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ZEROS OF THE DERIVATIVES OF THE RIEMANN
ZETA-FUNCTION

Haseo Ki, YOONBOK LEE

Abstract: Levinson and Montgomery in 1974 proved many interesting formulae on the zeros of
derivatives of the Riemann zeta function {(s). When Conrey proved that at least 2/5 of the zeros
of the Riemann zeta function are on the critical line, he proved the asymptotic formula for the
mean square of {(s) multiplied by a mollifier of length T4/7 near the 1/2-line. As a consequence
of their papers, we study some aspects of zeros of the derivatives of the Riemann zeta function
with no assumption.
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1. Introduction

We study properties of zeros of the derivatives of the Riemann zeta function ((s).
Levinson and Montgomery [8] achieved several important theorems for the behav-
ior of zeros of (™ (s) (m = 1,2,3,---). If we assume the Riemann hypothesis,
¢’(s) has no non-real zero in Res < 1 and ¢((™(s) (m > 1) has at most finitely
many zeros in Res < i. Unconditionally, we are able to deduce the following

2
quantitative results by similar methods in [8].

Theorem 1. We denote p(™ = B +ir(™) s zeros of (™) (s). Let 0 < U < T.
Then, we have

1 1
- glm) _
> (2 B’”) < > (B 2)+0(U).
T<"™ <T+U T<y<T+U
ﬁ(7n)<% B>%
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Theorem 2. Let T* <ULT, a> % Then, we have

> (3-0m)-ow

T<~™ <T+U
5(m')<%

Theorem 3. ForT* <U<T, a> %, we have

1
27 Z (ﬁ(m) - 2) =mUloglogT + O(U).
T<~™ <T+U
B(m)>%

We note that Theorems 1-3 complement Theorems 3, 4 in [8]

J. B. Conrey proved that at least 2/5 of the zeros of the Riemann zeta function

are simple and on the critical line in [2]. He refined the method of Levinson [7] and
used a result of Deshouillers and Iwaniec [4] on averages of Kloosterman sums to
obtain the mean square of the Riemann zeta function accompanied with a mollifier
of length T%7. The main theorem of Conrey is following:
Theorem A (Conrey). Let B(s) = Zkgy kbfiﬁ)ﬂ be a mollifier of length y = T,
where b(k) = u(k)P (%), P(z) is a polynomial with P(0) = 0, P(1) = 1,
0<R<1,L=logT,0<6<32. LetV(s)=Q (—%d%) ¢(s) for some polynomial
Q(x). Then, we have

T
1 R
p(l_L& . .

/2 %4 <2 L—Ht)

1 1
d(P.Q.R) = QO+ [ [ 10w P (@)+0Q' () P(@)+0RQ)P(w) P dady.

2
dt ~ ¢(P,Q,R)T (T — o0),

where

Based on Theorem A, we are able to deduce interesting results about zeros of
¢m(s).
Theorem 4. Let m > 1, € > 0. Then we have
TlogT
Yo 1z e (1t on(1) (T = o0),

2m
B(ﬂl)>%
o<~y(™ <T

where p™) = ™) +in (M) are zeros of (™) (s). The coefficient i, satisfies fi, >
1—e+O(m™t) as m — <.

It is expected that all the zeros of the Riemann zeta function are simple. (See
[3] for a reference.) A related conjecture is that Ny(T) = N(T) for any T > 0
where N(T) is the number of zeros p = 8+ 47 in 0 < v < T with multiplicity, and
Ng(T') is the number of distinct zeros in 0 < v < T. Regarding this matter, we
have the following result.
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Theorem 5.

o Ng(T)
/@dthnilorlf N(T) > 0.70.

We note that this improves D. W. Farmer’s result x4 > 0.63952 in [5].

2. Lemmas

We start with the following.

Lemma 1. Let m = 1,2,3,..., x(s) = 2’75 'sin B2 I(1 — s) and s = o + it
(o,t € R). Then, we have

A

(5) = (~log [t))™ + Olog™ " |t])

for |t| = tg on any fized vertical strip a < o < b.

Proof of Lemma 1. From the Sterling formula, we have

I am (T . B
Thus we have

!/ !/ 3 s

X
X(s)=—=(1-s)+1log2
X(s) F( s) + log W+cos

é = —log [t| + O(1).
2
Suppose Lemma 1 is true for m < k. Then, we have
y (kD) ®) RV OV
o= (@) + i
=0(log" [t]) + (= log [t)* + O(log"™* [¢]))(~ log [t| + O(1))
=(—log [t)*" + O(log" [{]).

By induction, we have proved the lemma. ]

Lemma 2. Fiz a nonnegative integer m. There is t1 > 0 such that X(m)(s) has
no zero or pole in |Ims| > t1, a < Res < b.

Proof of Lemma 2. By the definition of x(s) = 257~ sin Z2T'(1 — s), we know
that x(s) is meromorphic on the whole complex plane with polesat s = 1,3,5,7,- -,
and zeros at s = 0,—2,—4,---. Thus, the Lemma 2 is true for m = 0. For the

case m > (0, we use the Lemma 1
x (™
X

X (s) = x(s)=—(s) = x(s)(—log™ |#]) (1 + O (log " [t]))

for |Im s| = |t| > to. Thus, we prove the lemma. |
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Lemma 3. Let -2 < a; <2, bj,¢; 20, 0<p<1. Then, we have

2
cj P 8 ’ p

— 9 ldr< —
/zlgx—aj—&—ibj v 1—p ;CJ

For Lemma 3, see [8, Lemma 4.1] or [6, Chap. 4].

3. Proofs of Theorems 1, 2, and 3

Proof of Theorem 1. We begin with the functional equation of the Riemann
zeta function (1 — s) = x(1 — s)¢(s). By differentiating m times, we have

m—1
C (= ) = M (1 — $)¢(s) + ( ) m=3\ (1 — )¢m=)(s).
7=0
Let J,,(s) be
m—1 )
Ton (s ) + < ) ym= J;:(m)( — 8)cm=9(s). (3.1)
7=0

We know that there is A,, > 1 such that ((™)(s) has no zero on Res > A,,.

Consider the rectangle with vertices 3 +i(T+U),2 +iT, Ay, +iT, Ay +i(T+U).
Since ¢(™(1 — s) = x™ (1 — 8)J,(s), all the zeros of J,,(s) in the rectangle are
the same as the zeros of (™) (1 — s), and no poles there by Lemma 2. Now we
apply the Littlewood Lemma [10, Chap. 9.9] to get

1 T+U 1+it)

1 Imlg FU)| L gom
2m g —Ht ’dt_ 2. (2 b )

T<y"™ <T+U

. (5 - ;) +O(U/logT) + O(log T). (3.2)
T<~<T+U
B>3

We consider the integral of the above formula. We note that the simple inequality
‘1 + Zz]‘ <1+ Z 2| < exp(z |z;|™7)
J J J
holds for any fixed real m; > 0, where the number of terms in the summations is
finite. From this inequality and Lemma 1 together with definition of J,,(s), we

readily have
T+U j)
it
\/logT / (2 o >

for some C,,, > 0. We need still a claim to complete the proof of Theorem 1.

1
23

T+U ’Ht)‘ dt  (3.3)
q
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Claim. For any positive integer j, we have

THU | )
/+ ch (2+”>
T

Proof of Claim. We recall that in [1], the number of zeros of ((*)(s) with
0<~y® <Tis

L
2j

dt < Uy/logT.

T T
o log Tre + O (logT). (3.4)
Let n be a large positive integer. For [t —n| < 1,0< o0 <1, k=0,1,2,- we
have
¢+ 1
8 nj<2 * P

Then, by this, (3.4) and Lemma 3, we have
1
n-‘r% C(k:+1) 1 ‘ 2 n-‘r%
/n,; ® <2+zt> dt<</ni ‘ >
2

1
7y —nj<2 2
From this, we have

(k) ‘ dt + +/logn

Lyt —

log n.

THU | c(h41) /1 3
/ W <2+Zt> dt < U\/IOgT.
T

By this and Hélder’s inequality, we have

T+U C(J) 37 THU | per ) 1 25
/T c <2+zt) dt:/T (C ? ((] 1)>< +zt> dt
< U+/logT.
We complete the proof of Claim. |
By Claim, (3.2) and (3.3), Theorem 1 follows immediately. [ |

Proof of Theorem 2. By Selberg [9],if U > T%, a > %, then

1
> (2 - 5) =0(U).
T<y<THU
B<3

From this and Theorem 1, Theorem follows. |
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Proof of Theorem 3. We know in [8, Theorem 3| that for 0 < U < T, we have

1 T
o Z (ﬁ(m) _ 2) = mU loglog o +U ( log2 — mloglog 2)
T<7(77L><T+U
+O0(U?/(T1ogT) +log T).

By this and Theorem 2, we complete the proof of Theorem 3. |

4. Proofs of Theorems 4 and 5

Proof of Theorem 4. Apply the Littlewood Lemma to deduce

1 (7 1 R 1 R
-t Lo _ Lo o
QWLkghB(Z HQPt § Q+L B >+O@M%

L

BB <+
o<y ® <

where R > 0, L = logT and Ji(s) in (3.1), and B(s) in Theorem A. From this,

we have

1 R

L T
1< — 1
Z 27TR/2 8

EAS
O<'y(k)<T

By applying Jensen’s inequality to this inequality, we have

TL 1 1 R
Z 1< 47rR10g< /2 JkB<L+Zt>

RS
o<y ® <1

2dt> +o(T).  (41)

We let Vi(s) as

Vils) = 1+Z(j)£j cw=(1+18) co=a (-1 )<

where Qi (x) = (1 — z)*. Then by Lemma 1 and integration by parts we have

T T
/ Ji.B (1R+Zt) dtw/ Vi.B (1R+Zt)
2 L 2

L
By Theorem A, we have
2

T 1 R .
ViB| - ——+1t dt ~ C(P, Qr, R)T,
) 2 L

2 2

dt.  (4.2)
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where
(PR =1+ [ [ Q)P @)+ 00 )P ) + 0RQ) PP dsdy
0 0

By this and (4.1)—(4.2), we have

. loge(P,Qr,R)TL
1 <inf 2Rk T2~ , :
Z inf 5 5 (14 0r(1)) (4.3)
B
o<y <

where the infimum takes over all polynomials P satisfying P(0) = 0, P(1) = 1.
Since we are taking infimum over certain polynomial, we can choose a continuous
function P(z) = SBBAZ since P(0) = 0 and P(1) = 1. Then we have fol P(z)%dx =
5 (1+0 (Ae™?)), and fol P'(z)%dz = 5 (14 O (Ae=?})). Thus, we have

1
inf o(P, Q4 ) <1+ / 2RIQ, () (Q4 () + RQu(y))dy

A 1
+ % (1+0 (Ae™?Y)) /0 2R Qu(y)3dy

b 1400e e gy R *d
b2 (140 ))/Oe (Qu() + RQx(y))*dy.

By taking

Jo €29(Q4 (y) + RQi(y))?dy
[ e2RuQy(y)2dy

we get the minimal value of the right hand side in the previous inequality. Since

A=0

/0 MQ(y)dy = o (1+0 (k7))
| emaiwaay = 5 (+0 ).
| emauwir =5 (1+06Y).

we have A = k6 (14 O (k71)), and
ir;fc(P, QiR)<2+0 (k1)

as k — oo. By this together with (4.3) and (3.4), we conclude that for any fixed
R>0

TL
o1z P (L + 0r(1)),
ﬁ(k)>%
0<y®<T

where pp = 1— 13%2 +ORg(%) as k — co. We complete the proof of Theorem 4. W
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Proof of Theorem 5. Let H(s) = @ﬂ"gF(%). Then, we have the Riemann
&-function &(s) = H(s)((s). Consider the function f(s) = H(s) " {(g + g0)&(s) +
9¢'(s)}, where L = logT, g,ig0,91 € R. (We use the same notations as in [2].)
We apply the Littlewood lemma as before to obtain

1 R 1 [T
D (5‘2%):%/1 log

FB(B+iv)=0
p24-%
0<yLT

2 L

B (1 _B, it) ’ dt+0(T/L) (4.4)

with the mollifier B(s) introduced in Theorem A. For the error term O(T/L),
we need some condition of g; that will be discussed at the end of the proof. We
note that simple zeros of £(s) are not zeros of f(s), besides multiple zeros of £(s)
are zeros whose multiplicities decrease by one. From symmetry of zeros of £(s)
to 1/2, the left hand side of (4.4) is not less than £(N(T) — N4(T)). By Jensen’s

inequality, we can deduce that
1 R
fB (2 — Z + ’Lt)

1 I
kg 21— —log limsupf/
2

TL 1 [T
_ < _
N(T)— Ny(T) < e log (T/2

’ dt) +0(T)

1 R\

All we need is to get an asymptotic formula for the mean square of fB. We have

or

2R T— o0

) =+ )+ 9 (G eIeto) + <o)
- (@ (EE+ 1) o) a+o (),

where Q1(z) = g+ go + g1z. Using the last two equations, integration by parts

leads us to
1 1 (T 1 R 2
>1-——1 li — VB|=-——+it dt |,
a1 g (s 1 [ v (3 - £ o) ()

where V(s) = Q(~+£4)¢(s), and Q@) = Q1(} — ) = g + go + bg1 — qua. By
Theorem A, we have

1
=>1—— .
Ka> 1 5 log(c(P, Q. )

The condition Q(0) = 1 is required when we apply the Littlewood lemma to derive
(4.4). Then we have Q(z) =1 — giz. In [2, p.10] Conrey made an optimal choice
of this case. If we choose g1 = 1.02, R = 1.2, § = %, we have 10% = 0.598....
Therefore, we conclude that k4 > 0.70. |
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