
Functiones et Approximatio
46.2 (2012), 189–194
doi: 10.7169/facm/2012.46.2.4

BASE CHANGE AND THE BIRCH AND SWINNERTON-DYER
CONJECTURE

Cristian Virdol

Abstract: In this paper we prove that if the Birch and Swinnerton-Dyer conjecture holds for
products of abelian varieties attached to Hilbert newforms of parallel weight 2 with trivial central
character, then the Birch and Swinnerton-Dyer conjecture holds for products of abelian varieties
attached to Hilbert newforms of parallel weight 2 with trivial central character regarded over
arbitrary totally real number fields.
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1. Introduction

Let A be an abelian variety defined over a number field F . Then the Birch and
Swinnerton-Dyer conjecture predicts that (see §1 of [T] for details):

Conjecture 1.1 (Birch and Swinnerton-Dyer conjecture). The L-function
L(s,A/F ) of A over F has a meromorphic continuation to the entire complex plane,
and

1) The rank r(A/F ) of A over F is equal the order of vanishing of L(s,A/F ) at
s = 1,

2)
|X(A/F )| <∞,

where X(A/F ) is the Tate-Shafarevich group of A/F ,
3)

lim
s→1

L(s,A/F )

(s− 1)r(A/F )
=
|X(A/F )| · det < ai, bj > ·V∞ · Vbad

|A(F )tors| · |A′(F )tors|
,

where A′ = Pic0(A), V∞ = volumeA(F ⊗Q R), Vbad = volume
∏
v∈S A(Fv)

and S is the set of bad places of A/F , A(F )tors and A′(F )tors are the subgroups
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of torsion points of A(F ) and A′(F ), and < , > is the height pairing

< , >: A(F )×A′(F )→ R,

and {a1, . . . , ar} and {b1, . . . , br} are bases of A(F )/A(F )tors and
A′(F )/A′(F )tors.

Given a totally real number field F and a Hilbert newform f of parallel weight 2
of GL(2)/F with trivial central character and with the field of coefficients a number
field M , it is conjectured that there exists an abelian variety A defined over F , of
dimension [M : Q], such that the L-function L(s,A) is equal to

∏
σ:M→C L(s, f

σ)
modulo the factors at places dividing the level N of f (we remark that if the field of
coefficients M is extended to a finite extension M ′/M , then one, as above, obtains
an abelian variety A′ defined over F which is a product of [M ′ : M ] copies of A;
hence obviously if the Birch and Swinnerton-Dyer conjecture holds for A, then the
Birch and Swinnerton-Dyer conjecture holds for A′; and in this paper we say that
A (or A′) is associated to f). This conjecture was proved by Zhang (see Theorem
B of [Z]) when f is a Hilbert newform for Γ0(N) (N an ideal of F ), and [F : Q] is
odd or ordv(N) = 1 for at least one finite place of F .

In this paper we prove the following result:

Theorem 1.2. Let r be a positive integer. Assume that Conjecture 1.1 is true for
all totally real number fields F and all abelian varieties of the form B1/F × . . . ×
Br/F , where B1/F , . . . , Br/F are abelian varieties associated as above to Hilbert
newforms of parallel weight 2 with trivial central character of GL(2)/F . Then
Conjecture 1.1 is true for all abelian varieties of the form A1/F ′×. . .×Ar/F ′ , where
Ai/Fi for i = 1, . . . , r, is an abelian variety associated as above to a Hilbert newform
of parallel weight 2 with trivial central character of GL(2)/Fi, for i = 1, . . . , r, and
F ′/F is an arbitrary totally real number field containing F1, . . . , Fr.

Note the following point: We don’t know that the abelian varieties Ai/F ′ , for
i = 1, . . . , r, correspond to Hilbert newforms, since arbitrary totally real base
change for GL2 is not yet established.

2. Potential modularity

Let F be a totally real number field and JF be the set of infinite places of F . If
f is a Hilbert newform of GL(2)/F of weight k = (kτ )τ∈JF , where all kτ have
the same parity and kτ > 2 (one can replace f below by a cuspidal automorphic
representation π of weight k of GL(2)/F which is discrete series at infinity), then
there exists ([TA]) a totally odd λ-adic representation

ρf := ρf,λ : ΓF → GL2(Mλ) ↪→ GL2(Ql),

which is unramified outside the primes dividing Nl and satisfies L(s, ρf,λ) =

L(s, f) (by fixing a specific isomorphism ι : Q̄l
∼−→ C one can regard ρf,λ as com-

plex valued). Here ΓF := Gal(F̄ /F ), M is the coefficients field of f , λ is a prime
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ideal of M above some prime number l, N is the level of f , and totally odd means
that detρf (c) = −1 for all complex conjugations c. Moreover, each representation
ρf,λ is crystalline at any place v - N of F which divides the residue characteristic
of λ, and for each embedding τ : F ↪→ Q̄l the τ -Hodge-Tate numbers of ρf,λ are
mτ and k0 −mτ − 1, where k0 :=max{kτ |τ ∈ JF }, and mτ := (k0 − kτ )/2.

In this paper we say that a representation

ρ : ΓF → GL2(Q̄l),

with F a totally real number field, is modular if there exists a Hilbert newform of
weight k > 2 of GL(2)/F such that ρ ∼ ρf .

We now show the following result:

Theorem 2.1. For i = 1, . . . , r, let Fi be a totally real number field, and let fi be
a Hilbert newform of weight ki > 2 of GL(2)/Fi. Let l be a rational prime, and F ′

be a totally real number field which contains Fi for i = 1, . . . , r. Then there exists
a totally real number field F ′′ which contains F ′ and which is Galois over Q such
that the representations ρfi,λi |ΓF ′′ , for i = 1, . . . , r, are modular, where λi|l is a
prime of the field of coefficients of fi.

Proof : If fi is a CM-form, then it is well known that ρfi,λi |ΓF ′′ is modular
for any finite extension F ′′/Fi (see for example Theorem 7.4 of [G]). Hence it is
sufficient to prove Theorem 2.1 when each fi is a non-CM form. We assume this
fact from now on.

We know the following result (this is a particular case of Theorem 4.5.1 of
[BGGT]; see also Lemma 1.4.2 of [BGGT] and the remark after Theorem 4.5.1 of
[BGGT]; we remark that in the statement below we take ϕi representations of ΓF ′ ,
and in Theorem 4.5.1 of [BGGT] ϕi was a representation of ΓE′ satisfying some
conjugate self-dual condition, but obviously our ϕi|ΓE′ satisfies this condition):

Theorem 2.2. Suppose that:
(a) Let E′ be a Galois CM number field, and let F ′ denote its maximal totally

real subfield.
(b) Let l > 7 be a rational prime which is unramified in E′.
(c) For each i = 1, . . . , r, let ϕi : ΓF ′ → GL2(Q̄l) be a totally odd continuous

representation.

For every i = 1, . . . , r, suppose also that:
(1) ϕi is unramified at all but finitely many primes.
(2) ki = (kiτ )τ∈JF ′ , where all kiτ have the same parity and kiτ > 2, and l > ki0,

where ki0 := max{kiτ |τ ∈ JF ′}.
(3) ϕi is crystalline at all places v|l, and for each embedding τ : F ′ ↪→ Q̄l the

τ -Hodge-Tate numbers of ϕi are (ki0 − kiτ )/2 and (ki0 + kiτ )/2− 1.
(4) ϕ̄i|ΓE′(ζl)

is irreducible.

Then we can find a finite CM extension E′′/E′, such that E′′ is Galois, and
for each i = 1, . . . , r, a cuspidal automorphic representation πi of GL2(AE′′) of
weight ki such that ϕi|ΓE′′

∼= ρπi,γi for some γi|l.
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We want to apply Theorem 2.2 to some rational prime l > 7 and to ϕi :=
ρfi,λi |ΓF ′ for i = 1, . . . , r, (one can assume that the totally real field F ′ from
Theorem 2.1 is Galois by replacing it by its Galois closure F

′gal; and we assume
this fact from now on). We choose a rational prime l unramified in F ′ which is
relatively prime to Ni, for i = 1, . . . , r, where Ni is the level of fi, and such that
l > ki0 for each i = 1, . . . , r. Then from above we know that ϕi for i = 1, . . . , r,
satisfies the conditions (c), (1), (2) and (3) of Theorem 2.2. Since fi is non-CM,
we know from Proposition 3.8 of [D], that for l sufficiently large, the image of
the representation ρ̄fi,λi contains SL2(Fl). But then for such a prime number l,
because F ′ is totally real, the image of the representation ϕ̄i = ρ̄fi,λi |ΓF ′ contains
SL2(Fl) (see Proposition 3.5 of [V1]). Hence we can choose l sufficiently large
such that for i = 1, . . . , r, the image of ϕ̄i contains SL2(Fl). Thus for i = 1, . . . , r,
the representation ϕ̄i|ΓF ′(ζl)

is irreducible. Now one can choose a CM quadratic
extension E′ of F ′, which is Galois over Q, such that l is unramified in E′, and
E′(ζl) linearly disjoint over F ′(ζl) from Q̄kerϕ̄i|Γ

F ′(ζl) for i = 1, . . . , r, and hence
the representation ϕ̄i|ΓE′(ζl)

is also irreducible for i = 1, . . . , r. Hence condition
(4) of Theorem 2.2 is satisfied. Conditions (a) and (b) are also satisfied from our
choices made above. Thus we verified all the conditions of Theorem 2.2, and we
conclude that there exists a CM extension E′′/E′, such that E′′ is Galois, and
for each i = 1, . . . , r, a cuspidal automorphic representation πi of GL2(AE′′) such
that ϕi|ΓE′′

∼= ρπi,γi for some γi|l. Let F ′′ be the maximal totally real subfield of
E′′. Since ϕi|ΓE′′ is modular and E′′/F ′′ is quadratic (solvable), one can deduce
easily that ϕi|ΓF ′′ is automorphic (see Lemma 1.3 of [BGHT]). Hence we finished
the proof of Theorem 2.1. �

3. The proof of Theorem 1.2

Let Fi for i = 1, . . . , r, be a totally real number field and let fi be a Hilbert newform
of parallel weight 2 with trivial central character of GL(2)/Fi. We denote by Ai
the abelian variety defined over Fi conjecturally associated to fi as above. Let
F ′ be a totally real number field which contains Fi for i = 1, . . . , r. Then from
Theorem 2.1 we know that there exists a totally real finite Galois extension F ′′

of Q which contains F ′ such that the representations ρfi |ΓF ′′ , for i = 1, . . . , r, are
modular.

From Theorem 15.10 of [CR] we know that there exists some subfields Ej ⊆ F ′′,
such that Gal(F ′′/Ej) are solvable, each Ej contains F ′, and some integers nj ,
such that the trivial representation

1F ′ : Gal(F ′′/F ′)→ Q̄×,

can be written as

1F ′ =
u∑
j=1

njIndGal(F ′′/F ′)
Gal(F ′′/Ej)

1Ej (a virtual sum), (3.1)
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from which we get that

L(s,A1/F ′ × . . .×Ar/F ′) =
u∏
j=1

L(s,A1/Ej × . . .×Ar/Ej )
nj .

Since ρfi |ΓF ′′ is modular, and Gal(F ′′/Ej) is solvable, from Langlands base
change for solvable extensions ([L]), one can deduce easily that ρfi |ΓEj is modular,
and hence the abelian variety Ai/Ej corresponds to a Hilbert newform of parallel
weight 2 and trivial central character of GL(2)/Ej , and ρfi |ΓEj corresponds to
one piece of the l-adic Tate module of Ai/Ej . Hence the function L(s,A1/F ′ ×
. . .×Ar/F ′) has a meromorphic continuation to the entire complex plane because
from our assumptions in Theorem 1.2 the functions L(s,A1/Ej × . . .×Ar/Ej ) have
meromorphic continuations to the entire complex plane.

We know (Theorem 1 of [M]):

Theorem 3.1. Let L/K be an extension of number fields, and A be an abelian
variety defined over L. Then the Birch and Swinnerton-Dyer conjecture holds for
A if and only if the Birch and Swinnerton-Dyer conjecture holds for ResL/KA.

We know (Theorem 7.3 of [M1]):

Theorem 3.2. Let A and B be two isogeneous abelian varieties defined over
a number field L. Then the Birch and Swinnerton-Dyer conjecture holds for A
if and only if the Birch and Swinnerton conjecture holds for B.

The following theorem is obvious:

Theorem 3.3. Let A and B be two abelian varieties defined over a number field L.
If the Birch and Swinnerton-Dyer conjecture holds for A and B, then Birch and
Swinnerton conjecture holds for A × B. If the Birch and Swinnerton-Dyer con-
jecture holds for B and A × B, then the Birch and Swinnerton conjecture holds
for A.

In order to simplify the notations we denote A/F ′ := A1/F ′ × . . . × Ar/F ′ .
From our assumptions in Theorem 1.2 we know that the Birch and Swinnerton-
Dyer holds for A/Ej , and thus from Theorem 3.1, we deduce that the Birch and
Swinnerton-Dyer conjecture holds for ResEj/F ′A/Ej . Now from (3.1) we get that
the abelian varieties A/F ′ ×

∏
j′ −nj′ResEj′/F ′A/Ej′ and

∏
j′′ nj′′ResEj′′/F ′A/Ej′′

are isogenous (for details see the proof of Theorem 2.3 of [DO]), where j′ has the
property that nj′ is negative, and j′′ has the property that nj′′ is positive. Be-
cause the Birch and Swinnerton-Dyer conjecture holds for each ResEj′′/F ′A/Ej′′ ,
from Theorem 3.3 we get that the Birch and Swinnerton-Dyer conjecture holds
for
∏
j′′ nj′′ResEj′′/F ′A/Ej′′ . But the varieties A/F ′×

∏
j′ −nj′ResEj′/F ′A/Ej′ and∏

j′′ nj′′ResEj′′/F ′A/Ej′′ are isogenous, and hence from Theorem 3.2 we get that
the Birch and Swinnerton-Dyer conjecture holds forA/F ′×

∏
j′ −nj′ResEj′/F ′A/Ej′ .

Now because the Birch and Swinnerton-Dyer conjecture holds for∏
j′ −nj′ResEj′/F ′A/Ej′ and A/F ′ ×

∏
j′ −nj′ResEj′/F ′A/Ej′ , from Theorem 3.3

we get that the Birch and Swinnerton-Dyer conjecture holds for A/F ′ , and we
conclude the proof of Theorem 1.2. �
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