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SIMPLE ZEROS OF DEDEKIND ZETA FUNCTIONS

Stéphane R. Louboutin

Abstract: Using Stechkin’s lemma we derive explicit regions of the half complex plane <(s) 6 1
in which the Dedekind zeta function of a number field K has at most one complex zero, this
zero being real if it exists. These regions are Stark-like regions, i.e. given by all s = β + iγ with
β > 1− c/ log dK and |γ| 6 d/ log dK for some absolute positive constants c and d. These regions
are larger and our proof is simpler than recently published such regions and proofs.
Keywords: Dedekind zeta function, Siegel zero.

1. Introduction

Let dK > 1 and ζK(s) denote the absolute value of the discriminant and the
Dedekind zeta function of a number field K of degree n = r1 + 2r2 > 1, with
r1 real places and r2 complex places. It is known that ζK(s) has a meromorphic
continuation to the complex plane, with a single pole: a simple pole at s = 1. It
is also known that ζK(s) has no complex zero in the complex half-plane <(s) > 1.
For c > 0 and d > 0 we let S(c, d) denote the region given by all s = β + iγ with
β > σc := 1− c/ log dK and |γ| 6 td := d/ log dK . In 1974, H. M. Stark proved an
explicit result:

Theorem 1 ([6, Lemma 3]). A Dedekind zeta function ζK(s) has at most one
zero in the region S(1/4, 1/4); if such a zero exists, it is real and simple.

As noted in [2, Lemma 2] Stark’s Theorem 1 holds true in the region
S(2(
√

2− 1)2, 0). In fact, we will show that Stark’s proof readily yields:

Theorem 2. Set c1 := 2(
√

2−1)2 = 0.34314 · · · and d1 := 2
1−S0−S2

0

2+S0
= 0.27644 · · · ,

where S0 = 0.45433 · · · is the only root of S4 +2S3−2S2−4S+2 in [0,
√

2]. Then
Theorem 1 holds true in the regions S(c1, 0) and S(d1, d1).

By [3, Theorem 1.1 and Corollary 1.2], Theorem 1 holds true in the regions
S(1/2, 1/2), S(1/12.74, 1) and S(1/1.7, 1/4), for dK large enough. By [1, Theo-
rem 1], Theorem 1 holds true in the region S(1/2, 1/2) without any restriction
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on dK . By [8, Corollary 1.2], Theorem 1 holds true in (a slightly smaller region
than the) the region S(0.0875, 1), for dK large enough (notice that 1/12.74 =
0.078492 · · · < 0.0875). We use Stechkin’s Lemma and our approach introduced in
[5] to improve upon these results (see [4] for another recent application of Stechkin’s
Lemma):

Theorem 3. Set λ := 1 − 1/
√

5, c2 := c1/λ = 0.62075 · · · and d2 := d1/λ =
0.50009 · · · , where c1 and d1 are as in Theorem 2. Then Theorem 1 holds true in
the regions S(c2, 0), S(d2, d2).

Theorem 1 also holds true in the region S(0.59110, 1/4) (notice that 0.59110 >
1/1.7 = 0.58823 · · · ) and for dK > 8 in the region S(0.10379, 1).

We would like to mention that our proof is simpler than the ones in [1], [3] or [8].
However, our regions are Stark-like regions whereas in [3] and [8] asymptotically
valid regions of not larger widths (still of the type 1 − c/ log dK 6 β 6 1) but of
much larger heights (|γ| 6 1 instead of |γ| 6 d/ log dK) are obtained.

2. Proof of Theorem 2

Let σ > 1 be real. Let K be a number field of degree n. Then

0 < ZK(σ) := −ζ
′
K

ζK
(σ) =

∑
k>2

ΛK(k)

kσ
(σ > 1), (1)

where ΛK(k) > 0 for k > 2, and

ZK(σ) +
∑
ρ

<
(

1

σ − ρ

)
=

1

σ − 1
+

1

2
log dK +

1

σ
+ h(r1, r2, σ) (2)

(e.g., see [6, Proof of Lemma 3]), where ρ runs over the complex zeros of ζK(s)
such that 0 < <(ρ) < 1 (counted with their multiplicities) and where

h(r1, r2, σ) =
r1

2
(Ψ(σ/2)− log π) + r2 (Ψ(σ)− log(2π)) , (3)

with Ψ(s) = (Γ′/Γ)(s). Since Ψ(σ) increases with σ > 0 and since r1 > 2 or
r2 > 1, it is easily seen that 1/σ + h(r1, r2, σ) is an increasing function of σ > 1
which is negative in the range 1 < σ 6 5.

For the remainder of this section we assume that 1 < σ 6 5.
Since ZK(σ) is positive and since each contribution

<
(

1

σ − ρ

)
=
σ −<(ρ)

|s− ρ|2

is positive for 0 < <(ρ) < 1 < σ, we obtain

2

σ − σc
6 <

(
1

σ − β1

)
+ <

(
1

σ − β2

)
<

1

σ − 1
+

1

2
log dK (1 < σ 6 5) (4)
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if ζK(s) has at least two distinct real zeroes β2 6= β1 or a double real zero β2 = β1

in the range S(c, 0), and

2(σ − β)

(σ − β)2 + γ2
= 2<

(
1

σ − ρ

)
<

1

σ − 1
+

1

2
log dK (1 < σ 6 5) (5)

if ζK(s) has at least one non-real zero ρ = β + iγ in the region S(c, d), for in that
case ρ and ρ̄ are two distinct zeroes of ζK(s) in S(c, d).

Lemmas 7 and 8 applied with A = log dK yield the desired results (notice
that 1 + 2(

√
2 − 1)/ log dK 6 1 + 2(

√
2 − 1)/ log 3 < 5 and 1 + 2S0/ log dK 6

1 + 2S0/ log 3 6 5).

3. Stechkin’s trick and proof of Theorem 3

Since ZK(σ) is a positive valued and decreasing function of σ > 1, by (1), we have

ZK(σ)− κZK(τ) > ZK(σ)− ZK(τ) > 0 for 0 6 κ 6 1 < σ 6 τ.

Using (2) twice, we deduce that for 0 6 κ 6 1 < σ 6 τ we have∑
ρ

S(σ, τ, ρ) 6
1

σ − 1
+

1− κ
2

log dK + F2(σ, τ) +R(r1, r2, σ, τ), (6)

where
F2(σ, τ) = − κ

τ − 1
+

1

σ
− κ

τ
, (7)

R(r1, r2, σ, τ) := h(r1, r2, σ)− κh(r1, r2, τ) and

S(σ, τ, ρ) := <
(

1

σ − ρ

)
− κ<

(
1

τ − ρ

)
= S(σ, τ, ρ̄).

Now, we use Stechkin’s Lemma:

Lemma 4 ([7, Lemma 2]). Suppose that σ > 1. Set τ = (1 +
√

1 + 4σ2)/2 and
κ = 1/

√
5. If 0 < <(ρ) < 1, then

<
(

1

σ − ρ

)
+ <

(
1

σ − (1− ρ)

)
> κ

{
<
(

1

τ − ρ

)
+ <

(
1

τ − (1− ρ)

)}
.

Hence, from now on, we take κ = 1/
√

5 and τ = (1 +
√

1 + 4σ2)/2. Notice
that

F2(σ, τ) =
(σ2 − 1)/5σ2

σ +
√

(1 + 4σ2)/5
> 0. (8)

The complex zeros ρ of ζK(s) with 0 < <(ρ) < 1 come in pairs {ρ, 1 − ρ}, and
their combined contributions

T (σ, τ, ρ) := S(σ, τ, ρ) + S(σ, τ, 1− ρ) = T (σ, τ, 1− ρ)

are positive, by Lemma 4. Hence, we have:
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Lemma 5. Suppose that σ > 1. Set τ = (1 +
√

1 + 4σ2)/2 and κ = 1/
√

5. For
any finite set Z of complex zeroes of ζK(s) in the region 1/2 < <(s) < 1, we have∑

ρ

S(σ, τ, ρ) >
∑
ρ∈Z

T (σ, τ, ρ), (9)

where
T (σ, τ, ρ) =

1

σ − ρ
+ F3(σ, τ, ρ)

with

F3(σ, τ, ρ) = −κ<
(

1

τ − ρ

)
+ <

(
1

σ − 1 + ρ

)
− κ<

(
1

τ − 1 + ρ

)
.

3.1. At least two real zeroes

Assume that ζK(s) has at least two distinct real zeroes β2 6= β1 or a double real
zero β2 = β1 in the range S(c, 0) ∩ (1/2, 1).

For 0 < β < 1 < σ, the function

β 7→ F3(σ, τ, β) = − κ

τ − β
+

1

σ − 1 + β
− κ

τ − 1 + β

=
1− κ

σ − 1 + β
+ κ

(
− 1

τ − β
+

τ − σ
(σ − 1 + β)(τ − 1 + β)

)
is clearly increasing. Hence, we have

F3(σ, τ, β) > F3(σ, τ, 1) = − κ

τ − 1
+

1

σ
− κ

τ
= F2(σ, τ),

by (7), and

T (σ, τ, β) =
1

σ − β
+ F3(σ, τ, β) >

1

σ − β
+ F2(σ, τ) (0 < β < 1).

Using (9), we obtain∑
ρ

S(σ, τ, ρ) > T (σ, τ, β1) + T (σ, τ, β2) > 2

(
1

σ − σc
+ F2(σ, τ)

)
.

Using (6), we then obtain

2

σ − σc
− 1

σ − 1
6

1− κ
2

log dK − F2(σ, τ) +R(r1, r2, σ, τ).

By (8) and Lemma 6, setting λ = 1 − κ = 1 − 1/
√

5, we finally obtain a neat
inequality (compare with (4)):

2

σ − σc
− 1

σ − 1
<
λ

2
log dK (1 < σ 6 7). (10)

Lemma 7 applied with A = λ log dK yields the desired first result (notice that
1 + 2(

√
2− 1)/(λ log dK) 6 1 + 2(

√
2− 1)/(λ log 3) 6 7).
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3.2. At least one non-real zero

Assume that ζK(s) has at least one non-real complex zero ρ = β + iγ, γ 6= 0, in
the region S(c, d) ∩ {s; <(s) > 1/2}.

Then ρ and ρ̄ are two pairwise complex zeroes of ζK(s) in this region and
T (σ, τ, ρ) = T (σ, τ, ρ̄). Hence, using Lemma (5), we obtain∑

ρ

S(σ, τ, ρ) > 2T (σ, τ, ρ) =
2(σ − β)

(σ − β)2 + γ2
+ 2F4(σ, τ, β, γ),

where

F4(σ, τ, β, γ) = F3(σ, τ, β + iγ)

= −κ τ − β
(τ − β)2 + γ2

+
σ − 1 + β

(σ − 1 + β)2 + γ2
− κ τ − 1 + β

(τ − 1 + β)2 + γ2

> − κ

τ − β
− κ

τ − 1 + β
+

σ − 1 + β

(σ − 1 + β)2 + γ2

= − κ

τ − β
− κ

τ − 1 + β
+

σ

σ2 + γ2

+ (1− β)
σ2 − σ + σβ − γ2

((σ − 1 + β)2 + γ2)(σ2 + γ2)

> −κ
τ
− κ

τ − 1
+

σ

σ2 + γ2
= F2(σ, τ)− γ2

σ(σ2 + γ2)

> F2(σ, τ)− γ2,

provided that σ2 − σ + σβ − γ2 > 0, hence provided that 1/2 < β < 1 < σ and
|γ| 6 1/

√
2. By Lemma 6 and (6), we have

2(σ − β)

(σ − β)2 + γ2
<

1

σ − 1
+

1− κ
2

log dK − F2(σ, τ) + 2γ2 +R(r1, r2, σ, τ).

Hence, we finally obtain a neat inequality (compare with (5)):

2(σ − β)

(σ − β)2 + γ2
<

1

σ − 1
+

1− κ
2

log dK (1 < σ 6 3 and |γ| 6 1/2). (11)

Lemma 8 applied with A = λ log dK yields the desired second result (notice that
1 + 2S0/(λ log dK) 6 1 + 2S0/(λ log 3) 6 3 and that |γ| 6 d1/(λ log dk) implies
|γ| 6 d1/(λ log 3) 6 1/2).

Finally, Lemma 9 applied with G = λ/4 and A = λ log dK yields SG =
0.42409 · · · , BG = 0.32675 · · · and BG/λ = 0.59110 · · · (notice that 1 + 2SG/A 6
1 + 2SG/(λ log 3) 6 3 and that |γ| 6 1/(4 log dk) implies |γ| 6 1/(4 log 3) 6
1/2) whereas Lemma 9 applied with G = λ and A = λ log dK yields SG =
0.58436 · · · , BG = 0.05737 · · · and BG/λ = 0.10379 · · · (notice that 1 + 2SG/A 6
1 + 2SG/(λ log 3) 6 3 and that |γ| 6 1/ log dk implies |γ| 6 1/ log 8 6 1/2) .
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3.3. Technical Lemmas

Lemma 6. Set κ = 1/
√

5 and τ = (1 +
√

1 + 4σ2)/2. Then

R(r1, r2, σ, τ) = h(r1, r2, σ)− κh(r1, r2, τ) =
r1

2
A1(σ) + r2A2(σ),

where Ak(σ) = (Γ′/Γ)(kσ/2)− κ(Γ′/Γ)(kτ/2)− (1− κ) log(kπ), by (3).
Then, A1(σ) and A2(σ) increase with σ > 1 and are negative in the range

1 < σ 6 7. Hence, the expression R(r1, r2, σ, τ) is a decreasing function of both r1

and r2, for 1 < σ 6 7. Therefore, for n = r1 + 2r2 > 1, we have

R(r1, r2, σ, τ) 6 max(R(2, 0, σ, τ), R(0, 1, σ, τ))

= max(A1(σ), A2(σ)) < 0 for 1 < σ 6 7,

= max(A1(σ), A2(σ)) < −1

2
for 1 < σ 6 3.

Proof. Noticing that (Γ′/Γ)′(σ) =
∑
n>0(n+ σ)−2 > σ−2 for σ > 0, we have

A′k(σ) =
k

2

∑
n>0

{
1

(n+ kσ/2)2
− 2σ√

1 + 4σ2

κ

(n+ kτ/2)2

}
,

which, in using 0 < 2σ/
√

1 + 4σ2 < 1 and 0 6 κ 6 1 and kτ > kσ > 0, yields the
desired result. �

Lemma 7. Assume that A > 0. For σ = 1 + 2(
√

2− 1)/A the upper bound

2

σ − σc
− 1

σ − 1
<

1

2
A

yields σc < 1− 2(
√

2− 1)2/A.

Lemma 8. Let S0 and d1 be as in Theorem 2. Assume that A > 0 and 0 < β < 1.
For σ = 1 + 2S0/A the upper bound

2(σ − β)

(σ − β)2 + γ2
− 1

σ − 1
<

1

2
A (12)

yields β < 1− d1/A or |γ| > d1/A.

Proof. Write β = 1− b/A, γ = g/A and σ = 1 + 2S/A and set M = max(b, |g|).
Then (12) implies

2S + b

(2S + b)2 +M2
<
S + 1

4S
.

Since this left hand side is a decreasing function of b ∈ (0, 1) for S > M/2, we
obtain

2S +M

(2S +M)2 +M2
<
S + 1

4S
,
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which yields

M > f(S) :=
−S2 + S

√
2− S2

S + 1
.

The choice S = S0 for which f ′(S0) = 0 and f(S0) = 2(1−S0−S2
0)/(2 +S0) = d1

is optimal. �

Lemma 9. For G ∈ (0, 2), let SG be the only zero of 2−(S+2)
√

4S2 −G2(S + 1)2

in the range S > G/(2 − G). Set BG =
2−4S2

G−2S3
G

(1+SG)(2+SG) . Assume that A > 0 and
0 < β < 1. For σ = 1 + 2SG/A the upper bound

2(σ − β)

(σ − β)2 + γ2
− 1

σ − 1
<

1

2
A (13)

yields β < 1−BG/A or |γ| > G/A.

Proof. Write β = 1 − b/A, γ = g/A and σ = 1 + 2S/A. Assume that |g| 6 G.
Then

2S + b

(2S + b)2 +G2
<
S + 1

4S
,

which implies (
b+

2S2

S + 1

)2

>
4S2

(S + 1)2
−G2

and

b > f(S) =
−2S2 +

√
4S2 −G2(S + 1)2

S + 1
(S > G/(2−G) > 0).

Since

f ′(S) = 2S
2− (S + 2)

√
4S2 −G2(S + 1)2

(S + 1)2
√

4S2 −G2(S + 1)2

and since S 7→ 4S2 − G2(S + 1)2 increases from 0 to +∞ for S increasing from
G/(2 − G) to +∞, the choice S = SG for which f ′(SG) = 0 and f(SG) =

2−4S2
G−2S3

G

(1+SG)(2+SG) = B is optimal. �
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