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INEQUALITIES FOR THE GRADIENT OF EIGENFUNCTIONS 
OF THE LAPLACE-BELTRAMI OPERATOR 

STEVO STEVIC 

Abstract: In this paper we shall consider propelties of the eigenfunctions of the Laplace
Beltrami operator /::J.p and properties of its gradient for a proper domain D with a conformal 
metric, which density is equal to the reciprocal value of a defining function p(x) for this domain 
i.e. ds = p- 1 (x)ldxl. 
Keywords: eigenfunction, Laplace-Beltrami operator, H £-property, density. 

1. Introduction 

Throughout this paper n is an integer greater than 1, D is a domain in the 
Euclidean space Rn , B(a, r) = {x E Rnllx - al < 1·} denotes the open ball 
centered at a of radius r, where lxl denotes the norm of x E Rn and B is the 
open unit ball in Rn. Let dV(x) denote the Lebesgue measure on Rn, du the 
surface measure. 

We shall say that a locally integrable real valued function f on D possesses 
the H £-property, with a constant c, if 

f(a) :s;;; : { f(x)dV(x) whenever B(a, r) c D 
r J B(a,r) 

for some c > 0 depending only on n. 
For example, subharmonic functions possess the H £-property with c = 1. In 

[4] Hardy and Littlewood essentially proved that lulP, p > 0, n 2 also possesses 
the BL-property whenever u is a harmonic function in D. In the case n ~ 3 a 
generalization was made by Fefferman and Stein [3} and Kuran [5]. An elementary 
proof of this can be found in [7J. In fact the author proved the following theorem: 

Theorem A. If a nonnegative, locally integrable function f possesses the H L
property, with a constant c, then JP, p > 0 also possesses the H L-property but 
with a different constant c1 dependil1g only on c, p and n. 
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The following theorem was proved in [8J: 

Theorem B. Let D be a proper subdomain of an, f E C 2 (D) such tl1at 

K K 
16.J(a)I ~ - sup IV J(x)I +-.;/- sup IJ(x)I 

r xEB(a,r) r~ xEB(a,r) 
(1) 

where I<, Ko are positive constants independent of B( a, r) C D. Then If IP pos
sesses the BL-property. If (1) holds with Ko 0, then IV J!P possesses the 
B £-property. 

A function p(x) shall be called (globally) a defining for the domain D if 
p E C 1(D1) , DC D 1 , dpx -=JO, when x E 8D and p(x) > 0, x ED. 

The proof of the fact that a defining function exists for every proper domain 
DC an with C 1 boundary can be found in [9J. Observe that this defining function 
is not unique. For example, if p(x) is a defining function then cp(x), c > 0 is also 
a defining function for the same domain. 

In this paper we shall consider a proper domain D with a conformal met
ric whose density is equal to the reciprocal value of a defining function for this 
domain i.e. ds p-1(x)ldxl. For such a metric the volume element is dVµ(x) 
p-n(x)dV(x), the surface area element is do-µ(x) = p1-n(x)da(x), the normal 
derivative is ;!P = p(x)¥n, the gradient is V pf p(x)V f, and the Laplace-
Beltrami operator is 

J\ f _ n 8 ( 2-n 8 f ) LJ.p -p - p -
8xi 8xi 

(2) 

see, for example [1 J. 
In section 2 we shall prove a few auxiliary results. 
In section 3 we shall generalize Theorem B and among other results, we 

shall prove that the eigenfunctions of the Laplace-Beltrami operator 6.p and the 
norm of its gradient possesses the B £-property, especially the solution to Laplace-
Beltrami operator possesses the B £-property. More precisely, we shall prove: 

Theorem 1. If J is an eigenfunction of the Laplace-Beltrami operator 6.p, then 
IJIP and IV JIP,p > 0 possesses the BL-property. 

Also we shall give some inequalities for the eigenfunctions and the norm of its 
gradient. The most important is the following: 

Theorem 2. If f is an eigenfunction of the Laplace-Beltrami operator 6.p, then 

where the constant C depends only on D, p, n, A and a. 

One can find some other classes of functions which possess the H £-property 
in [7], [8] and [10]. 
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2. Preliminaries 

One can easily prove the following: 

Lemma 1. Let K be convex compact subset of Rn. If f E C 1 (K), then 

(Ve> 0)(3'5 > O)(Vx,y E K)(lx-yl < t5:::} !J(x)-f(y)-(v'f(y),x-y)j ~ elx-yl). 

By Lemma 1 and the Heine-Borel theorem we obtain: 

Lemma 2. Let K be compact connected subset of domain D C Rn. If f E 
C1(D), then 

(Ve> 0)(3'5 > 0)(Vx, y E K)(lx-yl < t5:::} IJ(x)- f(y)-(v' f(y), x-y)I ~ elx-yl). 

Lemma 3. If p(x) is a. defining function for a. proper domain DC Rn then there 
a.re A, B > 0 such that Ad(x, 8D) < p(x) < Bd(x, 8D) whenever x ED. 

Proof. For any x ED there is Xm E 8D such that d(x, Xm) = d(x, 8D). 
By Lemma 2 

jp(x) - p(xm) - (v'p(xm), x - Xm)I < elx - Xml when Ix - Xml < t5. 

Since p( Xm) = 0, it follows that 

jp(x)I > l(v'p(xm), x - Xm)I - elx - Xml , when Ix - Xml < '5. 

On the other hand, the vector x - Xm is orthogonal on the tangential hyper-
plane of the hypersurface p(x) 0 in Xm i.e. v' p(xm) and x - Xm are colinear 
vectors. Therefore 

from which we get 

lp(x)I > (lv'p(xm)I - e)lx - Xml, when Ix - Xml < t5. 

Since p(x) is a defining function then v'p(x) 0, x E 8D. Consequently from 
p E C1(D) we get that minxEoD lv'p(x)I m > 0. Fore< m choosing c m/2 
we get lp(x)I > '; lx-xml i.e. p(x) > '; lx-xml when xis in the '5-neighbourhood 
of 8D. The set D 1 = {x E DI d(x, 8D) ~ t5} is compact, therefore p(x) has a 
minimum M 1 > 0. In the same manner we can conclude that d(x, 8D) has a 
maximum M2 > 0 in D1 • For c < Mi/M2 , c > 0 we get p(x) > cd(x, 8D), x E 
D1 . From all of the above we conclude that we can choose A = min ( c, ';) . 

From 

jp(x)I lp(x) - p(xm)I ~ Ix - xml sup Iv' p(x + (xm - x)t)I 

~ Ix - xml sup Iv' p(x)I 
xED 

we can conclude that we can choose B 
C 1(D). 

tE[0,1] 

supxED Iv' p(x)!. B is finite since p E 

• 
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Hereafter we shall consider that the defining function p( x) is a real valued 
C 2 function. 

Then next lemma is a special case of the Green's formula which is valid on 
Riemannian manifolds. 

Lemma 4. Let p(x) be a. defining the function of D, a.nd let function f E C2 (D). 
Then 

f /::J.pfdVp = f of dap whenever B(a, r) CD. 
J B(a,r) laB(a,r) Onp 

3. Proof of the main results 

In this section p(x) is a defining function for a proper domain D C Rn with a 
conformal metric with density equal to the reciprocal value of the defining function 
for this domain i.e. ds p-1(x)ldxl, /::J.p is the corresponding Laplace-Beltrami 
operator for such a metric. 

The following three lemmas generalize Theorem Bin the case Ko= 0. 

Lemma 5. Let D be a. proper subdomain of Rn, / E C2 (D) such that 

C 
11::J./(a)I ~ k sup IV /(x)I 

r xEB(a,r) 

for some c > 0 and k EN, whenever B(a, r) CD. Then 

CJ 
IV /(a)I ~ k sup 1/(x) - /(a)I, 

r xEB(a,r) 

for some c1 > 0, whenever B(a, r) CD. 

Proof. Since D is a proper domain we can suppose that r E [O, lJ. Also, it is 
enough to prove the theorem for closed balls in D. 

In [8], the following inequality was proved: 

n n 
IV f(a)I ~ - sup 1/(x)I + --

1 
r sup 11::J.f(x)I, 

r xEB(a,r) n + xEB(a,r) 

whenever B(a, r) CD for / E C 2 (D). 
By translations we can reduce the proof to the case a 0. Let B(0, p) CD 

and Mt = supB(O,p) 1/(x)I. Choose a E B(0, p) so that the function g(x) = 
IV J(x)l(p - lxl)k attains its maximum at a E B(0, p). This implies that on the 

ball B ( a, p-~al) we have: 

IV /(x)I ~ IV f (a)I sup (p - /0:) k = 2k IV /(a)I. 
B( . ~) p- X xE a, 2 
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From the hypotheses we have 

~ n nc r 
IV /(a)I ~ -M, + --

1 
tk sup IV /(x)I, 

r n + xEB(a,s) 

where s r + t , r, t > 0. 
Let s p-lal and _!!£_ r 1 From that we have (n+l) tk + t = p-lal 

2 n+l tJi ¥+f · cn2kf1 2 · 
It is easy to see that this equation has a unique positive root t0 which belongs 

to the interval ( o, p-r1) . Since t E (0, 1) we have ( ~;t~l + 1) t > p-ial, which 

implies L1 ( p-ia1) k < r < L2 ( p-tl) k for some L1 1 L2 > 0. From all of the above 

we get 

Thus 

2k+l M 
u(O) = 1v J(0)ll ~ IV f(a)l(P - 1a1t ~ L: 1 2k+1n 

L sup IJ(x)J. 
1 xEB(O,p) 

Applying the above to the function f(x) -b, b ER and puting b = f(0) we 
obtain the desired result. • 

Lemma 6. Let D be a proper subdomain of Rn, f E C(1)(D) such that 

C 
IV /(a)I ~ ,; sup lf(x)I, 

r xEB(a,r) 

for some c > 0 and k EN, whenever B(a, r) CD. Then the function IJIP, (p > 
0) possesses the BL-property. 

Proof. We may assume that B C D, in contrary we shall consider the function 
f(a+rx), for r < d(a, 8D) it is defined on B. Also we may assume that f n If!= 1 
and BCD. 

Let g(x) = 1/(x)l(l - jxl)nk. Since g E C(B), ulan = 0, there is a point 
a E B so that the function g(x) attains its maximum i.e. g(x) ~ g(a), x E B. 
By the mean value theorem we have 

IJ(x) - J(a)I ~ sup IV f(a + h(x - a))IJxl, where x E B(a, t) CB. 
hE(0,1) 

By the hypotheses we get 

tc 
1/(a)I ~ IJ(x)I +--;; sup IJ(x)I, 

r xEB(a,s) 
for s = t + r, x E B(a, t). 
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Now choose t, r > 0 such that t r = 1-Jal and !f = ~- As in the proof of 
the previous lemma we can conclude that this system has a unique solution and 
there are L 1 , L2 > 0 such that L1(l - lal)k < t < L2(l - lal)k. 

On B ( a, 1-Jal) we have 

1/(x)! ~ (1- lal)kn 1/(a)I ~ (1- lal)kn IJ(a)I kn= 2knlf(a)I. 
1 - lxl ( 1 - la far 1-d°I I) 

Therefore lf(a)I ~ lf(x)I + ½IJ(a)I, for x E B(a, t) i.e. 1/(a)I ~ 21/(x)I. Integrat
ing this inequality over B( a, t) we obtain 

Vntnlf(a)I ~ 2 [ lf(x)ldV(x) ~ 2, 
j B(a,t) 

which in1plies 
2 C1 

IJ(a)j ~ Vntn ~ (1 - lal)kn. 

From that we have 1/(0)l ~ c1 = c1 JB lfldV, as desired. 
So, the function 1/1 possesses the BL-property. Thus by Theorem A we 

obtain that the function I/IP possesses theH £-property for every p > 0. • 

Lemma 7. Let D be a proper subdo~ain of Rn, f E C 1 (D) such that 

C 
Iv' /(a)I ~ ---,; sup 1/(x) - f(a)I 

r xEB(a,r) 

for some c > 0, and k EN, whenever B(a,r) CD. Tlwn IVJIP (p > 0) possesses 
the H L-property. 

Proof. By Theorem A it is enough to prove that there is a q > 0 such that the 
function Iv' flq possesses the H £-property. 

Also it is enough to prove the inequality 

Let g(x) = f(x) - f(0) then 

2c 
lv'g(0)I ~ k sup lg(x)I, 

r xErB 

where rB B(0, r). 



Inequalities for the gradient of eigenfunctions of the Laplace-Beltrami opei·ator 125 

By Lemma 6, lulP possesses the BL-property for every p > 0. Thus, we 
have 

IV J(O)I 
2k+lc 2k+lc C 1 

IVg(O)I ~ -k- sup lu(x)I ~ -k- -
1 

lu(x)ldV(x) 
r xE~B r rn rB 

C2 1 = -k lu(x)ldV(x). rn+ rB 

Taking r = 1 we obtain 

IV f(O)j ~ c2 l lu(x)jdV(x) = c2 l 111 

J'(tx)dtl dV(x) 

~ C2 / r1 IV f(tx)I lxldtdV(x) = C2 r IV J(y)I r1 I¥. I dt_!__dV(y) J B lo J B JIYI t tn 

C2 f IV f(y)I IY! IYl-n - l dV(y) ~ c2 f IV f (y)I IYll-ndV(y) 1B n nl8 

since from y = tx we have O ~ IYI = tlxl < t < 1. By Holder's inequality we get 

l'i7 / (O}I ~ : (l 1 'i7 I (y )I q dV(y)) l/ q (l 1v1<1 ~n)p dV (y)) l/p 

Choose p > 1, such that the last integral converges. Using polar coordinates 
we have 

r1 { p-(n-l)ppn-ldn(()dp = 1 
lo ls (n-l)(l+p) 1' 

for n:i > p > 1. For such p we obtain q = ~ such that the function IV Jlq 
possesses the H £-property. • 

We are now in a position to prove Theorem 1. 

Proof of Theorem 1. From (2) we have: 

1 
/::,.pf= p2(!::,.J - (n - 2)-(V p, V f) ). 

p 

So, the eigenfunction of the Laplace-Beltrami operator satisfies the partial diffeen
tial equation 

1 >..J l::,.J- (n-2)-(Vp, VJ)=~ 
p P""' 

From this we have 

l!::,.JI ~ I.XI Ill+ (n - 2) IV fl IVPI 
p2 jpj 
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If maxxED IV p(x)I Mp and A is a constant chosen in a manner described in the 
proof of the Lemma 3, then 

l~f(x)I ~ Mp IV f(x)j(n - 2) + j,\I If (x)! 
~ A d(x, 8D) A2 d(x, 8D)2 

Thus the eigenfunction satisfies the condition (1). By Theorem B we get 
that the function lflP,p > 0 possesses the BL-property. 

Let us now show that IV f IP, p > 0 possesses the H £-property. Let B( a, r) C 
·D, by Lemma 4 and since f is an eigenfunction of the Laplace-Betrami operator 
we have: 

~pf (a) f dVp(x) 
J B(a,r) 

-,\ f (f(x) - f (a))dVp(x) 
j B(a,r) 

f ~M 
laB(a,r) 8np p• 

Hence 

l~pf(a)I f dVp(x) ~ 1,\1 / 1/(x) - J(a}ldVp(x) + { 1:f I Mp. J B(a,r) l B(a,r) laB(a,r} np 

Since 

f lf(x) - f(a)ldVp(x) = f I /1 f'(a t(x a))dtl dVp(x) 
1B(a,r} 1B(a,r) lo 

= { I [1 (V f(a + t(x - a)), (x a))dtl dVp(x) 
1B(a,r) lo 

~ sup IV f(x)I / Ix - aldVp(x) 
xEB(a,r) l B(a,r) 

~ r sup IV f(x)I [ dVp(x) 
xEB(a,r} l B(a,r) 

and 

[ 1 af I Mp~ Mp sup IVf(x)I f Mp 
loB(a,r) 8np xEB(a,r) laB(a,r) 

where Mp= maxxED jp(x)I, we obtain 

I I I ( I I 
faB(a,r)MP ) 

~pf(a) ~ sup V f(x)I r ,\ + Mp J dV: (x) , 
B(a,r) B(a,r) P 

(3) 

whenever B(a, r) CD. 
By Lemma 3 we have 

I. M f du({) 
8B(a,r) P ~ C 18B(a,r) d({,8D)n-i 

I dV: (x) ~ 1 J dV(x) ' 
B(a,r) P B(a,r) d(x,8D)n 

whenever B(a,r) CD. 
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It is clear that B(a,r/2) C B(a,d(a,8D)/2). If x E B(a,d(a,8D)/2), we can 
conclude that 

1 3 

2d(a, 8D) < d(x, 8D) < 2d(a, 8D). (4) 

From that we get 

J. du(/;) 
8B(a,r /2) d(t,;,oD)''-i 

J dV X 

B(a,r/2) d x, D n 

~ C
2
d(a, oD) faB(a,r/2) dn(~) ~ 03 diam(D) 

JB(a,r/2) dV(x) r 
(5) 

From (3) and (5) we have 

(
r diam(D)) K 

ID-pJ(a)J ~ sup l'v J(x)I -1>.I + MpC3------'--- ~ - sup l'v f(x)I. 
B(a,r/2) 2 r r B(a,r/2) 

Thus, 
K 

1.6.J(a)I ~ r3 sup l'v J(x)I 
xEB(a,r) 

whenever B(a, r) C D. 
By Lemma 5 and Lemma 7, we obtain that l'v J(x)IP,p > 0 possesses the 

H £-property. 

Lemma 8. If f is an eigenfunction of the Laplace-Beltrami operator D.p, then 

(r3l'v J(x)l)P ~ ~ r IJIPdV,p > 0 
r JB(x,r) 

whenever B(x, r) CD, where C = C(p, n, ,.\) is a constant. 

Proof. By Theorem 1, we have 

IJ(x)IP ~ c~ r IJIPdV, whenever B(x, r) CD. 
r JB(x,r) 

By Lemma 5, we have 

K 
l'v f(x)I ~ 3 sup IJ(y)!. 

r yEB(x,r) 

From (7) we get 

(
BK )P l'v f(x)IP ~ ~ sup IJ(y)I 

yEB(x,r/2) 

Since 

y E B(x, r/2), 

we have 

sup IJ(y)IP ~ + IJIPdV, C 2n1 
yEB(x,r/2) r B(x,r) 

and thus (6) follows. 

(6) 

(7) 

• 
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Proof of Theorem 2. Let us put r d(a, 8D)/2 in (6), we have 

d(a, 8D)3PIV f(a)IP ~ d( ~D)n [ lf(x)IPdV(x). 
a, J B(a,d(a,8D)/2) 

Since, by Lemma 3 there are A, B > 0 such that 

Ad(a, 8D) < p(a) < Bd(a, 8D), (8) 

whenever a E D, we have 

p3P(a)!Vf(a)IP ~ d( ~D)n [ lf(x)!PdV(x). (9) 
a, J B(a,d(a,8D)/2) 

Multiplying (9) by pa(a)dVp(a) and then integrating over D, we obtain 

l p°'+3P(a)jv' f(a)IPdVp(a) 

~c [ PCl!~a) )n / lf(x)l1'dV(x)dVp(a). 
JD d(a, D JB(a,d(a,8D)/2) 

By Fubini's theorem we have 

1 pa(a) 1 jP 
d( BD)n lf(x) dV(x)dVp(a) 

D a, B(a,d(a,8D)/2) 

1 ) P 1 pa (a) ) ) lf(x I d( BD)n dVp(a dV(x , 
D E(x) a, 

where E(x) = {ajx E B(a,d(a,8D)/2)}. From (8) we have 

[ lf(x)IP [ dt°'~~)n dVp(a)dV(x) 
JD JE(x) a, 

~c [ lf(x)IP [ d(a, anr-2ndV(a)dV(x). 
JD JE(x) 

From (4), we obtain 

r lf(x)IP r d(a, 8D)a-2ndV(a)dV(x) 
jD jE(x) 

~c f lf(x)IPd(x, anr- 2n f dV(a)dV(x). 
JD JE(x) 

Using (8) one more time, we obtain 

[ lf(x)jPd(x, 8D)a- 2n [ dV(a)dV(x) 
jD jE(x) 

~c f lf(x)lpPa- 2n(x) f dV(a)dV(x). 
JD jE(x) 



Inequalities fot· the gradient of eigenfunctions of the Laplace-Beltrami operator 129 

Since E(x) c {alla-xl < d(x,8D)} we get J~(x)dV(a) ~ Cd(x,anr ~ Cpn(x). 
Thus 

r IJ(x)IP l~-2n(x) r dV(a)dV(x) 
j D jE(x) 

~CL IJ(x)IPPa-n(x)dV(x) =CL IJ(x)jPpa(x)dVp(x). 

From all of the above we obtain the result. • 

Remark. Throughout the above proof we used C to denote a positive constant 
which may vary from line to line. 

Lemma 9. If f is an eigenfunction of the Laplace-Beltrami operator .D.p, for 
>. f:. 0, then 

!J(a)I ~ C (r 
1
\

1
) sup IV /(x)I, whenever B(a, r) CD, 

r A xEB(a,r) 

where C is a constant depending only on D, ✓\ and n. 

Proof. Let B( a, r) C D. By Lemma 4 and since f is an eigenfunction of Laplace
Betrami operator we have 

✓\f(a) { dVp(x) = ->. { (J(x) - J(a))dVp(x) + { :f do-p. 
J B(a,r) J B(a,r) JaB(a,r) np 

If we literarly quote the proof of the second part of Theorem 1 we obtain our 
result. • 

Lemma 10. If f is an eigenfunction of the Laplace-Beltrami opera.tor .D.p, for 
>. f:. 0, then 

(r!J(a)l)P ~ ~ r IV J(x)!PdV(x), 
r }B(a,r) 

(10) 

p > 0, whenever B(a, r) C D, where C is constant depending only on D,p, >. 
a.nd n. 

Proof. By Theorem 1, we get 

IV /(a)IP ~ C r IV JIPdV, whenever B(a, r) CD. 
rn }B(a,r) 

On the other hand, by Lemma 9, we have 

IJ(a)I ~ K (r+ -
1
\

1
) sup IV/(x)! 

r xEB(a,r) 
(11) 
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From (11) we get: 

1/(a)IP ~ (2K)P (r -
1
\

1
)v ( sup IV /(y)l)v 

T yEB(a,r/2) 
(12) 

Since 

IV/(y)IP ~ 0 :n f IVJIPdV, yE B(a,r/2) 
T JB(y,r/2) 

we have 

(13) 

Inequality (10) now follows from (12) and (13). • 
By Lemma 10, in the same manner as in Theorem 2, we can prove the 

following: 

Theorem 3. If f is an eigenfunction of the La.place-Beltrami operator ~p, for 
>. # 0, then 

where C is constant depending only on D, p, n, >. and a. 

We leave the proof of this theorem to the reader. 
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