜(10)k00(10)ℓ−k−1

(resp. ˜(01)k00(10)ℓ−k−1) as an opposite element, we obtain that G∗
ℓ is an abelian

group for ⊕.
Now, let us consider the cardinality of G∗

ℓ . We first count the number of
admissible words of length 2ℓ, excluding those which starts and ends with a 1.
We split this latter set in two subset: the first one is made of words not ending
with a 1, its cardinality is equal to 1 + N(1(01)ℓ−1) = F2ℓ−1. The second one is
made of words ending with 01 and starting with a 0, its cardinality is equal to the
cardinality of admissible words of length 2ℓ − 3 (by the bijection W 7−→ 0W01),
which is equal to F2ℓ−3. Hence, the number of admissible words of length 2ℓ not
both starting and ending with a 1 is equal to F2ℓ−1+F2ℓ−3. To get the cardinality
of G∗

ℓ , it only remains to suppress the word 02ℓ and to identify (01)ℓ with (10)ℓ,
which eventually leads to the value cℓ.

To prove the end of the theorem, note first that the circular words 1̃02ℓ−1 and
˜0102ℓ−2 generate the full group G∗

ℓ . Indeed, the relation Fk−1 · (1̃02ℓ−1) + Fk ·
( ˜0102ℓ−2) = 0k+2102ℓ−k−5 for any k > 0 (with F−1 := 1) proves that the subgroup
generated by these two words contains the set of words with only one 1, which
obviously generates G∗

ℓ itself. Hence, G∗
ℓ is an abelian group generated by at most

two elements.
Assume ℓ = 2k + 1. By induction, we easily get that dℓ = vℓ, where vℓ is

defined in the proof of Lemma 4.1 (see section 4.1). By the same technique as in
the proof of this lemma, we obtain that Z̃( ˜dℓ · (102ℓ−1)) = (10)ℓ. Both generators
are hence of order at most dℓ. Hence, since G∗

ℓ is of cardinality strictly bigger than
dℓ, G∗

ℓ is necessarily of the form (Z/aZ)× (Z/bZ) with ab = d2ℓ ; moreover, we must
have a and b both upper-bounded by dℓ, so a = b = dℓ.

Assume ℓ = 2k. Again by the same kind of technique, we get this time that
Z̃( ˜5dℓ · (102ℓ−1)) = (10)ℓ. Hence, G∗

ℓ is of the form (Z/aZ)× (Z/bZ) with ab = 5d2ℓ
and max(a, b) 6 5dℓ, so we are done. �

In passing, a simple way to find the opposite of an element W̃ = w̃2ℓ−1
0 of G∗

ℓ is
the following (see also the proof of Theorem 4.4): define the word W ′ as the word
whose i-th letter is equal to 1−wi (for all 0 6 i < 2ℓ). We then easily verify that:
−W̃ = Z̃(W̃ ′).
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We can get natural embeddings between the groups G∗
ℓ by making use of the

following result.

Proposition 2.2. Let k and ℓ be positive integers. The application W̃ 7−→ W̃ k is
a morphism from G∗

ℓ into G∗
kℓ.

Proof. Simple verification. �

Let W̃ and W̃ ′ be circular admissible words, non necessarily of the same length.
By Proposition 2.2, we can put both W̃ and W̃ ′ in the same G∗

ℓ , by a convenient
choice of k for each word. This allows us to extend the definition of the operation
⊕ to words W̃ and W̃ ′ of possibly different (even) lengths, in the following way:

W̃ ⊕ W̃ ′ := Z̃

(
W̃m/|W | + ˜W ′m/|W ′|

)
, where m = lcm(|W |, |W ′|).

Theorem 2.5. For q > 1, let P∗
q be the set of circular admissible words W̃ of

even length, containing at least one 1 and satisfying q̃W = ˜(01)|W |/2. Assume also
the identifications (̃01)n = (̃10)n and W̃ = W̃n for any n. The set P∗

q equipped
with the addition ⊕ is an abelian group isomorphic to (Z/qZ)× (Z/qZ).

Proof. The fact that P∗
q is a group for ⊕ is trivial. Hence, for any ℓ, the subset

of P∗
q made of words of length 2ℓ is a subgroup of G∗

ℓ .

Lemma 2.6. For any q > 2, there exists an ℓ such that q divides dℓ.

Proof. Consider the sequence of pairs (Gi, Gi+1) := (Fi mod q, Fi+1 mod q) for
all i > 0. Since there are finitely many pairs of integers between 0 and q − 1, we
can find two different values, i and j, such that (Gi, Gi+1) = (Gj , Gj+1), so the
definition of the sequence implies that (Gi, Gi+1)i is ultimately periodic. Moreover,
for any pair (a, b) of integers between 0 and q − 1, the pair ((b − a) mod q, a) is
the only pair (y, z) for which there can be an i such that (a, b) = (Gi, Gi+1) and
(y, z) = (Gi−1, Gi). Hence, the sequence (Gi, Gi+1)i is purely periodic, and we
can find a value m > 1 such that (Gm+1, Gm+2) = (F0 mod q, F1 mod q) = (1, 2).
We then get that (Gm, Gm+1) = (1, 1), so (Gm−2, Gm−1) = (−1, 0). Therefore, if
m − 1 is even, then q divides dℓ := dm−1 = Fm−1, and if m − 1 is odd, then q
divides dℓ := dm+2 = Fm + Fm−2. �

The value of q being given, we fix by Lemma 2.6 an ℓ such that q divides
dℓ. By Theorem 2.4, the maximal subgroup Mℓ of elements of G∗

ℓ of order q is
(Z/qZ)× (Z/qZ).

Now, let ℓ′ be another integer. Again by Theorem 2.4, in G∗
ℓ′ , the maximal

subgroup Mℓ′ of elements of order q is isomorphic (Z/aZ) × (Z/bZ), where a
and b are divisors of q. Since ℓℓ′ divides q, we have that Mℓℓ′ is isomorphic to
(Z/qZ) × (Z/qZ). By Proposition 2.2, G∗

ℓ′ and G∗
ℓ are subgroups of G∗

ℓℓ′ , so Mℓ

and Mℓ′ are subgroups of Mℓℓ′ . Since Mℓ = Mℓℓ′ , the result follows. �
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2.3. Size of circular words of order q, and natural generators of P∗
q

For a given q, consider the smallest ℓ for which P∗
q ⊂ G∗

ℓ . The value 2ℓ is denoted
by T (q) in the sequel. In general, the inclusion of Pq in G∗

T (q)/2 is strict. The set
of values q for which the equality arise is simply the set of q for which q2 is equal
to the cardinality of G∗

ℓ for some ℓ. That is: q satisfies P∗
q = G∗

ℓ for some ℓ iff
q = d2k+1 for some k (and, in this case, we have T (q) = 4k + 2). The following
result gives a precise description of the function q 7−→ T (q). It also reveals the
existence of two particular generators of P∗

q , denoted by Π and Π′, which are of
great importance for the understanding of algebraic structures arising from circular
words.

Theorem 2.7. For any q > 2, the minimal value ℓ for which P∗
q ⊂ G∗

ℓ satisfies
the formula

2ℓ = min(n > 2, n even : (Fn mod q) = (Fn−1 mod q) = 1).

Moreover, let Π̃ (resp. Π̃′) be the circular word of length 2ℓ equal to
Z((Fn−1)/q) (resp. Z((Fn−1−1)/q)). We have σ̃(Π) = Π̃′ and, for any 0 6 i 6 q:

i · Π̃ = ĩΠ and i · Π̃′ = ĩΠ′.

The circular words Π̃ and Π̃′ are the only non-trivial elements of P∗
q satisfying

this latter property.

The following part of this section is mostly devoted to the proof of this theorem.
Note first that the existence, for any q, of an even value n > 2 such that (Fn mod
q) = (Fn−1 mod q) = 1 is proved in a similar way as Lemma 2.6.

Lemma 2.8. Define the sequence (d′ℓ)ℓ as:

d′1 := 1 d′2 := 3 d′ℓ :=

{
Fℓ−1 + Fℓ−3 if ℓ > 1 is even;
Fℓ−2 if ℓ > 1 is odd.

For any ℓ > 0, we have

(i) if ℓ is odd, then (F2ℓ−1 − 1)/dℓ = Fℓ−1 and (F2ℓ − 1)/dℓ = Fℓ;
(ii) if ℓ is even, then (F2ℓ−1 − 1)/dℓ = dℓ+1 and (F2ℓ − 1)/dℓ = d′ℓ+2.

Proof. Simple calculation. �

Corollary 2.9. For any ℓ > 0, we have gcd(F2ℓ − 1, F2ℓ−1 − 1) = dℓ.

Proof. For ℓ odd, the result derives from the fact that Fℓ−1 and Fℓ are mutually
prime. For ℓ even, observe that any common divisor d > 0 of dℓ+1 = Fℓ + Fℓ−2

and d′ℓ+2 = Fℓ+1 + Fℓ−1 is also a divisor of d′ℓ+2 − dℓ+1 = Fℓ−1 + Fℓ−3 and, by
induction, also a divisor of F3 + F1 = 7 and of F2 + F0 = 4, so d = 1. �
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From now, we consider the notation of Theorem 2.7. In the sequel, we take
q = dℓ since, by Corollary 2.9, this case is enough to get Theorem 2.7. In this
case, also, Lemma 2.8 gives that Π = 0ℓ−110ℓ and Π′ = 0ℓ10ℓ−1 for odd ℓ, and
Π = 0ℓ−21010ℓ−1 and Π′ = 0ℓ−11010ℓ−2 for even ℓ. Consider for example the
case ℓ odd (the other case leading to the same case of study, with the help of the
decomposition 0ℓ−21010ℓ−1 = 0ℓ−210ℓ+1 + 0ℓ10ℓ−1). By Lemma 4.1 applied to
the case m = ℓ − 1 and n 6 m/2, and also by Lemma 4.2, we get that, for any
k 6 un = Fℓ−2 + Fℓ−4, k · Π̃ = k̃Π, and ũnΠ = ˜0m−2n104n−110ℓ−2n. Hence, more
generally, we get that, for any k 6

∑n
j=0 uj = dℓ (this latter equality coming from

a simple induction), k · Π̃ = k̃Π, and dℓ · Π̃ = d̃ℓΠ = (̃10)ℓ. The same study for Π′

works as well, so Theorem 2.7 is proved.

Theorem 2.7 gives an explicit way to get the full set P∗
q that is useful in itself:

(i) Let n > 3 be the smallest even integer such that (Fn mod q)
= (Fn−1 mod q) = 1.

(ii) Let Π be the admissible word of length 2ℓ := n such that Z(Π)
= (Fn−1 − 1)/q.

(iii) We have P∗
q = {(a · Π̃)⊕ (b · σ̃−1(Π)) : a, b ∈ {0, . . . , q − 1}}.

In passing, we conjecture that, apart for the case q = 2, the smallest value n > 3
such that (Fn mod q) = (Fn−1 mod q) = 1 is always even, so the assumption n
even in Theorem 2.7 is useless for q > 2.

3. Two applications of circular words

3.1. A property of the Fibonacci word

This section is devoted to the proof of the following theorem.

Theorem 3.1. Let M := abaababaabaab . . . be the Fibonacci word, that is: the
fixed point of the substitution defined on the alphabet {a, b} by a 7→ ab and
b 7→ a. For ℓ > 2, let Nℓ := bMF2ℓ−2

. Define the words A(1), . . . , A(k) by
Nℓ = A(1) · · ·A(k)a and |A(i)| = dℓ, where k = F2ℓ−2/dℓ. The value |A(i)|a (and,
hence, the value |A(i)|b) does not depend on i 6 k.

It is highly probable that, defining A as the word of length dℓ such that bM =
A1 · · ·AkAM

′, we have |A|a ̸= |A(i)|a. Also, we can get that |A(i)|a = d′ℓ−2 and
|A(i)|b = dℓ−1.We will not prove this here.

Note that the fact that F2ℓ−2/dℓ is an integer is a direct consequence of
Lemma 2.8.

Definition 3.2. Let W̃ ∈ G∗
ℓ different from the identity element, let

X ∈ {(10)ℓ, (01)ℓ, (11)ℓ}. We say that W̃ is of type X iff

Ñ(W̃ ) + Ñ(−W̃ ) = N(X).
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We denote by T ∗
X the set of elements of type X in G∗

ℓ . For X ∈ {(01)ℓ, (10)ℓ}, we
also put TX := T ∗

X ∪ {X}.

Proposition 3.1. Let W̃ and W̃ ′ be two elements of the set T ∗
X for some X ∈

{(10)ℓ, (01)ℓ, (11)ℓ}. We have

Ñ(W̃ ) + Ñ(W̃ ′) = N(X) ⇐⇒ W̃ = −W̃ ′.

Proof. Simple consequence of the injectivity of N . �

Proposition 3.2. We have

T(10)ℓ ∪ T(01)ℓ ∪ T ∗
(11)ℓ = G∗

ℓ .

More precisely:

(i) The set T(10)ℓ is the set of circular words W̃ ∈ G∗
ℓ such that W admits

02m1 as a prefix (for some m > 0) and 0 as a suffix.
(ii) The set T(01)ℓ is the set of circular words W̃ ∈ G∗

ℓ such that W admits
02m+11 as a prefix (for some m > 0).

(iii) The set T ∗
(11)ℓ is the set of circular words W̃ ∈ G∗

ℓ such that W admits
02m1 as a prefix (for some m > 0) and 1 as a suffix.

In particular, we have σ(T(01)ℓ) = T(10)ℓ , and:

Card(T(10)ℓ) = Card(T(01)ℓ) = Fn−2 and Card(T ∗
(11)ℓ) = Fn−5 − 1.

The proof of Proposition 3.2 basically consists in writing the opposite of w̃2ℓ−1
0

on the form Z̃(w̃′2ℓ−1
0 ), where w′

i = 1 − wi for any i, in studying in which case
the transformations τ̃0 and τ̃1 are to be considered to get the admissible form of

w̃′2ℓ−1
0 and in applying Lemma 2.3. The details are left to the reader.

The form of the element of T(10)ℓ and T(01)ℓ leads to the following characteri-
zation of the structure of these sets.

Proposition 3.3. Recall that M = abaababaabaab . . . is the Fibonacci word. We
have

N(T ∗
(10)ℓ) = {1 + 2|Mk|a + |Mk|b, 0 6 k < F2ℓ−2},

N(T ∗
(01)ℓ) = {1 + 3|Mk|a + 2|Mk|b, 0 6 k < F2ℓ−2},

N(T ∗
(11)ℓ) = {F2ℓ−1 + 3 + 5|Mk|a + 3|Mk|b, 0 6 k < F2ℓ−5 − 1}.

Proof. Consider for example the case of N(T ∗
(10)ℓ), the other ones being similar.

Assume the property true until N(T ∗
(10)ℓ−1) and consider N(T ∗

(10)ℓ). For 0 6 k <

F2ℓ−2, we have either k < F2ℓ−4 (for which we can apply the induction hypothesis),
or F2ℓ−4 6 k < F2ℓ−2. In this latter case, define k′ by k = F2ℓ−4 + k′, so
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0 6 k′ < F2ℓ−3. Recall here the classical characterization of M by blocks: if we
put B(−1) := b, B(0) := a and, for any j > 1, B(j) := B(j−1)B(j−2), then we have
M = limj(B

(j)). Therefore, we have

1 + 2|Mk|a + |Mk|b = 1 + 2(F2ℓ−5 + |Mk′ |a) + (F2ℓ−6 + |Mk′ |b)
= F2ℓ−3 + (1 + 2|Mk′ |a + |Mk′ |b).

If k′ < F2ℓ−4, then, by induction hypothesis, the value in the last parenthesis
admitsW00 as a Zeckendorf representation, whereW is of type (10)ℓ−1. Moreover,
we have Z(F2ℓ−3) = 02ℓ−3100, so we eventually get that Z(1 + 2|Mk|a + |Mk|b)
has the desired form, by Proposition 2 if W admits 00 as a prefix, by a simple case
study if W begins with a 1.

If F2ℓ−4 6 k′ < F2ℓ−3, then we put k′ = F2ℓ−4 + k′′, and the reasoning is
similar.

Hence, we have otained that any number of the form 1 + |Mk|a + |Mk|b for
0 6 k < F2ℓ−2 belongs to N(T ∗

(10)ℓ). Since we know by Proposition 3.2 that this
latter set has precisely F2ℓ−2 elements, we are done. �

In passing, it is also possible to describe in similar terms the set of forbidden
values for G∗

ℓ , that is, the set of positive integers k strictly less than Fn and such
that the word Z(k), assumed of length 2ℓ, admits 1 as a prefix and also as a suffix
(hence does not correspond to an admissible circular word of G∗

ℓ ). Here is the
result, without proof.

Proposition 3.4. With the notation of Proposition 3.3, the set U2ℓ of forbidden
values for G∗

ℓ satisfies

U2ℓ = {Fn−1 + 1 + 3|Mk|a + 2|Mk|b, 0 6 k < F2ℓ−4}.

Proposition 3.5. Let Π̃ and Π̃′ be the circular words defined in Theorem 2.7, for
q := dℓ. For any k 6 q, k̃Π is of type (10)ℓ and k̃Π′ is of type (01)ℓ.

Proof. This is a consequence of an observation made in the proof of Theorem
2.7: in the case q = dℓ, we have Π = 0ℓ−110ℓ and Π′ = 0ℓ10ℓ−1 for odd ℓ, and
Π = 0ℓ−21010ℓ−1 and Π′ = 0ℓ−11010ℓ−2 for even ℓ. In any case, Π is of type
(10)ℓ and Π′ of type (01)ℓ. We also observed that, also in the case q = dℓ, for any
k < dℓ, Val(kΠ) satisfies Val((k + 1)Π) = Val(kΠ) or Val(kΠ)− 2, so the type of
kΠ remains constant. The same result holds for Π′, so the proposition is proved
in the case q = dℓ, hence also for any divisor of dℓ. �

To end the proof of Theorem 3.1, observe that, by Theorem 2.7 and Proposi-
tions 3.2 and 3.5, we have, for any 0 < i 6 dℓ, N(Π) = iN(Π) − (i − 1)N(Π) =
2|A(i)|a+|A(i)|b. Moreover, it is well-known thatM is balanced, that is: for a given
length m and two factors V and V ′ of M of length m, we have ||V |a − |V ′|a| 6 1.
Together with the previous fact asserting that 2|A(i)|a + |A(i)|b is constant, this
implies that |A(i)|a and |A(i)|b are constant.
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3.2. A formula for the integer sequence A004146

Recall the definition of the integer sequence defined in Theorem 2.4:

c1 := 1 cn := F2n−1 + F2n−3 − 2 for n > 2.

The aim of this section is to prove the following result:

Theorem 3.3. For any n > 0, let αn := e2iπ/n. We have, for any n > 2:

cn = −
2n−1∏
j=0

(1− αj
n − α2j

n ).

To this end, we consider again, for any n > 2, the linear operator M = Mn+1

on Rn+1 defined after Lemma 2.1: Mn+1 = (mij)i,j with

mi,i = 1, mi,((i+1) mod (n+1)) = −1 and mi,((i+2) mod (n+1)) = −1

for any 0 6 i 6 n.

Lemma 3.4. For any 0 6 j 6 n, the value 1−αj −α2j is an eigenvalue of Mn+1,
associated to the vector Vj := (αkj)nk=0.

Proof. Simple verification. �

Since the family {Vj , 0 6 j 6 n} is a base of Rn+1 (since the vectors Vj
make a Vandermonde matrix), we get that Mn+1 is diagonalizable, and that its
determinant is equal to

∏n
j=0(1− αj

n − α2j
n ).

Now, let us give another way to get this determinant.

Lemma 3.5. The characteristic polynomial Pn(X) = det(Mn −XI) of Mn sat-
isfies, for any n > 5:

Pn(X) = Pn−1(X)+(1−X)Pn−2(X)−(1+X)(1−X)n−1+(−1)n+1(X−1)+2·(−1)n.

Proof. For any n > 2, we denote by Rn(X) the determinant of the operator
(ri,j)16i,j6n of Rn defined for all i for which the following expressions make sense:
ri,i = −1, ri,i+1 = −1 and ri,i−1 = 1−X.

Now, take n > 5. Write the expansion along the first line of the determinant
Pn(X) as (1 − X)An−1(X) + Bn−1(X) − Cn−1(X). The expansion of An−1(X)
along the first column gives that An−1(X) = (1−X)n−1 − (−1)nRn−2(X). Write
Bn−1(X) = (−1)nDn−2(X)− (−1)nRn−2(X) for the expansion of Bn−1(X) along
the first column; the expansion of Dn−2(X) along the last line gives that
Dn−2(X) = (1 −X)Rn−3(X). Write Cn−1(X) = −(1 −X)Bn−2(X) − En−2(X)
for the expansion of Cn−1(X) along the first line. The expansion along the first
line of En−2(X) followed by a simple induction gives that En−2(X) = (−1)n.

Putting together all these results gives

Pn(X) = (1−X)n + (−1)n − (−1)n(2−X)Rn−2(X)

+ (−1)n(2− 2X)Rn−3(X)− (−1)n(1−X)2Rn−4(X).
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It is a classical exercice to show that, for any n > 4, Rn(X) = (1−X)Rn−2(X)−
Rn−1(X), with R2(X) = 2 − X and R3(X) = 2X − 3. Eventually, a simple
calculation gives the desired result. �

Lemma 3.5 for X = 0 then gives that det(Mn) = det(Mn−1) + det(Mn−2) −
1 + 3 · (−1)n. Then, an induction shows that, for any n, det(M2n) = −cn and
det(M2n+1) = −d2n+1 (with the definition of (dn)n given in Theorem 2.4). With
the expression of det(Mn) obtained in Lemma 3.4, we get Theorem 3.3.

4. F-adic numbers

Before giving the definition that appears to be the most convenient, we feel in-
teresting to consider first some alternative definitions and explain why we do not
retain them.

4.1. First attempt

A first quite natural idea to define the set of F-adic numbers consists in consid-
ering the set of integer sequences NN (each element of which being regarded as an
infinite word on the alphabet N) equipped with the cylinder topology. Consider
the quotient of this set given by the closure of equivalence classes defined by the
relation ≡ (see section 1.2). This first attempt of definition is not convenient, be-
cause all the integers would belong to the same closed equivalence class, as shown
by the following

Proposition 4.1. Let W = w∞
0 be the infinite word defined by:

wn =


Fn−1 + Fn−3 if n = 22;
Fn−1 + Fn−3 − 1 if n = 2p with p > 3;
0 else.

The closed equivalence class of W contains all infinite words of the form X0∞

with X finite and admissible.

Proof. We need two lemmas first.

Lemma 4.1. Let (un)n be the sequence defined by u0 = 1, u1 = 3 and, for any
n > 2:

un := 2un−1 +
n−2∑
i=0

ui.

Let n > 1, let m > 2n. The finite word 0mun is equivalent to the finite word
0m−2n104n−11.
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Proof. Define, for any n > 0:

vn :=
n∑

i=0

un.

We prove the lemma by induction, adding to it the following complemen-
tary induction hypothesis: The finite word 0mvn is equivalent to the finite word
0m−2n(10)2n1.

Assuming that both the two properties are true until some value n > 1, choose
m > 2(n + 1). Since un+1 = un + vn, we have the following equivalence of finite
words:

0mun+1 ≡ 0m−2n20(10)2n−12

≡ 0m−2(n+1)1001(10)2n−12

≡ 0m−2(n+1)104n12

≡ 0m−2(n+1)104n+31,

which is the desired property for un+1.
Now, since vn+1 = vn+un+1, the induction hypothesis and the previous result

for un+1 immediately give the desired form for 0mvn+1. �

Lemma 4.2. With the notation of Lemma 4.1, we have, for any i > 2, ui =
F2i−1 + F2i−3.

Proof. Simple induction with the relation un = 3un−1 − un−2. �

Now, by Lemmas 4.1 and 4.2, we get that:

W = 003u20
3(u4 − 1)07(u8 − 1)015(u16 − 1)031 . . .

≡ 107u40
7(u8 − 1)015(u16 − 1)031 . . .

≡ 2015u80
15(u16 − 1)031 . . .

≡ 3031u160
31 . . .

Since |Z(n)| 6 ⌈logφ(n)⌉, we get by induction that, for any finite admissible
word V of length n and any integer k, there exists an infinite word Xn,k such that
W ≡ V 0kXn,k. This is the desired conclusion. �

4.2. Second attempt

To avoid the previous problem, one may restrict the set of integers to the subset of
bounded ones, hence excluding the previous case. Unfortunately, this is still not
a convenient definition, because it does not prevent us from the following problem.

Proposition 4.2. The closed equivalence class of 0∞ contains infinitely many
admissible sequences.
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Proof. Choose n0 > 0, put X(0) := 02n0un0 and let W (0) := Z(X(0)). (By
Lemma 4.1, we have W (0) = 104n0−11.) Choose any n1 > n0 big enough so that,
defining X(1) := 02n0un00

4n1−1un0 , we have W (1) := Z(X(1)) = W (0)0k1W (0) for
some k1 > 0. More generally, for any i > 0, choose any ni > ni−1 big enough
so that, defining X(i) := X(i−1)04ni−1−1X(i−1), we have W (i) := Z(X(i)) =
W (i−1)0kiW (i−1) for some ki > 0. Let us show that the infinite and admissi-
ble word W := limn(W

(n)) belongs to the closed equivalence class of 0∞. Define
πi := un0 · · ·uni for any i > 0. By construction and Lemma 4.1, X(1) is equivalent
to 02(n0+n1)π1 and, more generally and by an immediate induction, X(i) is equiv-
alent to 02(n0+···+ni)πi. Hence, the infinite word W and the null sequence belong
to the same closed equivalence class in the cylinder topology. �

4.3. Final definition of the set of F-adic numbers

Our aim is now to consider only admissible infinite sequences for the set of F-adic
numbers. Let W and W ′ be two admissible sequences. The natural definition
for their sum W +W ′ is to consider the limit limn(Z(Wn +W ′

n)). The point is
to ensure that such a limit exists, which is not always the case, as the example
W := (01)∞ and W ′ := (10)∞ shows (we have Z(W2n + W ′

2n) = 00(10)n and
Z(W2n+1 +W ′

2n+1) = 10(01)n). A more general example is given by the words
W = X(10)∞ and W ′ = X ′(01)∞, where X and X ′ are finite admissible words
of the same length. It appears that this latter example contains essentially all
possible contentious issues.

Definition 4.3. The set F of F-adic numbers is defined as the set of admis-
sible infinite sequences, with the identifications (01)∞ = (10)∞ and V 0(01)∞ =
Z(V 10(01)∞) for any admissible finite word V , and equipped with the (quotient)
cylinder topology. A negative F-integer is an admissible sequence ultimately peri-
odic with period 01 (that is: negative F-integers are the F-adic numbers admitting
two different writings).

The sum of two F-adic numbers W and W ′ is defined as:

W ⊕W ′ := lim
n
(Z(Wn +W ′

n)).

For any word W with letters on a bounded subinterval of N, we define Z(W ) :=
limn(Z(Wn)).

To ensure the consistence of this definition, we have to show that the sum is
well-defined (which immediately implies the consistence of the definition of Z(W )).
This is done in the proof of the following result, which is a strong justification for
our choice of definition. Before it, let us explain the terminology of negative
F-integers. Consider a negative F-integer V 0(01)∞ = Z(V 10(01)∞), and put
W := V 0 (recall that, for any finite word X, we have Z(X +X) = 0|X|1). Since
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Z(W + V 0(01)∞) = Z(W + Z(V 10(01)∞)) = 0∞, the negative F-integer can be
regarded as the word corresponding to the value −N(W ). In the same way, the
F-adic number (01)∞ = (10)∞ can be regarded as −1 (or, to avoid ambiguous
notation, (−1)F ). Note also that, because of the negative F-integers, the notion
of valuation is consistent only for words, and not for F-adic numbers in general.

Now, let us give the main result of this section.

Theorem 4.4. (F ,+) is a topologic abelian group.

Proof. Let us start by showing that the addition is well-defined. We consider first
the case of two F-adic numbers, W and W ′, which are not negative
F-integers. If, for any k > 0, the sequence of letters of rank k of the words
Z(Wn +W ′

n) converges, then W +W ′ is well-defined. Else, let k be the smallest
index such that the sequence of letters of rank k of Z(Wn +W ′

n) does not con-
verge. The sequence of prefixes of length k (which may be ∅ if k = 0) of the
sequence (Z(Wn +W ′

n))n converges to some admissible word V . Since both W
and W ′ contains infinitely many 1s (to ensure the existence of k), we can find an
n0 such that N(Wn0) > N(V ). By replacing the word W =: Wn0U by the word
Z(N(Wn0)−N(V ))0|Wn0 |−|Z(N(Wn0 )−N(V ))|U , we can assume that V = 0k.

The successive words Z(Wn +W ′
n) can be obtained by iterating the algorithm

that computes Z(W + 0m1) for finite admissible W , with a sequence of values of
m going to infinity. With a little abuse in notation (since the successive m is an
increasing sequence but non necessarily strictly increasing), we write Xm for the
successive admissible words hence obtained.

Assume k > 1. By Proposition 1.2, we have, for any m, Val(Xm) = k or k+2,
and, by hypothesis, there are infinitely many values of m for which Val(Xm) = k
and also infinitely many for which Val(Xm) = k + 2. Consider an m such that
Val(Xm) = k + 2 and Val(Xm+1) = k. By Proposition 2, Xm is of the form
0k+2(10)smYm, with Ym admissible. When m goes to infinity, sm must go to
infinity as well. Hence, the sequence (Z(Wn+W

′
n))n admits 0k+2(10)∞ (the limit

of the Xms) and 0k10(01)∞ (the limit of the Xm+1s) as accumulation points.
Since the values of m for which Val(Xm) = Val(Xm+1) does not add any other
accumulation point, we are done for this case.

Now, assume k = 0. If, for all but finitely many of m such that Val(Xm) > 0,
we have Val(Xm) = 2, then we can apply Proposition 1.2 as in the case k > 0.
Hence, we assume that, for any big enough m such that Val(Xm) > 0, we have
Val(Xm) = 1. Take m such that Val(Xm) = 1 and Val(Xm+1) = 0. By Lemma
1.3, the computation of Xm+1 from Xm by the algorithm necessarily involves
the first loop. Hence, we necessarily have Xm+1 = Z(0(10)sm20Ym+1) for some
admissible Ym+1 and some sm > 0. Since sm must go to infinity as m goes to
infinity, the word (01)∞ is an accumulation point of the sequence (Xm)m. The
same reasoning starting from Val(Xm) = 0 and Val(Xm+1) = 1 gives that (10)∞

is an accumulation point as well. Since no other accumulation point arise from
the cases Val(Xm) = Val(Xm+1) (= 0 or 1), we are also done for k = 0.
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Now, assume that W is a negative F-integer. For some finite admissible word
V , we have W = V 0(01)∞ = Z(V 10(01)∞), and the point is to verify that the
result of the computation of W ⊕W ′ does not depend on the choice of the two
equivalent representations of W . If W ′ is also a negative F-integer, then the
result is obtained by a simple verification (and gives that, for any a, b ∈ N, we
have (−aF ) ⊕ (−bF ) = (−(a + b))F ). Therefore, from now, we assume that W ′

is not a negative F-integer. We put Xn := Z(Wn + W ′
n) (with a fixed choice

for the representation of W ). We then have, for any big enough n, that Z(Xn +
V 0) = Z(W ′

n + 0n1). Since W ′ is not a negative F-integer, the sequence of words
Z(W ′

n + 0n1) converges to an admissible limit word Y , which is also the limit of
Z(Xn + V 0). Since V 0 is a finite word, the sequen ce Xn is also converging to an
admissible limit word X, which consistently defines W ⊕W ′, independently of the
choice of the representation of W .

The same reasoning, where the F-adic numbers W and W ′ are replaced by
sequences (W (n))n and (W ′(n))n of F-adic numbers converging to W and W ′, is
easily adapted to show that ⊕ is bicontinuous.

Now, let us show the associativity of ⊕. If W , W ′, W ′′, W ⊕W ′ and W ′⊕W ′′

are not negative F-integers, then for any n there exists an i such that the prefix
of length n of (W ⊕W ′)⊕W ′′ and of W ⊕ (W ′ ⊕W ′′) is determined by the prefix
of length i of W , W ′ and W ′′. Hence, in this case, the equality (W ⊕W ′)⊕W ′′ =
W ⊕(W ′⊕W ′′) derives from the associativity of ⊕ in the case of finite words. The
other cases, left to the reader, are essentially similar, with only some additional
verifications due to the possible existence of two different representations for some
of the involved expressions.

To complete the proof, it only remains to show that any F-adic number W =
w∞

0 admits an opposite. We already know that this is the case whenW is a negative
F-integer, so we exclude this case in the sequel. We also exclude the case where
W is ultimately periodic of period 0 (that is: W is a positive F-integer). Consider
the word W ′ := w′∞

0 , where w′
n = 1 − wn for any n. Since W ′ is a word on the

alphabet {0, 1}, not ultimately periodic of period 1 (by hypothesis on W ), there
exists a unique admissible word W ′′ such that, for any n, Z(W ′

n) =W ′′
n (if 12i−1 is

a suffix of W ′
n but not 12i, for some i) or W ′′

n+1 (in the other case). For any n, we
have Wn+W

′
n = 1n, so Z(Wn+W

′
n) = 0(01)n/2 (for even n) or 10(01)(n−1)/2 (for

odd n). Hence, the sequence (Z(Wn +W ′′
n ))n converges to −2F , so W ′′ ⊕ (−2F )

is the opposite of W . �

5. Rational F-adic numbers

A F-adic number X is rational iff there exists two integers p and q such that
Z(qX) = Z(p). In the sequel, we simply write qX = p for this equation. The goal
of this section consists in proving the following two theorems:

Theorem 5.1. The F-adic number X is rational iff it is ultimately periodic.
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Theorem 5.2. Let p and q be two integers, with q > 0. The set of roots of qX = p
is of cardinality q + 1 if p/q ∈ Z and of cardinality q otherwise.

The proof of Theorem 5.2 will lead us to a simple and general expression of
the set of solutions of the equation qX = p (see Theorem 5.5, at the end of this
paper).

5.1. Proof of Theorem 5.1

Periodic ⇒ rational

Proposition 5.1. Let X := WP∞ and X ′ := W ′P ′∞ be two ultimately periodic
F-adic numbers with |W | = |W ′|. The sum X⊕X ′ is ultimately periodic, of period
Q such that Q̃ = P̃ ⊕ P̃ ′.

Proof. Without loss of generality, we assume P and P ′ of the same even length 2ℓ,
and take W = W ′ = 0k with big enough k. By induction, we can also assume P ′

of the form 102ℓ−1. If P̃ ⊕ P̃ ′ = P̃ + P ′, then the result is immediate. Otherwise,
writing P = p0 . . . p2ℓ−1, we have either p0 = 1 or P = (01)ℓ. In this latter case,
the proposition is easily verified. Assume now p0 = 1. We either have P = (10)ℓ

or, for some admissible word R and some integer j, P = 10R00(10)j . In both
cases, the proposition is routinely verified. �

Corollary 5.3. For any integer q and any finite admissible word P (containing
at least one 1 and which first and last letters are not both equal to 1), Z(qP∞) is
a ultimately periodic F-adic number, and admits the word Q as a period, where
Q̃ := Z̃(q̃P ).

Proof. Immediate. �

Now, let X := WP∞ be a ultimately periodic F-adic number, where W and
P are finite admissible words (as well as WP ). If P = 0, then there is nothing to
prove. We thus consider only the case where P contains at least one 1. Without
loss of generality, we may also assume P of even length 2ℓ (otherwise, we simply
replace P by P 2).

Since P does not contains only 0s, we have P̃ ∈ G∗
ℓ . Denoting by q the order

of P̃ in G∗
ℓ , we get by Corollary 5.3 that, for some finite admissible word Y ,

Z(q(0|W |P∞)) = Y (01)∞, which is a negative F-integer, say −r. Since qW is an
integer, say s, we get that q(WP∞) = qW + q(0|W |P∞) = s− r, so we are done.

Rational ⇒ periodic

Let X := x∞0 ∈ F be a root of qX = p, where p and q are integers. By chang-
ing the value of p, we can assume that, for any chosen value k > 1, we have
x0 . . . xk−1 = 0k.

Define the application Φ: F −→ [−1, 1] by Φ(w∞
0 ) =

∑+∞
n=0 wn(−φ)−n. Since k

can be chosen big enough independently of q, we can assume that Φ(qX) = qΦ(X).
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Hence, we have Φ(X) = Φ(qX)/q = Φ(p)/q. This latter element belongs to Q(φ),
and it is well-known that the elements of Q(φ) are exactly the ones that admit
a periodic expansion in the numeration system in base −φ. Hence, Φ(X) has
the form

∑∞
n=0 yn(−φ)−n with y∞0 admissible and ultimately periodic. Since,

moreover, Φ is injective, we eventually get the desired result.

5.2. Proof of Theorem 5.2

We know by Theorem 5.1 that any root of the equation is of the form WP∞,
where W and P are finite admissible words. If P = 0, then we are back to an
usual integer equation, with one root (p/q) if p/q ∈ Z and no root otherwise.
So, from now, we exclude the case P = 0, and show that exactly q roots of the
equation qX = p are to be found.

Let Ψ : P∗
q −→ Z/qZ be defined by Ψ(P̃ ) := Z(q · P∞) mod q (The function

Ψ is well-defined, since we know that Z(q ·P∞) is ultimately periodic of period 01
by section 5.1, hence is a negative F-integer.) The function Ψ is a morphism of
groups. Let Π ∈ P∗

q be the word given in the algorithm presented after the proof
of Theorem 2.7. We have qΠ∞ = (−1)F , so Ψ(Π̃) = q−1 = −1, so Ψ is surjective,
and Ψ−1(0) has q elements (since P∗

q has q2 elements by Theorem 2.5).
Let P̃ ∈ P∗

q . We have Z(q · (10∞ ⊕ P∞)) = Z(qP∞) + q and Z(q · ((−1)F ⊕
P∞)) = Z(qP∞) − q, so, with the help of the surjectivity of Ψ, we get that the
number of solutions of the equation qX = p does not depend on p.

Lemma 5.4. Let X and X ′ be such that qX = 0 and qX ′ = 0, with X = WP∞

and X ′ = W ′P∞ for some finite admissible words W and W ′ and some P ∈ P∗
q .

If |W | = |W ′|, then W =W ′.

Proof. Immediate. �

Now, the desired result is a simple consequence of Lemma 5.4 and the fact that
Ψ−1(0) has exactly q elements.

5.3. An explicit expression of the roots of qX = p

As we said after the statement of Theorem 5.2, the proof of this theorem provides
a full characterization of the set of F-adic solutions of qX = p.

Theorem 5.5. Let p and q be integers, with q > 0 and p ̸= 0. Denote by Π the
word defined in the end of section 2.3, and put P̃a := ˜(a− 1)Π⊕ ( ˜−aσ−1(Π)) for
any 0 6 a < q. Apart the possible integer solution p/q (if p ∈ qZ), the roots of the
equation qX = p are pP∞

a for 0 6 a < q.

Denote P̃ ′
a := ãΠ⊕ ( ˜−aσ−1(Π)) for any 0 6 a < q. The roots of the equation

qX = 0 are P ′
a for 0 6 a < q.

The proof is immediate.
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