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Abstract: While the classic separable quotient problem remains open, we survey general results
related to this problem and examine the existence of infinite-dimensional separable quotients in
some Banach spaces of vector-valued functions, linear operators and vector measures. Most of
the presented results are consequences of known facts, some of them relative to the presence of
complemented copies of the classic sequence spaces c0 and `p, for 1 6 p 6∞. Also recent results
of Argyros, Dodos, Kanellopoulos [1] and Śliwa [64] are provided. This makes our presentation
supplementary to a previous survey (1997) due to Mujica.
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1. Introduction

A famous unsolved problem of Functional Analysis (posed by S. Mazur in 1932)
asks:

Problem 1. Does every infinite-dimensional Banach space have a separable infi-
nite-dimensional quotient (have SQ)?

A nice application of the open mapping theorem shows that an infinite-dimen-
sional Banach space X has SQ if and only if X is mapped onto a separable Banach
space under a continuous linear map.

The first comments about Problem 1 are mentioned in [45] and [53]. It is already
well known that all infinite-dimensional reflexive, even all infinite-dimensional
weakly compactly generated Banach spaces (WCG for short) have SQ, result gen-
eralized in Theorem 1 of [65]. In [37, Theorem IV.1(i)] Johnson and Rosenthal
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proved that every infinite-dimensional separable Banach space admits an infinite-
dimensional quotient with a Schauder basis. The latter result provides another
(equivalent) reformulation of Problem 1.

Problem 2. Does every infinite-dimensional Banach space admit an infinite-
dimensional quotient with a Schauder basis?

Théorème 4 on page 124 of Banach’s monograph and Theorem 2 of [36] prove
that if Y is a separable closed subspace of a Banach space X and the quotient X/Y
has SQ, then Y is quasi-complemented in X. This provides another equivalent
condition to Problem 1.

Problem 3 (Rosenthal [53, p. 188, Remark 2]). Does every infinite-dimen-
sional Banach space X contain a closed quasi-complemented infinite-dimensional
separable subspace Y ?

Although Problem 1 remains open for Banach spaces, a corresponding question
of whether every infinite-dimensional non-normed metrizable and complete locally
convex space (i.e., a Fréchet space) X admits SQ has been already solved. Indeed,
if X is a non-normed locally convex Fréchet space, a result of Eidelheit [20] ensures
that X has a quotient isomorphic to KN, where K ∈ {R,C}.

In [16] Drewnowski posed a more general question: Does every infinite-dimen-
sional metrizable and complete topological vector space X contain a closed sub-
space Y such that the dimension of the quotient X/Y is the continuum (in short,
dim(X/Y ) = c)? The same paper contains an observation stating that every
infinite-dimensional Fréchet locally convex space admits a quotient of dimension c.
Drewnowski’s problem was solved by M. Popov (see [52]). He showed that for
0 < p < 1 the space X := Lp([0, 1]2

c

) does not admit a proper closed subspace Y
such that dim(X/Y ) 6 c. Consequently, X does not have SQ.

The organization of the present paper goes as follows. The second section gath-
ers general selected results about the separable quotient problem and some clas-
sic results on Banach spaces containing copies of sequence spaces, providing as
well some straightforward consequences. Recent results of Argyros, Dodos, Kanel-
lopoulos [1] and Śliwa [64] are also provided.

In the third section we exhibit how some types of weak*-compactness of the
dual unit ball of a Banach space X can be used to get quotients isomorphic to c0 or
`2. The next section contains three classic results about complete tensor products
of Banach spaces and their applications to the separable quotient problem.

The last two sections are devoted to examine the existence of SQ for many
concrete classes of ‘big’ Banach spaces, for example, Banach spaces of vector-valued
functions, bounded linear operators and vector measures. This line of research has
been also continued in a more general setting for the class of topological vector
spaces, in particular for spaces C(L) of real-valued continuous functions endowed
with the pointwise and compact-open topology, respectively (see [39], [40] and [41]).
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This paper supplements Mujica’s survey article [50] by collecting together some
results not mentioned there. We add new facts and nice consequences of older facts.
Some imply the existence of complemented copies of the classic spaces c0 and `p
(1 6 p 6∞). We hope this will prove useful for researchers in the area.

2. A few results for general Banach spaces

Let us start with the following remarkable concrete result of Agryros, Dodos and
Kanellopoulos [1] related to Problem 1. They proved (using Ramsey theory) that
for every separable Banach space X with non-separable dual, the space X∗∗ con-
tains an unconditional family of size |X∗∗|. As an application they proved

Theorem 4 (Argyros-Dodos-Kanellopoulos). Every infinite-dimensional dual
Banach space has SQ.

Corollary 5. The space L (X,Y ) of bounded linear operators between Banach
spaces X and Y equipped with the operator norm has SQ provided Y 6= {0}.

Indeed, this follows from the fact that X∗ is complemented in L (X,Y ), see
Theorem 32 below for details.

Let us select a few more equivalences to Problem 1. The equivalence of (2)
and (3) below, even for Hausdorff locally convex spaces, is an obvious consequence
of the bipolar theorem (see also [40], [60] and [61]). The equivalence of (1) and
(4) is due to Saxon-Wilansky [63]. Recall that a locally convex space E is called
barrelled if every barrel (an absolutely convex closed and absorbing set in E) is
a neighborhood of zero. We refer also to [5] and [37] for some partial results related
to the next theorem.

Theorem 6 (Saxon-Wilansky). The following assertions are equivalent for an
infinite-dimensional Banach space X.

(1) X contains a dense non-barrelled linear subspace.
(2) X admits a strictly increasing sequence of closed subspaces of X whose union

is dense in X.
(3) X∗ admits a strictly decreasing sequence of weak*-closed subspaces whose

intersection consists only of the zero element.
(4) X has SQ.

Proof. We prove only the equivalence between (2) and (4) (which also holds for
every locally convex space X).

(4) ⇒ (2) Note that separable Banach spaces have property (2), which is
preserved by pre-images of surjective continuous (and open) linear operators.

(2) ⇒ (4) Let {Xn : n ∈ N} be such a sequence. For each n ∈ N choose xn ∈
Xn+1 \Xn and x∗n ∈ X∗ such that x∗nxn = 1 with x∗n vanishing on Xn. Since, by
induction, Xn+1 ⊆ span {x1, . . . , xn} +

⋂∞
k=1 kerx∗k, we conclude that span{xn :

n ∈ N}+
⋂∞
n=1 kerx∗n is dense in X. Clearly, then X/Y is separable (and infinite-

dimensional) for Y :=
⋂∞
n=1 kerx∗n. �
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In particular, every Banach space whose weak*-dual is separable has SQ. Theo-
rem 6 applies to show that every infinite-dimensional WCG Banach space has SQ.
Indeed, if X is reflexive we apply Theorem 4. If X is not reflexive, choose a weakly
compact absolutely convex set K in X such that span (K) = X. Since K is a
barrel of Y := span (K) and X is not reflexive, Y is a dense non-barrelled linear
subspace of X.

The class of WCG Banach spaces, introduced in [4], provides a quite successful
generalization of reflexive and separable spaces. As proved in [4] there are many
bounded projection operators with separable ranges on such spaces, so many sep-
arable complemented subspaces exist. For example, if X is WCG and Y is a sep-
arable subspace, there exists a separable closed subspace Z with Y ⊆ Z ⊆ X
together with a contractive projection. This shows that every infinite-dimensional
WCG Banach space X admits many separable complemented subspaces, so X has
many SQ.

The Josefson-Nissenzweig theorem states that the dual of any infinite-dimen-
sional Banach space contains a normal sequence, i. e., a normalized weak*-null
sequence [51].

Recall (cf. [64]) that a sequence {y∗n} in the sphere S(X∗) of X∗ is strongly
normal if the subspace {x ∈ X :

∑∞
n=1 |y∗nx| < ∞} is dense in X. Clearly

every strongly normal sequence is normal. Having in mind Theorem 8 below, the
following question is of interest.

Problem 7 (Śliwa). Does every normal sequence in X∗ contain a strongly normal
subsequence?

By [64, Theorem 1], every strongly normal sequence in X∗ contains a subse-
quence {yn} which is a Schauder basic sequence in the weak*-topology, i. e., {yn} is
a Schauder basis in its closed linear span in the weak∗-topology. Conversely, every
normalized Schauder basic sequence in (X∗, w∗) is strongly normal [64, Proposi-
tion 1].

The following theorem from [64] exhibits a connection between these concepts.

Theorem 8 (Śliwa). Let X be an infinite-dimensional Banach space. The fol-
lowing conditions are equivalent:

(1) X has SQ.
(2) X∗ has a strongly normal sequence.
(3) X∗ has a basic sequence in the weak* topology.

Proof. We prove only (1) ⇔ (2). The equivalence between (2) and (3) follows
from the remark above.

(1)⇒ (2) Let Y be a closed subspace in X and {xn}∞n=1 a linearly independent
sequence whose linear span Z is transverse to Y , with Y + Z dense in X. For
each n ∈ N, choose y∗n ∈ S (X∗) such that y∗nxn 6= 0 and y∗n vanishes on Y +
span {xj : 1 6 j < n}. Since {y∗nx}

∞
n=1 is eventually zero for every x ∈ Y + Z, the

sequence {y∗n}
∞
n=1 is strongly normal.
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(2)⇒ (1) By [64, Theorem 1] (see also [37, Theorem III.1 and Remark III.1])
some sequence {y∗n}

∞
n=1 in X∗ is a Schauder basis for its closed linear span

span {y∗n : n ∈ N} in (X∗, w∗). By definition of Schauder basis, the sequence
{span {y∗n : n > k}}∞k=1 satisfies (3) of Theorem 6, from which the conclusion fol-
lows. �

A slightly stronger property than condition (2) of Theorem 8 is stated below.
As it is shown in the proof, this property turns out to be equivalent to the existence
in X∗ of a basic sequence equivalent to the unit vector basis of c0.

Proposition 9. A Banach space X has a quotient isomorphic to `1 if and only if
X∗ contains a normal sequence {y∗n}

∞
n=1 such that

∑∞
n=1 |y∗nx| <∞ for all x ∈ X.

Proof. If there is a bounded linear operator Q from X onto `1, its adjoint map
fixes a sequence {x∗n}

∞
n=1 in X∗ such that the formal series

∑∞
n=1 x

∗
n is weak*

unconditionally Cauchy and infn∈N ‖x∗n‖ > 0. Setting y∗n := ‖x∗n‖−1x∗n for each
n ∈ N, the sequence {y∗n}

∞
n=1 is as required. Conversely, if there is a normal

sequence {y∗n}
∞
n=1 like that of the statement, it defines a weak* Cauchy series inX∗.

Since the series
∑∞
n=1 y

∗
n does not converge in X∗, according to [14, Chapter V,

Corollary 11] the spaceX∗ must contain a copy of `∞. ThusX has a complemented
copy of `1 by [14, Chapter V, Theorem 10]. �

For a large class of Banach spaces, Problem 7 has a positive answer.

Theorem 10 (Śliwa). If X is an infinite-dimensional WCG Banach space, every
normal sequence in X∗ contains a strongly normal subsequence.

An interesting consequence of Theorem 6 is that ‘small’ Banach spaces always
have SQ. We present another proof, different from the one presented in [62, The-
orem 3]. Ours depends on the concept of strongly normal sequence.

Corollary 11 (Saxon–Sánchez Ruiz). If the density character d (X) of a Ba-
nach space X satisfies ℵ0 6 d (X) < b, then X has SQ.

Recall that the density character of a Banach space X is the smallest cardinal
of the dense subsets of X. The bounding cardinal b is referred to as the minimum
size for an unbounded subset of the preordered space

(
NN,6∗

)
, where α 6∗ β

stands for the eventual dominance preorder , defined so that α 6∗ β if the set
{n ∈ N : α (n) > β (n)} is finite. So we have b := inf{|F | : F ⊆ NN, ∀α ∈ NN ∃β ∈
F with α <∗ β}. It is well known that b is a regular cardinal and ℵ0 < b 6 c. It
is consistent that b = c > ℵ1; indeed, Martin’s Axiom implies that b = c.

Proof of Corollary 11. Assume X has a dense subset D of cardinality less
than b. We show that X∗ has a strongly normal sequence and then we apply The-
orem 8. Choose a normalized weak*-null sequence {y∗n} in X∗. For x ∈ D choose
αx ∈ NN such that for each n ∈ N and every k > αx(n) one has |y∗kx| < 2−n. Then∑
n |y∗β(n)x| < ∞ if αx 6∗ β. Finally select γ ∈ NN with αx 6∗ γ for each x ∈ D.

Then the sequence {y∗γ(n)} is strongly normal and Theorem 8 applies. �
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For ‘large’ Banach spaces we note the following interesting result [68].

Theorem 12 (Todorcevic). Under Martin’s maximal axiom every Banach
space X of density character ℵ1 has a quotient space with an uncountable monotone
Schauder basis, and thus X has SQ.

Another line of research related to Problem 1 deals with those Banach spaces
which contain complemented copies of certain sequence spaces (see next section).
An important useful result is found in Mujica’s survey paper [50, Theorem 4.1].
First, we need the following result due to Rosenthal (see [53, Corollary 1.6, Propo-
sition 1.2]).

Lemma 13. Let X be a Banach space such that X∗ contains an infinite-dimen-
sional reflexive subspace Y . Then X has a quotient isomorphic to Y ∗. Consequently
X has SQ.

Proof. Let Q : X → Y ∗ be defined by Qx(y) = y(x) for y ∈ Y and x ∈ X. Let
j : Y → X∗ and φX : X → X∗∗ be the inclusion maps. Clearly Q = j∗ ◦ φX and
Q∗ = φ∗X ◦ j∗∗. Since Y is reflexive, Q∗ is an embedding map and consequently Q
is surjective. �

Theorem 14 (Mujica). If X is a Banach space that contains an isomorphic
copy of `1, then X has a quotient isomorphic to `2.

Proof. If X contains a copy of `1, the dual space X∗ contains a copy of L1[0, 1],
see [14]. It is well known that the space L1[0, 1] contains a copy of `2. We apply
Lemma 13. �

Let us recall that from classic Rosenthal-Dor’s `1-dichotomy [14, Chapter 11]
one easily gets the following general result.

Theorem 15. If X is a non-reflexive weakly sequentially complete Banach space,
then X contains an isomorphic copy of `1.

The previous results suggest also the following

Problem 16. Describe a possibly large class of non-reflexive Banach spaces X
not containing an isomorphic copy of `1 and having SQ.

In light of [35, Corollary 1] we may summarize this section with

Corollary 17. Let X be an infinite-dimensional Banach space. Assume that ei-
ther X or X∗ contains an isomorphic copy of c0, or either X or X∗ contains an
isomorphic copy of `1. Then X has SQ.

It is noteworthy that there exists an infinite-dimensional separable Banach
space X such that neither X nor X∗ contains a copy of c0, `1, or an infinite-
dimensional reflexive subspace (see [33]). How much more difficult might it be to
produce a Banach space that does not have SQ.
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We refer to [32] for several results (and many references) concerning Banach
spaces X not containing an isomorphic copy of `1.

From now onwards, unless otherwise stated, X is an infinite-dimensional Ba-
nach space over the field K of the real or complex numbers. Every measurable
space (Ω,Σ), as well as every measure space (Ω,Σ, µ), is assumed to be nontrivial,
i. e., there are in Σ infinitely many pairwise disjoints sets (of finite positive mea-
sure). If either X contains or does not contain an isomorphic copy of a Banach
space Z we shall frequently write X ⊃ Z or X 6⊃ Z, respectively.

3. Weak* compactness of BX∗ and separable quotients

The next result shows that the existence of a concrete infinite-dimensional separa-
ble quotient of a Banach space depends on the type of weak*-compactness of the
dual unit ball. We note the following

Theorem 18. Let X be a Banach space and let BX∗ (weak∗) be the dual unit ball
equipped with the weak*- topology.

(1) If BX∗ (weak∗) is not sequentially compact, then X has a separable quotient
which is either isomorphic to c0 or to `2.

(2) If BX∗ (weak∗) is sequentially compact, then X has a copy of c0 if and only
if it has a complemented copy of c0.

Proof (Sketch). For statement (1), if BX∗ (weak∗) is not sequentially compact,
according to the classic Hagler-Johnson theorem [35, Corollary 1], X either has
a quotient isomorphic to c0 or X contains a copy of `1. The latter implies, via
Theorem 14, that X has a quotient isomorphic to `2.

Statement (2) follows from [21], where the Gelfand-Phillips property is used. For
a direct proof we refer the reader to [26, Theorem 4.1]. We provide a brief account
of the argument. Let {xn} be a normalized basic sequence in X equivalent to
the unit vector basis {en} of c0 and let {x∗n} denote the sequence of coordinate
functionals of {xn} extended to X via Hahn-Banach’s theorem. If K > 0 is the
basis constant of {xn} then ‖x∗n‖ 6 2K, so that x∗n ∈ 2KBX∗ for every n ∈ N.
Since BX∗ (weak∗) is sequentially compact, there is a subsequence {z∗n} of {x∗n}
that converges to a point z∗ ∈ X∗ under the weak*-topology. Let {zn} be the
corresponding subsequence of {xn}, still equivalent to the unit vector basis of c0,
and let F be the closed linear span of {zn : n ∈ N}. For each n ∈ N define the
linear functional un : X → K by un (x) = (z∗n−z∗)x, so that |un (x)| 6 4K ‖x‖ for
each n ∈ N. Since un (x)→ 0 for all x ∈ X, the linear operator P : X → F given
by Px =

∑∞
n=1 un (x) zn is well defined. As the formal series

∑∞
n=1 zn is weakly

unconditionally Cauchy, there is C > 0 such that ‖Px‖ 6 4CK ‖x‖. Now the fact
that z∗ny → 0 for each y ∈ F means that z∗ ∈ F⊥, which implies that Pzj = zj for
each j ∈ N. Thus P is a bounded linear projection operator from X onto F . �
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We used the second part of Hagler-Johnson’s classic [35, Corollary 1] to prove
Theorem 18 (1). Let us re-phrase the first part of H-J: If X∗ ⊃ `1 and X 6⊃ `1, then
X has a quotient isomorphic to c0. The first part implies the second one, since,
according to Diestel [14, p. 226], if BX∗ (weak∗) is not sequentially compact, then
X∗ ⊃ `1.

It is well-known that `∞ ⊃ `1 (R) ⊃ `1. Therefore, if X ⊃ `∞ then, by The-
orem 14, the Banach space X has a quotient isomorphic to `2. Useful character-
izations of Banach spaces containing a copy of `∞ can be found in the classic
paper [54]. It is also shown in [66] that `∞ is a quotient of a Banach space X if
and only if BX∗ contains a weak*-homeomorphic copy of βN. Hence such a space
X has in particular a separable quotient isomorphic to `2.

The class of Banach spaces for which BX∗ (weak∗) is sequentially compact is
rich. This happens, for example, if X is a WCG Banach space. Of course, no
WCG Banach space contains a copy of `∞. Another class of Banach spaces with
weak* sequentially compact dual balls is the class of Asplund spaces. Note that the
second statement of Theorem 18 applies in particular to each Banach space whose
weak*-dual unit ball is Corson compact (a fact first observed in [49]) since, as is
well-known, each Corson compact set is Fréchet-Urysohn. So, one has the following
corollary, where a Banach space X is called weakly Lindelöf determined (WLD, for
short) if there is a set M ⊆ X with span (M) = X enjoying the property that for
each x∗ ∈ X∗ the set {x ∈M : x∗x 6= 0} is countable (see Section 19.12 in [42]).

Corollary 19. If X is a WLD Banach space, then X contains a complemented
copy of c0 if and only if it contains a copy of c0.

Proof. If X is a WLD Banach space, the dual unit ball BX∗ (weak∗) of X is
Corson compact (see [2, Proposition 1.2]), so the second statement of Theorem 18
applies. �

If K is an infinite Gul’ko compact space, then C (K) is weakly countable de-
termined (see [3]), hence WLD. Since C (K) has plenty of copies of c0, it must
have many complemented copies of c0. It must be pointed out that if K is Corson
compact then C (K) need not be WLD. On the other hand, if a Banach space
X ⊃ c0 then X∗ ⊃ `1, so H-J and Theorem 14 ensure that X has c0 as a quotient
(a general characterization of Banach spaces containing a copy of c0 is provided
in [55]).

Corollary 20. If a Banach space X contains a copy of c0, then X has a quotient
isomorphic to either c0 or `2.

Corollary 21 (cf. [45] and [53]). If K is an infinite compact Hausdorff space,
then C (K) always has a quotient isomorphic to c0 or `2. If K is scattered, then
c0 embeds in C (K) complementably.

Proof. The first statement is clear. The second is due to the fact that C (K) is
an Asplund space (see [34, Theorem 296]). �

An extension of the previous corollary to all barrelled spaces Ck(X) with the
compact-open topology has been obtained in [40].
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4. Separable quotients in tensor products

We quote three classic results about the existence of copies of c0, `∞ and `1 in
injective and projective tensor products which will be frequently used henceforth
and provide infinite-dimensional separable quotients in X ⊗̂πY . We complement
these classic facts with other results of our own. In the following theorem c00 stands
for the linear subspace of c0 consisting of all those sequences of finite range.

Theorem 22 (cf. [30, Theorem 2.3]). Let X be an infinite-dimensional normed
space and let Y be a Hausdorff locally convex space. If Y ⊃ c00 then X ⊗̂εY
contains a complemented subspace isomorphic to c0.

In particular, if X and Y are infinite-dimensional Banach spaces and X ⊃ c0 or
Y ⊃ c0, then X ⊗̂εY contains a complemented copy of c0, (cf. [59]). On the other
hand, if eitherX ⊃ `∞ or Y ⊃ `∞ thenX ⊗̂εY ⊃ `∞ and consequentlyX ⊗̂εY also
has a separable quotient isomorphic to `2. If X ⊗̂εY ⊃ `∞, the converse statement
also holds, as the next theorem asserts.

Theorem 23 (cf. [18, Corollary 2]). Let X and Y be Banach spaces. X ⊗̂εY ⊃
`∞ if and only if X ⊃ `∞ or Y ⊃ `∞.

This also implies that if X ⊗̂εY ⊃ `∞ then c0 embeds complementably in
X ⊗̂εY . Concerning projective tensor products, we have the following well-known
fact.

Theorem 24 (cf. [8, Corollary 2.6]). Let X and Y be Banach spaces. If both
X ⊃ `1 and Y ⊃ `1, then X ⊗̂πY has a complemented subspace isomorphic to `1.

Next we observe that ifX ⊗̂εY is not a quotient ofX ⊗̂πY , thenX ⊗̂εY has SQ.

Theorem 25. Let J : X ⊗π Y → X ⊗ε Y be the identity map and consider the
continuous linear extension J̃ : X ⊗̂πY → X ⊗̂εY . If J̃ is not a quotient map,
then X ⊗̂εY has SQ.

Proof. Observe that X ⊗ε Y ⊆ Im J̃ ⊆ X ⊗̂εY . There are two cases.
Assume first that X ⊗ε Y is a barrelled space. In this case, since X ⊗ε Y is

dense in Im J̃ , we note that the range space Im J̃ is a barrelled subspace of X ⊗̂εY .
As the graph of J̃ is closed in (X ⊗̂πY )× (X ⊗̂εY ) and Im J̃ is barrelled, it follows
from [69, Theorem 19] that Im J̃ is a closed subspace of X ⊗̂εY . Of course, this
means that Im J̃ = X ⊗̂εY . Hence, the open map theorem shows that J̃ is an open
map from X ⊗̂πY onto X ⊗̂εY , so that X ⊗̂εY is a quotient of X ⊗̂πY .

Assume now that X ⊗εY is not barrelled. In this case X ⊗εY is a nonbarrelled
dense subspace of the Banach space X ⊗̂εY , so we may apply Theorem 6 to get
that X ⊗̂εY has SQ. �

Recall that the dual of X ⊗π Y coincides with the space of bounded linear
operators from X into Y ∗, whereas the dual of X ⊗ε Y may be identified with the
subspace of those operators which are integral, see [57, Section 3.5].
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Proposition 26. Let X and Y be Banach spaces. If X has the bounded approxi-
mation property and there is a bounded linear operator T : X → Y ∗ which is not
integral, then X ⊗̂εY has SQ.

Proof. Since there exists a bounded not integral linear operator between X and
Y ∗, the π-topology and ε-topology do not coincide on X ⊗ Y , see [57]. Assume
X ⊗ε Y is barrelled. Since X has the bounded approximation property, [6, Theo-
rem] applies to get that X⊗ε Y = X⊗π Y , which contradicts the assumption that
(X ⊗ε Y )

∗ 6= (X ⊗π Y )
∗. Thus X ⊗ε Y must be a nonbarrelled dense linear sub-

space of X ⊗̂εY , which according to Theorem 6 ensures that X ⊗̂εY has SQ. �

For the next theorem, recall that a Banach space X is called weakly countably
determined (WCD for short) if X (weak) is a Lindelöf Σ-space.

Theorem 27. Let X and Y be WCD Banach spaces. If X ⊗̂εY ⊃ c0, then c0
embeds complementably in X ⊗̂εY .

Proof. Since both X and Y are WCD Banach spaces, their dual unit balls
BX∗ (weak∗) and BX∗ (weak∗) are Gul’ko compact. Since the countable product of
Gul’ko compact spaces is Gul’ko compact, the product space K := BX∗ (weak∗)×
BX∗ (weak∗) is Gul’ko compact. Consequently C (K) is a WCD Banach space,
which implies that its weak*-dual unit ball BC(K)∗ is Gul’ko compact. In particu-
lar BC(K)∗ (weak∗) is angelic and consequently sequentially compact. Let Z stand
for the isometric copy of X ⊗̂εY in C (K) and P for the isomorphic copy of c0 in Z.
From the proof of the second statement of Theorem 18 it follows that C (K) has
a complemented copy Q of c0 contained in P . This implies that Z, hence X ⊗̂εY ,
contains a complemented copy Q of c0. �

5. Separable quotients in spaces of vector-valued functions

If (Ω,Σ, µ) is a nontrivial arbitrary measure space, we denote by Lp (µ,X),
1 6 p 6∞, the Banach space of all X-valued p-Bochner µ-integrable (µ-essentially
bounded when p = ∞) classes of functions equipped with its usual norm. If K is
an infinite compact Hausdorff space, then C (K,X) stands for the Banach space
of all continuous functions f : K → X equipped with the supremum norm. By
B (Σ, X) we represent the Banach space of those bounded functions f : Ω → X
that are the uniform limit of a sequence of Σ-simple and X-valued functions,
equipped with the supremum norm. The space of all X-valued bounded functions
f : Ω → X endowed with the supremum norm is written as `∞ (Ω, X). Clearly
`∞ (X) = `∞ (N, X). By `∞ (Σ) we denote the completion of the space `∞0 (Σ) of
scalar-valued Σ-simple functions, endowed with the supremum norm.

On the other hand, if (Ω,Σ, µ) is a (complete) finite measure space we rep-
resent by P1(µ,X) the normed space consisting of all those [classes of] strongly
µ-measurable X-valued Pettis integrable functions f defined on Ω provided with
the semivariation norm

‖f‖P1(µ,X) = sup

{∫
Ω

|x∗f (ω)| dµ (ω) : x∗ ∈ X∗, ‖x∗‖ 6 1

}
.
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As is well known, in general P1(µ,X) is not a Banach space if X is infinite-
dimensional, but it is always a barrelled space (see [19, Theorem 2] and [29, Re-
mark 10.5.5]).

Our first result collects together a number of statements concerning Banach
spaces of vector-valued functions related to the existence of separable quotients.
Most of them can be easily derived from the well known facts about the existence
of complemented copies of c0 and `p for 1 6 p 6∞. We denote by ca+ (Σ) the set
of positive and finite measures on Σ.

Theorem 28. The following statements on spaces of vector-valued functions hold.

1. C (K,X) always has a complemented copy of c0.
2. C (K,X) has a quotient isomorphic to `1 if and only if X has `1 as a quotient.
3. Lp (µ,X), with 1 6 p <∞, has a complemented copy of `p. In particular, the

vector sequence space `p (X) has a complemented copy of `p.
4. Lp (µ,X), with 1 < p <∞, has a quotient isomorphic to `1 if and only if X

has `1 as a quotient. In particular `p (X) has a quotient isomorphic to `1 if
and only if the same happens to X.

5. L∞ (µ,X) has a quotient isomorphic to `2. Hence, so does `∞ (X).
6. If µ is purely atomic and 1 6 p < ∞, then Lp (µ,X) has a complemented

copy of c0 if and only if X has a complemented copy of c0. In particular, the
space `p (X) has a complemented copy of c0 if and only if so does X.

7. If µ is not purely atomic and 1 6 p < ∞, then Lp (µ,X) has complemented
copy of c0 if X ⊃ c0.

8. If µ ∈ ca+ (Σ) is purely atomic and 1 < p <∞, then Lp (µ,X) has a quotient
isomorphic to c0 if and only if X contains a quotient isomorphic to c0.

9. If µ ∈ ca+ (Σ) is not purely atomic and 1 < p < ∞, then Lp (µ,X) has a
quotient isomorphic to c0 if and only if X contains a quotient isomorphic to
c0 or X ⊃ `1.

10. If µ is σ-finite, then L∞ (µ,X) has a quotient isomorphic to `1 if and only if
`∞ (X) has `1 as a quotient.

11. B (Σ, X) has a complemented copy of c0 and a quotient isomorphic to `2.
12. `∞ (Ω, X) has a quotient isomorphic to `2.
13. If the cardinality of Ω is less than the first real-valued measurable cardinal,

then `∞ (Ω, X) has a complemented copy of c0 if and only if X enjoys the
same property. In particular, `∞ (X) contains a complemented copy of c0 if
and only if X enjoys the same property.

14. c0 (X) has a complemented copy of c0.
15. `∞ (X)

∗ has a quotient isomorphic to `1.

Proof. Let us proceed with the proofs of the statements.

1. This well-know fact can be found in [9, Theorem] and [30, Corollary 2.5] (or
in [10, Theorem 3.2.1]).

2. This is because C (K,X) contains a complemented copy of `1 if and only if
X contains a complemented copy of `1 (see [58] or [10, Theorem 3.1.4]).
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3. If 1 6 p < ∞, each Lp (µ,X) space contains a norm one complemented
isometric copy of `p (see [10, Proposition 1.4.1]). For the second affirmation
note that if (Ω,Σ, µ) is a σ-finite purely atomic measure space, then `p (X) =
Lp (µ,X) isometrically.

4. If 1 < p <∞ then Lp (µ,X) contains a complemented copy of `1 if and only
if X does (see [48] or [10, Theorem 4.1.2]).

5. The space `∞ is isometrically embedded in L∞ (µ), which is in turn isometric
to a norm one complemented subspace of L∞ (µ,X).

6. If µ is purely atomic, then Lp (µ,X) contains a complemented copy of c0 if
and only if X has the same property. This fact, discovered by F. Bombal in
[7], can also be seen in [10, Theorem 4.3.1].

7. If µ is not purely atomic and 1 6 p < ∞, according to [22], the mere fact
that X ⊃ c0 implies that Lp (µ,X) contains a complemented copy of c0.

8. If (Ω,Σ, µ) is a purely atomic finite measure space and 1 < p < ∞, the
statement corresponds to the first statement of [13, Theorem 1.1].

9. If (Ω,Σ, µ) is a not purely atomic finite measure space and 1 < p < ∞, the
statement corresponds to the second statement of [13, Theorem 1.1].

10. If (Ω,Σ, µ) is a σ-finite measure space, the existence of a complemented copy
of `1 in L∞ (µ,X) is related to the local theory of Banach spaces, a fact
discovered by S. Díaz in [12]. The statement, as formulated above, can be
found in [10, Theorem 5.2.3].

11. Since `∞0 (Σ, X) = `∞0 (Σ)⊗εX and X is infinite-dimensional, then `∞0 (Σ, X)
is not barrelled by virtue of Freniche’s classic theorem (see [30, Corollary
1.5]). Since `∞0 (Σ, X) is a nonbarrelled dense subspace of B (Σ, X), Theorem
6 guarantees that B (Σ, X) indeed has SQ. However, we can be more precise.
Since B (Σ, X) = `∞0 (Σ) ⊗̂εX and `∞0 (Σ) ⊃ c00 due to the nontriviality of
the σ-algebra Σ, Theorem 22 implies that B (Σ, X) contains a complemented
copy of c0. On the other hand, since `∞ is isometrically embedded in B (Σ, X),
it turns out that `2 is a quotient of B (Σ, X).

12. Clearly `∞ (Ω, X) ⊃ `∞ (Ω) ⊃ `∞ since the set Ω is infinite.
13. This property can be found in [46].
14. Just note that c0 (X) = c0 ⊗̂εX, so we may apply Theorem 22.
15. It suffices to note that `1 (X∗) is linearly isometric to a complemented sub-

space of `∞ (X)
∗ (see [10, Section 5.1]). �

Remark 29. Lp (µ,X) if 1 6 p <∞, as well as C (K,X), need not contain a copy
of `∞. By [47, Theorem], one has that Lp (µ,X) ⊃ `∞ if and only if X ⊃ `∞,
whereas C (K,X) ⊃ `∞ if and only if C (K) ⊃ `∞ or X ⊃ `∞, as shown in [18,
Corollary 3].

Remark 30. Complemented copies of c0 in L∞ (µ,X). If (Ω,Σ, µ) is a σ-finite
measure, according to [11, Theorem 1] a necessary condition for the space L∞ (µ,X)
to contain a complemented copy of c0 is that X ⊃ c0. The same happens with the
space `∞ (Ω, X) (see [26, Theorem 2.1 and Corollary 2.3]).
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Theorem 31. The following statements on the space ̂P1 (µ,X) hold.

1. If the finite measure space (Ω,Σ, µ) is not purely atomic, the Banach space
̂P1 (µ,X) has SQ.

2. If the range of the positive finite measure µ is infinite and X ⊃ c0 then
̂P1 (µ,X) has a complemented copy of c0.

Proof. Observe that L1 (µ) ⊗̂πX = L1 (µ,X) and ̂P1 (µ,X) = L1 (µ) ⊗̂εX iso-
metrically. On the other hand, from the algebraic viewpoint L1 (µ,X) is a linear
subspace of P1 (µ,X), which is dense under the norm of P1 (µ,X). If

J : L1 (µ)⊗π X → L1 (µ)⊗ε X

is the identity map, R a linear isometry from L1 (µ,X) onto L1 (µ) ⊗̂πX and S a
linear isometry from L1 (µ) ⊗̂εX onto ̂P1 (µ,X), the mapping

S ◦ J̃ ◦R : L1 (µ,X)→ ̂P1 (µ,X),

where J̃ denotes the (unique) continuous linear extension of J to L1 (µ) ⊗̂πX,
coincides with the natural inclusion map T of L1 (µ,X) into P1 (µ,X) over the
dense subspace of L1 (µ,X) consisting of the X-valued (classes of) µ-simple func-
tions, which implies that S◦ J̃ ◦R = T . Since X is infinite-dimensional and µ is not
purely atomic, the space P1 (µ,X) is not complete [67]. So necessarily we have that
ImT 6= ̂P1 (µ,X). This implies in particular that Im J̃ 6= L1 (µ) ⊗̂πX. According
to Theorem 25, this means that ̂P1 (µ,X) = L1 (µ) ⊗̂εX has a separable quotient.

The proof of the second statement can be found in [31, Corollary 2]. �

6. Separable quotients in spaces of linear operators

If Y is also a Banach space, let us denote by L (X,Y ) the Banach space of all
bounded linear operators T : X → Y equipped with the operator norm ‖T‖. By
K (X,Y ) we represent the closed linear subspace of L (X,Y ) consisting of all those
compact operators. We designate by Lw∗ (X∗, Y ) the closed linear subspace of
L (X∗, Y ) formed by all weak*-weakly continuous operators and by Kw∗ (X∗, Y )
the closed linear subspace of K (X∗, Y ) consisting of all weak*-weakly continuous
operators. The closed subspace of L (X,Y ) consisting of weakly compact linear
operators is denoted byW (X,Y ). It is worthwhile to mention that Lw∗ (X∗, Y ) =
Lw∗ (Y ∗, X) isometrically, as well as Kw∗ (X∗, Y ) = Kw∗ (Y ∗, X), by means of
the linear mapping T 7→ T ∗. The Banach space of nuclear operators T : X → Y
equipped with the so-called nuclear norm ‖T‖N is denoted by N (X,Y ). Let us
recall that ‖T‖ 6 ‖T‖N . Classic references for this section are the monographs
[38] and [44].

The first statement of Theorem 32 answers a question of Prof. T. Dobrowolski
posed during the 31st Summer Conference on Topology and its Applications at
Leicester (2016).
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Theorem 32. The following conditions on L (X,Y ) hold.

1. If Y 6= {0}, then L (X,Y ) always has SQ.
2. If X∗ ⊃ c0 or Y ⊃ c0, then L (X,Y ) has a quotient isomorphic to `2.
3. If X∗ ⊃ `q and Y ⊃ `p, with 1 6 p < ∞ and 1/p + 1/q = 1, then L (X,Y )

has a quotient isomorphic to `2.

Proof. Let us prove each of these statements.

1. First observe that X∗ is complemented in L (X,Y ). Indeed, choose y0 ∈ Y
with ‖y0‖ = 1 and apply the Hahn-Banach theorem to get y∗0 ∈ Y ∗ such that
‖y∗0‖ = 1 and y∗0y0 = 1. The map ϕ : X∗ → L (X,Y ) defined by (ϕx∗) (x) =
x∗x ·y0 for every x ∈ X is a linear isometry into L (X,Y ) (see [44, 39.1.(2’)]),
and the operator P : L (X,Y )→ L (X,Y ) given by PT = ϕ (y∗0 ◦ T ) is a norm
one linear projection operator from L (X,Y ) onto Imϕ. Hence X∗ is linearly
isometric to a norm one complemented linear subspace of L (X,Y ). Since X∗
is a dual Banach space, it has SQ by Theorem 4. Hence the operator space
L (X,Y ) has SQ.

2. Since X∗ ⊗ε Y is isometrically embedded in L (X,Y ) and both X∗ and Y
are isometrically embedded in X∗ ⊗ε Y , if either X∗ ⊃ c0 or Y ⊃ c0, then
L (X,Y ) ⊃ c0. In this case, according to [25, Corollary 1], L (X,Y ) contains
an isomorphic copy of `∞. This ensures that L (X,Y ) has a separable quotient
isomorphic to `2.

3. If {en : n ∈ N} is the unit vector basis of `p, define Tn : `p → `p by Tnξ = ξnen
for each n ∈ N. Since∥∥∥∥∥

n∑
i=1

aiTi

∥∥∥∥∥ = sup
‖ξ‖p61

(
n∑
i=1

|aiξi|p
)1/p

6 sup
16i6n

|ai|

for any scalars a1, . . . , an, we can see that {Tn : n ∈ N} is a basic sequence
in K (`p, `p) equivalent to the unit vector basis of c0. Recall that in gen-
eral E∗⊗̂εF = K (E,F ) for Banach spaces E and F whenever E∗ has the
approximation property. Hence if 1/p+ 1/q = 1, then

`q ⊗̂ε`p = `∗p ⊗̂ε`p = K (`p, `p)

isometrically. So we have `q ⊗̂ε`p ⊃ c0. As in addition `q ⊗̂ε`p is isomor-
phically embedded in X∗ ⊗̂εY , which in turn is isometrically embedded in
L (X,Y ), we have that L (X,Y ) ⊃ c0. So, we use again [25, Corollary 1]
to conclude that L (X,Y ) ⊃ `∞. Thus L (X,Y ) has a quotient isomorphic
to `2. �

The Banach space L (X,Y ) need not contain a copy of `∞ in order to have
SQ, as the following example shows.

Let 1 < p, q <∞ with conjugated indices p′, q′, i. e., 1/p+1/p′ = 1/q+1/q′ = 1.

Example 33. If p > q′ then L (`p, `q′) does not contain an isomorphic copy of c0.



On the separable quotient problem for Banach spaces 167

Proof. Recall that in general L (X,Y ∗) = (X ⊗̂πY )∗ isometrically for arbitrary
Banach spaces X and Y (see for instance [57, Section 2.2]), hence the fact that
`∗q′ = `q assures that L (`p, `q′) = (`p ⊗̂π`q)∗ isometrically. Now let us assume
by way of contradiction that L (`p, `q′) ⊃ c0, which implies that `p ⊗̂π`q contains
a complemented copy of `1 (see [14, Chapter 5, Theorem 10]). Since p > q′, ac-
cording to [57, Corollary 4.24] or [15, Chapter 8, Corollary 5], the space `p ⊗̂π`q
is reflexive, which contradicts the fact that it has a quotient isomorphic to the
nonreflexive space `1. So we must conclude that L (`p, `q′) 6⊃ c0.

On the other hand, since L (`p, `q′) is a dual Banach space, Theorem 4 shows
that L (`p, `q′) has SQ. Alternatively, we can also apply the first statement of
Theorem 32. �

Proposition 34. If X∗ has the approximation property, the Banach space
N (X,Y ) of nuclear operators has SQ.

Proof. Since X∗ enjoys the approximation property, it follows that N (X,Y ) =
X∗⊗̂πY isometrically. Hence X∗ is linearly isometric to a complemented subspace
of N (X,Y ). Since X∗, as a dual Banach space, has SQ, the transitivity of the
quotient map yields that N (X,Y ) has SQ. �

Theorem 35. The following statements hold.

1. If X ⊃ c0 and Y ⊃ c0, then Lw∗ (X∗, Y ) has a quotient isomorphic to `2.
2. If X has a separable quotient isomorphic to `1, then Lw∗ (X∗, Y ) enjoys the

same property.
3. If (Ω,Σ, µ) is an arbitrary measure space and Y 6= {0}, then Lw∗ (L∞ (µ) , Y )

has a quotient isomorphic to `1.
4. If X∗ ⊃ c0 or Y ⊃ `∞, then K (X,Y ) has a quotient isomorphic to `2.
5. If either X∗ ⊃ c0 or Y ⊃ c0, then K (X,Y ) contains a complemented copy

of c0.
6. If X ⊃ `∞ or Y ⊃ `∞, then Kw∗ (X∗, Y ) has a quotient isomorphic to `2.
7. The space W (X,Y ) always has SQ.
8. If X ⊃ c0 and Y ⊃ c0, then W (X,Y ) contains a complemented copy of c0.

Proof. Copies of `∞ often suffice, since `∞ ⊃ `1 and then Theorem 14 applies.

1. By [27, Theorem 1.5] if X ⊃ c0 and Y ⊃ c0 then Lw∗ (X∗, Y ) ⊃ `∞.
2. Choose y0 ∈ Y with ‖y0‖ = 1 and select y∗0 ∈ Y ∗ such that ‖y∗0‖ = 1

and y∗0y0 = 1. The map ψ : X → Lw∗ (X∗, Y ) given by ψ (x) (x∗) =
x∗x · y0, for x∗ ∈ X∗, is well-defined and if x∗d → x∗ under the weak*-topo-
logy of X∗ then ψ (x) (x∗d) → ψ (x) (x∗) weakly in Y , so that ψ
embeds X isometrically in Lw∗ (X∗, Y ). On the other hand, the operator
Q : Lw∗ (X∗, Y ) → Lw∗ (X∗, Y ) given by QT = ψ (y∗0 ◦ T ), which is also
well-defined since y∗0 ◦ T ∈ X whenever T is weak*-weakly continuous, is
a bounded linear projection operator from Lw∗ (X∗, Y ) onto Imψ. Since we
are assuming that `1 is a quotient of X, it follows that `1 is also isomorphic
to a quotient of Lw∗ (X∗, Y ).
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3. This statement is a consequence of the previous one, since `1 embeds com-
plementably in L1 (µ).

4. According to [43], if X∗ ⊃ c0 or Y ⊃ `∞, then K (X,Y ) ⊃ `∞.
5. This property has been shown in [56, Corollary 1].
6. The map ψ : X → Lw∗ (X∗, Y ) defined above by ψ (x) (x∗) = x∗x · y0, for

every x∗ ∈ X∗, yields a finite-rank (hence compact) operator ψ (x), so that
Imψ ⊆ Kw∗ (X∗, Y ). On the other hand, if x0 ∈ X with ‖x0‖ = 1 and
x∗0 ∈ X∗ verifies that ‖x∗0‖ = 1 and x∗0x0 = 1, the map φ : Y → Kw∗ (X∗, Y )
given by φ (y) (x) = x∗0x · y, for every x ∈ X, is a linear isometry from Y into
Kw∗ (X∗, Y ). Hence X and Y are isometrically embedded in Kw∗ (X∗, Y ).

7. Just note that W (X,Y ) = Lw∗ (X∗∗, Y ) isometrically. Since X∗ is comple-
mentably embedded in Lw∗ (X∗∗, Y ), the conclusion follows from Theorem 4.

8. According to [28, Theorem 2.5], under those conditions the space W (X,Y )
contains a complemented copy of c0. �

Remark 36. If neither X nor Y contains a copy of c0, then Lw∗ (X∗, Y ) cannot
contain a complemented copy of c0 as observed in [23].

The following result sharpens the first statement of Theorem 31.

Corollary 37. If (Ω,Σ, µ) is a finite measure space, ̂P1 (µ,X) has a quotient
isomorphic to `1.

Proof. This follows from the second statement of the previous theorem together
with the fact that ̂P1 (µ,X) = Lw∗ (L∞ (µ) , X) (see [15, Chapter 8, Theorem 5]).

�

Remark 38. The space P1 (µ,X) need not contain a copy of `∞. It can be easily
shown that P1 (µ,X) embeds isometrically in the space Kw∗

(
ca (Σ)

∗
, X
)
, where

ca (Σ) denotes the Banach space of scalar-valued countably additive measures
equipped with the variation norm. Since ca (Σ) 6⊃ `∞, it follows from [18, Theorem]
that P1 (µ,X) ⊃ `∞ if and only if X ⊃ `∞.

7. Separable quotients in spaces of vector measures

In this section we denote by ba (Σ, X) the Banach space of all X-valued bounded
finitely additive measures F : Σ→ X provided with the semivariation norm ‖F‖.
The closed linear subspace of ba (Σ, X) consisting of countably additive measures is
represented by ca (Σ, X), while cca (Σ, X) stands for the (closed) linear subspace of
ca (Σ, X) of all measures with relatively compact range. It can be easily shown that
ca (Σ, X) = Lw∗

(
ca (Σ)

∗
, X
)
isometrically. We also designate by bvca (Σ, X) the

Banach space of all X-valued countably additive measures F : Σ→ X of bounded
variation equipped with the variation norm |F |. Finally, following [57, page 107],
we denote by M1 (Σ, X) the closed linear subspace of bvca (Σ, X) consisting of
all those F ∈ bvca (Σ, X) that have the so-called Radon-Nikodým property, i. e.,
such that for each λ ∈ ca+ (Σ) with F � λ there exists f ∈ L1 (λ,X) with
F (E) =

∫
E
f dλ for every E ∈ Σ. For this section, our main references are [15]

and [57].
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Theorem 39. The following statements hold. In the first case X need not be
infinite-dimensional.

1. If X 6= {0}, then ba (Σ, X) always has SQ.
2. If X ⊃ c0, then ba (Σ, X) has a quotient isomorphic to `2.
3. If X ⊃ c0 but X 6⊃ `∞, then ba (Σ, X) has a complemented copy of c0.
4. If Σ admits no atomless probability measure, then ca (Σ, X) has a quotient

isomorphic to `1.
5. If X ⊃ c0 and Σ admits a nonzero atomless λ ∈ ca+ (Σ), then ca (Σ, X) has

a quotient isomorphic to `2.
6. If there exists some F ∈ cca (Σ, X) of unbounded variation, then cca (Σ, X)

has SQ.
7. If X ⊃ c0, then cca (Σ, X) contains a complemented copy of c0.
8. If X ⊃ `1, thenM1 (Σ, X) has a quotient isomorphic to `1.

Proof. In cases 2 and 3 it would suffice to show that the corresponding Banach
space contains an isomorphic copy of `∞.

1. This happens because ba (Σ, X) = L (`∞ (Σ) , X) isometrically. Since `∞ (Σ)
is infinite-dimensional by virtue of the nontriviality of the σ-algebra Σ, the
statement follows from the first statement of Theorem 32.

2. By point 2 of Theorem 32, if X ⊃ c0 then L (`∞ (Σ) , X) has a quotient
isomorphic to `2. The statement follows from the fact that ba (Σ, X) =
L (`∞ (Σ) , X).

3. ba (Σ, X) has a complemented copy of c0 by virtue of [28, Corollary 3.2].
4. If the nontrivial σ-algebra Σ admits no atomless probability measure, it can

be shown that ca (Σ, X) is linearly isometric to `1 (Γ, X) for some infinite
set Γ. Since `1 (Γ, X) = L1 (µ,X), where µ is the counting measure on 2Γ,
the conclusion follows from the third statement of Theorem 28.

5. Since ca (Σ) ⊗̂εX = cca (Σ, X) isometrically, if X ⊃ c0 then cca (Σ, X) ⊃ c0
and hence ca (Σ, X) ⊃ c0. If Σ admits a nonzero atomless λ ∈ ca+ (Σ), then
one has ca (Σ, X) ⊃ `∞ by virtue of [17, Theorem 1].

6. Observe that cca (Σ, X) = ca (Σ) ⊗̂εX and M1 (Σ, X) = ca (Σ) ⊗̂πX iso-
metrically (see [57, Theorem 5.22]) but, at the same time, from the alge-
braic point of view,M1 (Σ, X) is a linear subspace of cca (Σ, X) since every
Bochner indefinite integral has a relatively compact range, [15, Chapter II,
Corollary 9 (c)]. If there exists some F ∈ cca (Σ, X) of unbounded variation,
thenM1 (Σ, X) 6= cca (Σ, X), so the statement follows from Theorem 25.

7. Since X ⊃ c0 and ca (Σ) is infinite-dimensional, then X ⊗̂εca (Σ) contains
a complemented copy of c0 by [30, Theorem 2.3].

8. Since M1 (Σ, X) = ca (Σ) ⊗̂πX and ca (Σ) ⊃ `1, if X ⊃ `1 then M1 (Σ, X)
has a quotient isomorphic to `1 as follows from Theorem 24. �

Remark 40. If ω ∈ Ω and E (Σ, X) is either ba (Σ, X), ca (Σ, X) or bvca (Σ, X),
the map Pω : E (Σ, X) → E (Σ, X) defined by Pω (F ) = F (Ω) δω is a bounded
linear projection operator onto the copy {x δω : x ∈ X} of X in E (Σ, X). Hence,
if X has a separable quotient isomorphic to Z, then E (Σ, X) also has a separable
quotient isomorphic to Z.
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Remark 41. cca (Σ, X) may not have a copy of `∞. Since cca (Σ, X) =
Kw∗

(
ca (Σ)

∗
, X
)
, according to [18, Theorem or Corollary 4], cca (Σ, X) ⊃ `∞

if and only if X ⊃ `∞.

Remark 42. Concerning the spaceM1 (Σ, X), it is worthwhile to mention that
it follows from [24, Theorem] thatM1 (Σ, X) ⊃ `∞ if and only if X ⊃ `∞.
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