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OPERATORS ON FOCK-TYPE AND WEIGHTED SPACES
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Abstract: Let us denote by ff (C) the space of entire functions f € H(C) such that
Je If(2)le=¢UzDdm(z) < oo, where ¢ : (0,00) — Rt is assumed to be continuous and non-
decreasing. Also given a continuous non-increasing function v : (0,00) — Rt and a complex
Banach space X, we write H3°(C, X) for the space of X-valued entire functions F such that
sup,cc v(2)||F(z)]| < oco. We find a very general class of weights ¢ and v for which the space of

bounded operators C(]—'f) (C), X)) can be identified with H3°(C, X).

Keywords: weighted spaces, entire function, Fock-type spaces.

1. Introduction

Given a complex Banach space (X, ||-||), let P(X) and H(C, X) stand for the spaces
of polynomials and entire functions with values in X respectively. We write P and
H(C) in the case X = C and use the notation u,(z) = 2™ for n € NU {0}. For
a radial weight we understand a continuous non-increasing function v : C — R
such that v(z) = v(|z|) > 0 for z € C\ {0}. Given a complex Banach space X and
a radial weight we write H°(C, X)) for the space of entire functions F' € H(C, X)
such that

1o, x = itelgv(\ZI)HF(Z)ll < oo, (1)

As usual HY(C, X)) denotes the subspace of functions such that

lim w(|z)[[F(2)]| = 0. (2)

|z|—o00

We use the notation H2°(C) and HY(C) in the case X = C. For convenience we
shall write v(z) = e=?(2) for 2 # 0 for some continuous non-decreasing function
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¢ : (0,00) — R. Since we want P(X) C H;°(C, X) we consider only continuous
non-increasing weights satisfying

Mi(¢) =suprFe ?") < 00,  VkeN. (3)
r>0

We denote such a class by W and write ¢ € W whenever (3) is satisfied. The basic
examples of weights in W to keep in mind, to be denoted by ¢ g, where o, 3 > 0
and v > 0, are defined by

Pa,8~(1) = pr —ylogr e W (4)

that is e~ #«87(") = 17e=8""  The reader is referred to [3] for more examples and
a detailed study of this class.

The space HS°(C) can be regarded as the case p = oo in the scale of Fock-type
spaces F(C). For each 1 < p < oo and each continuous function ¢ : (0,00) — R*
we define the Fock-type space ]-"1? (C) consisting in those entire functions f € H(C)
such that

||f||f§> = (/C |f(z)\pefp¢<|z\>dm(z)>1/p -

The particular case ¢(z) = % are the classical Fock spaces, sometimes called
Bargmann spaces, (see [2, 3, 16, 25, 29]).

There are a number of results concerning the boundedness of classical oper-
ators acting on Fock-type spaces and weighted spaces of entire functions. The
reader is referred to [8, 14, 9] for multiplication operators, to [6, 9, 13, 17] for
integration/derivation operators, to [19] for interpolating sequences, to [7, 11, 26,
27, 28] for composition operators, to [1, 24| for weighted composition operators, to
[18, 21, 23] for Toeplitz operators, to [22]| for Hankel operators or to [3, 5, 9, 12, 13]
for Volterra-type operators among many others.

The classes of weights where the results in the previous papers can be applied
varies according to the problem into consideration, usually some differentiability
assumption of ¢ is assumed (see the class Z in [13] or [9, Proposition 3.2]) or
sometimes ¢ is taken to be subharmonic and satisfying the doubling condition on
the measure Ag (see [19, 21]). In this paper we shall try to keep the weight as
general as possible. A priori we simply assume that ¢ € W, which it is actually
equivalent to P C H2(C) or P C Np=1F4(C). We shall follow the ideas originated
in [3] when dealing with the Volterra operator. Namely for each weight in W we
denote by Cx(¢) the sequence %Hukﬂ}-é((c) and use it to define the kernel

Ky(z) =) Cou(¢)'2",  zeC. (5)
k=0

We shall see that Kyy(Zw) = K*(w) for all z,w € C where K* € ]—';((C) is the
reproducing kernel of the Hilbert space ]-"; (C) with the inner product

(f. )2 = /@ F(w)glm)e W dA(w),

i.e. is the unique functions K* such that f(z) = (f, K#) for every f € }'q%((C).
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In this paper we introduce the class AW of weights ¢ € W for which there
exists another ¢ € W (to be written ¢ € W) satisfying

sup e*‘z’("z')/ |K g1 (Zw) e %D dm(w) < oo. (6)
zeC C

For weights in this class we shall show that the boundedness of operators acting on
F, é((C) or HY(C) is determined by the behaviour of a single vector-valued function
given by the action of the operator on the kernel. In particular for such weights
we can explicitly describe the dual of Fj(C) and HJ(C).

The paper is divided into three sections. The first one is devoted to studying
some properties of the sequences Cf = i”ukﬂ}? and M}, = |lug||g= and some
connections between them. In the second section we introduce the class AW of
weights mentioned above. We show that ¢, 5~ € AW whenever « € N, 8 > 0
and v € NU {0} or also that any subharmonic ¢ with a doubling measure A¢
belongs to this class. The main results are contained in Section 4 where we prove
that if v = e~? with ¢ € Wy then we can identify the space of bounded operators
L(Fy(C), X) with H*(C, X) (see Theorem 4.2 below) and also L(H,)(C), X) with
the space of functions F' € #(C, X) such that (z*, F) € Fj(C) for any z* € X*
(see Theorem 4.5 below).

2. Sequences associated to weights

Following [3, Definition 2.3] we shall use a notation for the norm of the monomials
in F2(C) and H>(C), namely for each ¢ € W and k € NU {0} we write

e 1
. _ k+1 _—o(r _
Cui=Cule) = [ e = o . (7)
and
My, := My(¢) = sup rke=o(r) — l|u || rree - (8)
0<r<oo

Note that (3) actually gives lim, rke=®(") = 0 for all k which allows us to
give the following definition.

Definition 2.1. Let ¢ € W and k € NU {0} We define
Ry := Ri(¢) = max{r > 0: My = rkef‘j’(r)}
In particular My = R,}je*‘ﬁ(R’c) and M, > ske=?G) for s > Ry..

As mentioned in [3, Example 2.1] for each 5, >0 and v > 0

kt+2+~y
I k+2
B F(++v

(&% (%

Cr(Pa,p.y) = ) (9)

and
kt~y _kty

Mi(a,p) = (@B) " % (k+7) = e o (10)
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It is elementary to see that

k + ry) 1/
af '
Let us also point out (see [3, Lemma 2.4]) that for ¢ € W any of the sequences

(C’;/k)m (Cgizl)k’ (M;/k)k and (Mﬁzl)k increases to 00 as k — oo.

Ri($a,p,4) = ( (11)

2 2
Crij Chim \™ My j Myt \ ™ .
Moreover =5 < (=) and /% < (=34 for any 0 < j < m.

Let us find some relations between the values My, C and Rj. Clearly one has
that for ¢,1 € W and k1, ko € NU {0}

Ck1+k2 ((b + W < min{ckl ((b)Mlcz (w)a Ckz ((b)Mkl (w)} (12)
Proposition 2.1. Let ¢ € W and k € N. Then
Ry, M1
< ——— <K .
k + 9 X Mk X Rk+1 (13)

Proof. Clearly
Myt = Rk+1RZ+1€7¢(Rk+1) < Riy1 M.

On the other hand, since Mj,(¢) = Rfe=¢(F+) we have

R} e
k+k2Mk </O r + 6_¢(T)d7' < Mk+1Rk
and we obtain (13). |
Proposition 2.2. Let ¢ € W and k € N. Then
1 2v/ M.
kau <Ok < 3 2 v Moo, (14)

Proof. For each R >0

/ rFtle=¢M gy > / e | e (B = = —9o(R),
o 0 k+2

This gives the first inequality.
Let 0 < s < oo and write

Cy = /S rhF1p2e=¢(M) gy 4+ /°° rhtle=¢() gy
0 s

k o0
5 ok+2 —p(r) AT
< k M; +‘/S r € rk+1

sk * dr sk Mokyo _
—TE gk,

< —Msy + M. — < —M.
T 2+ 2k+2/s ] A 2+ A

1/2k
Now select s = (Mzkt2 to obtain kC) < 24/ MsMsp,o and then (14) is
M, +

shown. |
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We need the following lemma to improve the upper estimates.

Lemma 2.3. Let k,j € N and A, B > 0. Then

min (As* + Bs~7) = (k +j)(§) w5 (%) w5

0<s<0o0

Proof. If f(s) = As* + Bs™J then f'(s) = kAs"~! — jBs~(+1. Therefore the
minimum is attained at s*t7 = %. This gives the result. |
Proposition 2.4. Let p € W and 3 < j < k. Then

Y
77— g = My (15)

Ck <
In particular, for k > 3,

2k k=2 k42
k2 —4

6 ./
Ck < g N Mk,?)Mi?JrB.

Proof. Let 0 < s < oo and write, for j > 1

Ck <

Cr = /S rk=iplitie=¢() gp 4 /OO rk+te=o ) gy
0

S

§2ti Rl dr
) +ip—o(r) 20
<2+jM’“‘J+/S e T

245 oo d
s r

< Myp_ i+ My —
2+ k—j T k+j/8 i1

< Mkﬂ_' 27 4 Mkﬂ s—It2.

247 j—2

Hence

. M_; My i .

< J 42 +i —(j—-2) < i<
Ck\021<noo<j—|—2$ T8 STk

Now apply Lemma 2.3 to conclude

“<u(gragmn) (G=aorn)

The estimates correspond to j = k and j = 3 respectively and the proof is com-
plete. |
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3. A new class of weights

For each ¢ € W, f(2) = Y07 janz" € H(C) and g(z) = >, b,2" € P we shall

write

gy = 5= [ HigleDdmw) = 3 ab Conle). (1)
n=0

and we shall denote by K* the reproducing kernel of F2(C), i.e. f(z) = (f, K*)a,
for z € C and f € F2(C).

On the other hand, since (C’;/ k) & increases to oo one obtains (see [3]) that
Ky(2) =Y Cor(¢)~'2F € H(C), (17)
k=0

Both processes are related one each other as the following result shows. For
convenience we shall use the notation f,(w) = f(zZw) whenever f € H(C) and
z,w € C.

Proposition 3.1. Let o € W. Then K* = (Ks,).,.

Proof. Since for each ¢ € W and k£ € NU {0} one can write
1
(uk, (Kg)s)o = O3 (0) 5 / e D dm(w))2* = 2 = ur(2),
T Jc

then for each g € P one has

1

=5 Ky (zw)g(w)e™ NP dm(w). (18)
T Jc

9(2) = (9, (Kg)z)g

The result follows selecting ¢ = 2¢ from the uniqueness of the reproducing kernel.
|

Definition 3.1. Let ¢ € W. We shall say that v(z) = e~?(*D is an admissible
weight, to be denoted ¢ € AW, whenever there exists ¢ € W and C > 0 such that

I(Kgry)ell e < Ce?UD, 2 eC. (19)

We shall write Wy for the set of weights ¢ € W such that the couple (¢, )
satisfies (19).

Example 3.1. Let ¢(r) = ¢, 1 o(r) = g Then ¢ € AW. Moreover ¢ € Wy.
Indeed, recall that Coy(2¢) = & and Koy (2) = 2¢*. Hence

5) —Llwl? (|2
(B ag)-l =2 [ eMEDe S i) = €D,
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We denote by ¢ the associate weight (see [10]) defined by ©(z) = |4, || ()"

where [|0 ||(g)- = sup{[f(2)| : [ fllo < 1}. It is known that H;°(C) = HZ°(C).
Also recall that in general v < ¢ and a radial weight is called essential whenever
there exists Cp > 0 such that 9(z) < Cov(z) for all z € C.

Proposition 3.2. Ifv(z) = e=?(2) is an essential admissible weight then v="(z) ~
H(K¢+w)z||]:1/» for some ¢ € W.

Proof. Assume that ¢ € W,. Then using (18) when applied to ¢ = ¢ + ¢ one
easily shows that

F G < N(Epr)ell gl fllos feEP

Hence |6, () < ||(K¢’+w)z||fi”" This shows that 771(2) < |\(K¢+¢)Z||J_.;p. In
particular
v (2) < Coi () < Coll(Kopi): o

The other inequality follows since ¢ € Wy due to (19). |

Remark 3.1. Let ¢ € W such that there exists v € W satisfying

F<oe ™M >0 20
Z CQk 925 + 1/’ (20)
then ¢ € AW and ¢ € Wy,
Indeed, from (20) it follows that
=l

(K1) ||;w S Z m < Ce 22D,

Let us show that ¢, 5, € AW at least for o,y € N. We need the following
lemmas.

Lemma 3.3 (see [4, Lemma 1.7]). Let p € N, ¢(r) = rP~2¢~"" and write

oo 2k+1

Z 2k+1

Then there exists C > 0 such that H(KP)ZH}.;;, < Cel?l” for z € C.

Lemma 3.4. Let « > 0, ¢ € W and write ¢o(r) = ¢lar). If ¢ € AW then
Do € AW.

Proof. Let v € W,. We shall see that ¢, € Wy, . First observe that Ci(¢a) =
a~ 2y () for any ¢ € W. Hence selecting 1, (r) = (ar) since ¢n + 1o =
(¢ + ¥)o we conclude that

Kp 4o (Z0) QZ C% ¢+w (K¢+w)a2(aw>
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Hence, making the change of variable cw = w’,

(o)l = [ 021wl leam(u)

= [ I g sl mu
= [1(Kgty)azll zv
< Ce @z — CedallzD),
The proof is complete. u
Lemma 3.5. Let m € N, ¢ € W and write
b(m) (1) = ¢(r) —mlogr, r > 0.
If ¢ € AW then () € AW.

Proof. Assume that 1) € Wy. Let us show that ¢,y € Wy, . Clearly Cy(¢(m)) =
Crim (). Notice also that (¢ +1)(2m) = A(m) + ¥ (m) and then

Con(P(m) + Y(m)) = Conram(P + ).

Therefore
R M
-3 m
= (Kp+p)- Z C2n ¢ + e
Using now ||f||F1¢(m> = Humeff for all m € N we conclude that

||(K¢(7n)+w(m))z||]:f)("n) = ‘Zrm”Zmum(ch(m)Jrib(m))Z”]-‘{”
S 2T R (K g )=l 7
where R,g = g — Pn_1g for g € H(C). Therefore using the estimate || Ry, g zo <
1
C(m+1)|lg|| zw for any m € N (see the argument in [3, Lemma 3.1]) and the fact
1
1 € W, one obtains the estimate |\(K¢(m)+¢(m>)zH}_¢(m) < Ce?em (2D The proof
is then complete. ' |

Proposition 3.6. Let a € N, 8> 0, v € NU{0} and, as in the introduction,

©Va,8,~(1) = Bre —~logr.
Then ¢ap~ € AW .
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Proof. Since pq.5(7) = Pa.1.(8°7), due to Lemmas 3.4 and 3.5 it suffices to
show the result in the case § = 1 and v = 0. Write ¢(r) = @q,1,0(r) and select
Y = ©Ya,1,a—2- Let us show that 1 € Wy. Note that e~ (@) F9(r) = pa—2-2r" 55
then

o w1 o I(2k+1)

Cgk(¢ + w) = /; TQkT 16 2 dr = W
This gives that (Kpiy): = D pep 1}(5111) kuj, = (K,), and applying Lemma 3.3
one obtains (19). |

Other cases used in the literature are also admissible weights. Recall that if
¢ be a subharmonic function on C then in particular A¢ defines a locally finite
Borel measure. Let us denote by S the collection of subharmonic functions on C
such that y = A¢ satisfies the doubling condition, i.e.

0 < u(D(z,2r)) < Cu(D(z,1)) < 0 (21)

for any z € C and r > 0, where D(z,r) ={w e C: |w—z| <r}

Basic results on pointwise estimates for the reproducing kernel of the space
}“;(C) where achieved by Marzo and Ortega-Cerda in [20]. Making use of such
estimates Oliver and Pascuas [21] proved the following lemma.

Lemma 3.7 (see [21, Lemma 2.8]). Let ¢ € S. There exists C > 0 such that
/ |K* (w)|e =@ dm(w) < Ce?®)
o

Proposition 3.8. If ¢ € S then ¢ € AW. Moreover ¢ € W.

Proof. Taking into account Proposition 3.1 one has that K* = (Ky4),. Hence
selecting 1) = ¢ and applying Lemma 3.7 one has

1(Kz20):ll 71 < Ce?™

and the result follows. [ |

4. Vector-valued functions and operators

In this section we shall characterize the boundedness of operators with domain in
]-'1}) (C) or HY(C) for weights in the class AW. For such a purpose we shall consider
the following vector-valued function.

Definition 4.1. Let ¢ and ¥ € W, X be a complex Banach space and T : P — X
be a linear map. Set x,, = T'(u,) for n > 0 and write

Tn o
Froq(z Zczn G+ 9)

for the formal power series with values in X.
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Under some assumptions on the weights ¢ and ¥ € W and the operator 7" we
shall see that Frp 4 € H(C,X) and it will be used to describe the boundedness
of T in certain spaces. We need the following lemma.

Lemma 4.1. If ) € Wy, then the map z — (K444)= belongs to H(C, FY(C)).
Proof. The condition (19) guarantees that (K4, y). € FY(C) for any z € C.

Let us show that the series Y7 ) Cox(¢ + ) 'upz* converges in Fj(C) for any

z € C. Invoking Hardy’s inequality for functions in H*(D) (see [15]) we have that
for f € H(C) with f(z) =Y p,arz”

Z lax rk < CM,(f,7), r>0. (22)
=kt

Therefore, applying (22) to (K¢4y). and integrating with respect to re=*(dr,
we obtain

- T ot ) ()
];J (k + 1)C2k((b+ 'l/)) < O/O Ml((K¢+1/J)z,7“)Te dr

— C[(Kgrn):l
< e < o

and consequently the series Y7 muk converges absolutely in ip ©)

and defines a }"{p (C)-valued entire function. Now the result follows from Weier-
strass theorem since also its derivative Y -, muk defines a ]-'f’ (C)-valued

entire function. [ |

Theorem 4.2. Let v = ¢~ with ¢ € AW and ¢ € Wy, let X be a complex
Banach space and let T : P — X be a linear map. Then T extends to a bounded
linear operator from F{ (C) into X if and only if Fr 4.4 (2) € HX(C, X). Moreover
1T~ 1 Frg.allo.x -

Proof. Assume that T : F}'(C) — X is a bounded operator. Using that ¢ € W,
one has

> u
o, < Ce?lzD

| 112::0 Con(9 + ) I7
for each z € C. Hence, due to the continuity of T, one obtains that Fp 4 (2) =
T((Kp4y)z) for any z € C. Invoking Lemma 4.1 one obtains that Frp 4 is well
defined and holomorphic from C into X. Moreover it belongs to HS°(C, X) and
1Er,6,0llo,x < CIIT-

Assume now Fr 4 4 € Hy°(C, X). Due to the density of polynomials in FY(C)
it suffices to show that there exists C' > 0 such that | T(f)| < C/Hf”]_-;p for all

f €P.Given f=3,",aru, € P we have that

Co(d + P)ay = /Cf(w)wke—¢<|w\>e—¢<\w\>dm(w)
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which shows
H=> apz,= / F(w)Fr g (@)= 0D = 10D g (w). (23)
k=1 c
Hence

IT(f /IIFTM JI1F (w)le=?@Pe=¥ 0D dm(w) < || Frppllox I fll 2o

This shows that ||T']] < |

Corollary 4.3. Let v = e~% with ¢ € AW and let v € Wy. Then HX(C) =
(FL(C))* under the pairing (-, Vptap-

Our purpose now is to study operators with domain in H?(C). This time we
need the following lemma.

Lemma 4.4. If ¢ € Wy, then the map z — (Kypiy)z belongs to H(C, HY(C)).

Proof. Let us see that ZZO:O mz” is an absolutely convergent series with
values in H)(C). Note that for each n > 0, by Corollary 4.3 we have that |u,||, ~

sup{|(f, un)g+v : [|f]| 7+ < 1}. Hence, using the notation f(z) = > an(f)z",
we conclude that

[[tnll = sup{|an(f)|Con(d + ) : [ f]lzp <1} (24)

Now from the trivial estimate |a,(f)|r™ < Mi(f,r) and integrating with re-
spect re~ (") we obtain |a, (f)|Cy (1) < ||f||}-; , which combined with (24) implies

CQn(¢ + w)
[ lo < Cw~ (25)
This gives for each r > 0
[[ur o S I
<C C,- r < 00,
Z “ Con(¢ + 0" Z g

due to the fact limg_, C’;/k(i/z) = o0, and therefore > > GiTy 2 s well
defined and holomorphic from C into HJ(C). [ |

Definition 4.2. Let ¢ € W and let X be a complex Banach space. We denote
by FY wear(C: X) the space of holomorphic functions /" : C — X such that Fy- €
F{(C) for all z* € X* where Fy«(z) = (F(z),z*). We write

1 7¢

l,weak

= sup{[|Fo- || 7¢ : [l27] < 1}.
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Theorem 4.5. Letv = e~ ? with ¢ € AW and ) € Wy, let X be a complex Banach
space and let T : P — X be a linear map. Then T extends to a bounded linear
operator from HY(C) into X if and only if Frs4(z) € .7-"1 weak(X). Moreover
1T~ 1 Frg oz

Proof. Assume that 7 : H(C) — X is a bounded operator. As shown in Lemma
44 (Kpyp)z = Dopip Ton(irgy?" Where the series is absolutely convergent in
HY(C) for each z € C. Due to the continuity of 7' we obtain that the function
Frop(2) = T((K¢+w)5) is well defined and holomorphic from C into X. Let us

show that Fr 4 4 € fﬁweak(C,X). For each z* € X* we consider T}~ € (H2(C))*
defined by Ty (f) = (T(f),z*). Since the mapping g — g(z)e~?(*D produces an
isometric embedding HJ(C) C Cy(C), then using Hahn—Banach We can find a Borel
measure vy« with |1y« |(C) = || T,+|| such that T-(g) = [o g(w)e=*"“Dduy. (w) for
any g € HY(C). Define

mw=$4mwmwwwmm»

Observe that

for (2) = Tor (Bp0)z) = (T ((Kora)z ) 7).

Hence fy«(2) = (Fr,¢,4(2),x*) for any z € C and z* € X*. Notice that

/If 2)le 1= dm(z) < —//|K¢+w 2w)]e= ) =0 gy [(w)dm(z)
<gr [ (L 1orsuleDm(z) )|
21 Je \Je
1 - w
S 7/ (K gsi)wll poe ™ d|v,- | (w)
s C 1
C C i
< g e [(C) < o IIT 2™ -
™ ™

This gives that Fr.gy € F}yea (C, X) and [|Frgyllze < C|T.

Assume now that Fp . € ]-'fjweak((C,X). Since polynomials are dense in
H?(C) it suffices to show ||T(f)|| < C|fll, for all f € P. Using (23) we have
for all f € P and z* € X*

(T(f), ") = /C<FT,¢,w(u7)7x*>f(w)€_¢('”‘)e_w(‘”‘)dm(w)-

Therefore
(T, )N < I Froulze e lIf1,

and the proof is complete. |
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A corollary from Theorem 4.5 is the following duality result.

Corollary 4.6. Let v = e ¢ with ¢ € AW and let » € Wy. Then F}p((C) =
(H2(C))* under the pairing (-, -)p4y-

Corollary 4.7. Let v(z) = e ?(*) with ¢ € AW, let X be a complex Banach
space and let T : X — H?(C) be a bounded operator. Then there exists a sequence

(5)n>0 in X* such that Y >, o (¢+w)un € H*(C,X*) and

Zc% ¢+w z € X. (26)

Proof. From Corollary 4.6 we know that (H2(C))* = F}(C) for some ¢ € Wi,
Since the adjoint operator T : ]_-{p (C) — X* is continuous we can define z}, =
T*(uy) for n > 0 and apply Theorem 4.2 to conclude that Fr« 4, € H°(C, X*).
Let f, = T(z) € H)(C). To show that f, = (Fr« 4.4, 2) for each z € X it suffices
to observe that

(a3, )
an(fz) = m n = 0. (27)

This follows since
(@5, @) = (Un, fo)psp = /C fo(w)@e= )V dm(w) = an(f2)Can(e + ).
The proof is then complete. |
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