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SIMPLE ZEROS OF DEDEKIND ZETA FUNCTIONS
STEPHANE R. LOUBOUTIN

Abstract: Using Stechkin’s lemma we derive explicit regions of the half complex plane R(s) < 1
in which the Dedekind zeta function of a number field K has at most one complex zero, this
zero being real if it exists. These regions are Stark-like regions, i.e. given by all s = 8 + iy with
B>=1—c/logdk and |y| < d/logdk for some absolute positive constants ¢ and d. These regions
are larger and our proof is simpler than recently published such regions and proofs.
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1. Introduction

Let dx > 1 and (k(s) denote the absolute value of the discriminant and the
Dedekind zeta function of a number field K of degree n = r1 + 2r, > 1, with
r1 real places and ro complex places. It is known that (x(s) has a meromorphic
continuation to the complex plane, with a single pole: a simple pole at s = 1. It
is also known that (x(s) has no complex zero in the complex half-plane R(s) > 1.
For ¢ > 0 and d > 0 we let S(¢,d) denote the region given by all s = 8 + iy with
B>2o0.:=1—c/logdyk and |y| < tq:=d/logdyk. In 1974, H. M. Stark proved an
explicit result:

Theorem 1 ([6, Lemma 3]). A Dedekind zeta function (x(s) has at most one
zero in the region S(1/4,1/4); if such a zero exists, it is real and simple.

As noted in [2, Lemma 2] Stark’s Theorem 1 holds true in the region
S(2(v/2 — 1)2,0). In fact, we will show that Stark’s proof readily yields:
Theorem 2. Set ¢y = 2(v2—1)2 = 0.34314 - -+ and d; := 2“&% =0.27644 - - -,
where Sy = 0.45433 - - - is the only root of S*+25% —25% —48+2 in [0,v/2]. Then
Theorem 1 holds true in the regions S(c1,0) and S(d1,dy).

By [3, Theorem 1.1 and Corollary 1.2], Theorem 1 holds true in the regions
S(1/2,1/2), S(1/12.74,1) and S(1/1.7,1/4), for dx large enough. By [1, Theo-
rem 1], Theorem 1 holds true in the region S(1/2,1/2) without any restriction
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on di. By [8, Corollary 1.2], Theorem 1 holds true in (a slightly smaller region
than the) the region S(0.0875,1), for dx large enough (notice that 1/12.74 =
0.078492--- < 0.0875). We use Stechkin’s Lemma and our approach introduced in
[5] to improve upon these results (see [4] for another recent application of Stechkin’s
Lemma):

Theorem 3. Set A\ := 1 —1/v/5, c3 := 1/ = 0.62075--- and dy := di/\ =
0.50009 - - -, where ¢1 and di are as in Theorem 2. Then Theorem 1 holds true in
the regions S(cq,0), S(da,ds).

Theorem 1 also holds true in the region S(0.59110,1/4) (notice that 0.59110 >
1/1.7 =0.58823 - ) and for dx > 8 in the region S(0.10379,1).

We would like to mention that our proof is simpler than the ones in [1], [3] or [8].
However, our regions are Stark-like regions whereas in [3] and [8] asymptotically
valid regions of not larger widths (still of the type 1 — ¢/logdx < 8 < 1) but of
much larger heights (|| < 1 instead of |y| < d/logdk) are obtained.

2. Proof of Theorem 2

Let 0 > 1 be real. Let K be a number field of degree n. Then
Gk Ak (k)

0< Zk(o):= (o) = - (0 >1), (1)
(K = k
where Ak (k) > 0 for k > 2, and
Z (0)—1—2% ! _ —1—110 d —&—l—i—h(r To,0) (2)
K . o—p) o-1 "2 gaK T 1,72,

(e.g., see [6, Proof of Lemma 3]), where p runs over the complex zeros of (x(s)
such that 0 < R(p) < 1 (counted with their multiplicities) and where

h(ry,rq,0) = % (T(o/2) —logm) + ro (¥(o) — log(27)), (3)

with ¥(s) = (IV/T')(s). Since ¥(o) increases with ¢ > 0 and since r; > 2 or
ro = 1, it is easily seen that 1/0 + h(r1,r2,0) is an increasing function of o > 1
which is negative in the range 1 < o < 5.

For the remainder of this section we assume that 1 < o < 5.

Since Zk (o) is positive and since each contribution

! (U i p) - UIS_—&T;IZ)

is positive for 0 < R(p) < 1 < o, we obtain

2 1 1 1 1
< — <
J—ac\%<o—ﬁ1>+§ﬁ<a—ﬁg><U—1+2logdK (I<o<b) (4
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if (x (s) has at least two distinct real zeroes B3 # 1 or a double real zero B2 = 51
in the range S(c,0), and

o =R () <oty rgei G<e<n) 6

if (i (s) has at least one non-real zero p = 8 + i in the region S(c, d), for in that
case p and p are two distinct zeroes of (i (s) in S(c,d).

Lemmas 7 and 8 applied with A = logdy yield the desired results (notice
that 1+ 2(v/2 — 1)/logdx < 1+2(v/2—1)/log3 < 5 and 1+ 2Sy/logdx <
1428/ log3 < 5).

3. Stechkin’s trick and proof of Theorem 3

Since Zk (o) is a positive valued and decreasing function of ¢ > 1, by (1), we have
Zk(0) —kZkg(T) 2 ZKk(0) — Zk(1) 20 for 0<k<l<o<T.

Using (2) twice, we deduce that for 0 < kK < 1 < o < 7 we have

1
> oS < — + — “logdi + Fa(o,7) + R(r1,r2,0,7),  (6)
P

where

FQ(UaT):_ al

1 K
e 7)
T o T

R(r1,7r9,0,7) := h(r1,ra,0) — kh(ry,re,7) and

(0,7, p) ::m(l) —nm( L >25(U,T,p).

oc—p T—p
Now, we use Stechkin’s Lemma:

Lemma 4 (|7, Lemma 2]). Suppose that o > 1. Set 7 = (1 + 1+ 402)/2 and
k=1/v5. If0 < R(p) < 1, then

*(o5) 2 mamn) 2 0 () =)}

Hence, from now on, we take x = 1/v/5 and 7 = (1 + /1 + 402)/2. Notice

that
(02 —1)/502

oc++/(1+402)/5

The complex zeros p of (x(s) with 0 < R(p) < 1 come in pairs {p,1 — p}, and
their combined contributions

Fy(o,7) = (®)

T(o,1,p) = S(o,7,p) +S(0, 7,1 —p) =T(0,7,1 - p)

are positive, by Lemma 4. Hence, we have:
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Lemma 5. Suppose that o > 1. Set 7 = (1 + /1 +402)/2 and k = 1/\/5. For
any finite set Z of complex zeroes of Ck(s) in the region 1/2 < R(s) < 1, we have

> S(o,m.p) 2> T(o,7,p), )
p pEZ
where 1
T(Jv T, p) = 0_7_,0 + F3(07 T, p)
with

1 1 1
F - IS )
3(0:7:) K%(TP)JF%(UHP) K%(TNFP)

3.1. At least two real zeroes

Assume that (x(s) has at least two distinct real zeroes 2 # (1 or a double real
zero B2 = [ in the range S(c,0) N (1/2,1).
For 0 < 8 < 1 < o, the function
K 1 K
+ —
T—0 o—-14+p 1-14p

B’_)FS(O—;TaB):_

SIS SRS T = S
Co—1+8 " T—F (c—=14+p8)(r—1+4+p5)

is clearly increasing. Hence, we have

F3(O-7T7/8)>F3(0-7T71):_ .

1 K
+ 2 = Byo,),
T—1 o T

by (7), and

T(0,7,8) = ﬁ + Fy(o,7,0) > ﬁ +Fy(or)  (0<B<1).
Using (9), we obtain
1

o — 0.

S S(0,mp) 2 Tlo,7, 1) + T(0,7, B2) > 2 (

p

+ Fy(o, 7)> .
Using (6), we then obtain
2 1 1-—-

- < KlogdK—Fg(a,T)+R(7”177“2,U77')~
c—o. o0-—1 2

By (8) and Lemma 6, setting A = 1 —x = 1 — 1/4/5, we finally obtain a neat
inequality (compare with (4)):

2 1

c—o. o-—1

A
< §logdK (I<og). (10)

Lemma 7 applied with A = Mlogdg yields the desired first result (notice that
14+2(v2—1)/(Mogdg) <1+2(vV2—1)/(Alog3) < 7).
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3.2. At least one non-real zero

Assume that (x(s) has at least one non-real complex zero p = §+ivy, v # 0, in
the region S(c,d) N {s; R(s) > 1/2}.

Then p and p are two pairwise complex zeroes of (x(s) in this region and
T(o,7,p) =T(o,7,p). Hence, using Lemma (5), we obtain

_ 2(c—B)
;S(O’,T,p) 2 QT(U,T,p) - m +2F4(0-77_75a,7)7
where
Fy(o,7,B,7) = Fs(o,7, B+ iv)
. T—p5 . c—1+p3 . T—1+8
(r=PP+7* (=148 +7* (1-1+p)+7

S __K K c—1+7

T -8B T1-148 (6-1+p)2+~2

K K n o
T—B T—14+8 o02%2+4+~2
o —o+oB—72

R Sl (P wrwy) E e ey
K K o 2
R e G R e e

2 FZ(JvT) - ’727

provided that 02 — o + o8 — 4% > 0, hence provided that 1/2 < 3 < 1 < ¢ and
|v| < 1/v/2. By Lemma 6 and (6), we have

200-5) _ 1
CETIEEECIES

1—
t “logdi — Fa(o,7) + 292 + R(r1,12,0,7).
Hence, we finally obtain a neat inequality (compare with (5)):

2(c — 3 1 1—k
(U—(ﬁ)z—i—)'yz S — + 5 log dx (I<o<3and |y <1/2). (11)

Lemma 8 applied with A = Alogdk yields the desired second result (notice that
1+2Sy/(AMlogdr) < 14 25y/(Alog3) < 3 and that |y| < di/(Alogdy) implies
7] < di/(Alog3) <1/2).

Finally, Lemma 9 applied with G = A/4 and A = MAlogdk yields Sg
0.42409 - - -, Bg = 0.32675--- and Bg/\ = 0.59110-- - (notice that 1+ 2S5/A
1+ 2S¢/(Aog3) < 3 and that |y| < 1/(4logdy) implies |y| < 1/(4log3)
1/2) whereas Lemma 9 applied with G = A and A = Alogdg yields Sg
0.58436---, B = 0.05737--- and Bg/A = 0.10379--- (notice that 14 255/A
1+2S¢/(Alog3) < 3 and that |v| < 1/logdy implies |y| < 1/log8 < 1/2) .

NI NN
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3.3. Technical Lemmas

Lemma 6. Set k = 1/v/5 and 7 = (1 ++/1 +402)/2. Then
R(r1,72,0,7) = h(r1,72,0) — kh(r1,ra,7) = %Al(a) + o Ay(0),

where Ag(o) = (I"/T)(ko/2) — k(I"/T)(k7/2) — (1 — k) log(km), by (3).

Then, Ai(o) and Ax(o) increase with o > 1 and are negative in the range
1 < o < 7. Hence, the expression R(r1,r2,0,T) is a decreasing function of both rq
and ro, for 1 < o < 7. Therefore, for n =11 + 2ry > 1, we have

R(T17 T27 U’ T) g maX(R(2’ 07 0.7 T)’ R(O7 17 0” T))
=max(4;(0),A2(0)) <0 forl<o<7,

= max(A41(0), A2(0)) < —% forl <o <3.

Proof. Noticing that (I"/T) (o) = 3, 5(n +0)~% > 072 for 0 > 0, we have

, _ k 1 B 20 aZ
Ai0) =32, {<n T ko/2? VIt do? (n+kr/2) } ’

n=0

which, in using 0 < 20/v1+402 <1 and 0 < k < 1 and k7 > ko > 0, yields the
desired result. | |

Lemma 7. Assume that A > 0. For o =1+ 2(v/2 —1)/A the upper bound

2 1 1
<-A

c—o. o-—1 2

yields 0. < 1 —2(v/2 — 1)%/A.

Lemma 8. Let Sy and dy be as in Theorem 2. Assume that A >0 and 0 < § < 1.
For o =1+ 25y/A the upper bound

20-p8) 1
(0=BP+7* o-1

yields <1 —dy/A or|y| > d1/A.

A (12)

<1
2

Proof. Write 5 =1—-5b/A, v =g/A and 0 = 1+ 25/A and set M = max(b, |g]).
Then (12) implies
25+b < S+1
(2S5 + )2 + M? 45 -
Since this left hand side is a decreasing function of b € (0,1) for S > M/2, we
obtain

28+ M <S+1
(25 + M)? + M? 45 7




Simple zeros of Dedekind zeta functions 115

which yields

—5%+Sv2 - 52
M = .
> 1(9) S+l
The choice S = Sy for which f/(Sp) = 0 and f(Sp) = 2(1 —So —S3)/(2+ So) = d4
is optimal. |

Lemma 9. For G € (0,2), let Sg be the only zero of 2—(S+2)+/452 — G%(S + 1)2
in the range S > G/(2 — G). Set Bg = %. Assume that A > 0 and

1+5¢)(2+5¢c)
0<pB<1. Foro=1+425g/A the upper bound
2(0 — B) 11
- Z 1
C-BP+7 o-1 27 (13)

yields § < 1— Bg/A or |y] > G/A.

Proof. Write 8 =1 —b/A, v = g/A and 0 = 1+ 25/A. Assume that |g] < G.

Then
25 +b S+1

25102+ G2 = 45

2\ 2 2
(b 25 > >(4s e

which implies

TS SH1)
and
72 2 4 2 2 1 2
bs f(s) = 2EHVAS -GS oo e gy s ).
Sl
Since

2 — (S +2)/452 — G%(S +1)?

(S+1)2,/45%2 — G%(S +1)2
and since S — 452 — G%(S + 1)? increases from 0 to +oo for S increasing from
G/(2 — G) to +oo, the choice S = S for which f'(Sg¢) = 0 and f(Sg) =

2—-48% —25¢ . .
m = B 1S Optlmal. .

f1(8) =
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