INEQUALITIES FOR THE GRADIENT OF EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR

Stevo Stević

Abstract

In this paper we shall consider properties of the eigenfunctions of the LaplaceBeltrami operator Δ_{ρ} and properties of its gradient for a proper domain D with a conformal metric, which density is equal to the reciprocal value of a defining function $\rho(x)$ for this domain i.e. $d s=\rho^{-1}(x)|d x|$.

Keywords: eigenfunction, Laplace-Beltrami operator, $H L$-property, density.

1. Introduction

Throughout this paper n is an integer greater than $1, D$ is a domain in the Euclidean space $\mathbf{R}^{n}, B(a, r)=\left\{x \in \mathbf{R}^{n}| | x-a \mid<r\right\}$ denotes the open ball centered at a of radius r, where $|x|$ denotes the norm of $x \in \mathbf{R}^{n}$ and B is the open unit ball in \mathbf{R}^{n}. Let $d V(x)$ denote the Lebesque measure on $\mathbf{R}^{n}, d \sigma$ the surface measure.

We shall say that a locally integrable real valued function f on D possesses the $H L$-property, with a constant c, if

$$
f(a) \leqslant \frac{c}{r^{n}} \int_{B(a, r)} f(x) d V(x) \quad \text { whenever } \quad B(a, r) \subset D
$$

for some $c>0$ depending only on n.
For example, subharmonic functions possess the $H L$-property with $c=1$. In [4] Hardy and Littlewood essentially proved that $|u|^{p}, p>0, n=2$ also possesses the $H L$-property whenever u is a harmonic function in D. In the case $n \geqslant 3$ a generalization was made by Fefferman and Stein [3] and Kuran [5]. An elementary proof of this can be found in [7]. In fact the author proved the following theorem:

Theorem A. If a nonnegative, locally integrable function f possesses the $H L$ property, with a constant c, then $f^{p}, p>0$ also possesses the $H L$-property but with a different constant c_{1} depending only on c, p and n.

The following theorem was proved in [8]:
Theorem B. Let D be a proper subdomain of $\mathbf{R}^{n}, f \in C^{2}(D)$ such that

$$
\begin{equation*}
|\Delta f(a)| \leqslant \frac{K}{r} \sup _{x \in B(a, r)}|\nabla f(x)|+\frac{K_{0}}{r^{2}} \sup _{x \in B(a, r)}|f(x)| \tag{1}
\end{equation*}
$$

where K, K_{0} are positive constants independent of $B(a, r) \subset D$. Then $|f|^{p}$ possesses the $H L$-property. If (1) holds with $K_{0}=0$, then $|\nabla f|^{p}$ possesses the $H L$-property.

A function $\rho(x)$ shall be called (globally) a defining for the domain D if $\rho \in C^{1}\left(D_{1}\right), \bar{D} \subset D_{1}, d \rho_{x} \neq 0$, when $x \in \partial D$ and $\rho(x)>0, x \in D$.

The proof of the fact that a defining function exists for every proper domain $D \subset \mathbf{R}^{n}$ with C^{1} boundary can be found in [9]. Observe that this defining function is not unique. For example, if $\rho(x)$ is a defining function then $c \rho(x), \mathbf{c}>0$ is also a defining function for the same domain.

In this paper we shall consider a proper domain D with a conformal metric whose density is equal to the reciprocal value of a defining function for this domain i.e. $d s=\rho^{-1}(x)|d x|$. For such a metric the volume element is $d V_{\rho}(x)=$ $\rho^{-n}(x) d V(x)$, the surface area element is $d \sigma_{\rho}(x)=\rho^{1-n}(x) d \sigma(x)$, the normal derivative is $\frac{\partial f}{\partial n_{\rho}}=\rho(x) \frac{\partial f}{\partial n}$, the gradient is $\nabla_{\rho} f=\rho(x) \nabla f$, and the LaplaceBeltrami operator is

$$
\begin{equation*}
\Delta_{\rho} f=\rho^{n} \frac{\partial}{\partial x_{i}}\left(\rho^{2-n} \frac{\partial f}{\partial x_{i}}\right) \tag{2}
\end{equation*}
$$

see, for example [1].
In section 2 we shall prove a few auxiliary results.
In section 3 we shall generalize Theorem B and among other results, we shall prove that the eigenfunctions of the Laplace-Beltrami operator Δ_{ρ} and the norm of its gradient possesses the $H L$-property, especially the solution to LaplaceBeltrami operator possesses the $H L$-property. More precisely, we shall prove:

Theorem 1. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ}, then $|f|^{p}$ and $|\nabla f|^{p}, p>0$ possesses the $H L$-property.
Also we shall give some inequalities for the eigenfunctions and the norm of its gradient. The most important is the following:
Theorem 2. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ}, then

$$
\int_{D} \rho^{\alpha+3_{p}}|\nabla f|^{p} d V_{\rho} \leqslant C \int_{D} \rho^{\alpha}|f|^{p} d V_{\rho}, \quad p>0, \quad \alpha>0
$$

where the constant C depends only on D, p, n, λ and α.
One can find some other classes of functions which possess the $H L$-property in $[7],[8]$ and $[10]$.

2. Preliminaries

One can easily prove the following:
Lemma 1. Let K be convex compact subset of \mathbf{R}^{n}. If $f \in C^{1}(K)$, then $(\forall \varepsilon>0)(\exists \delta>0)(\forall x, y \in K)(|x-y|<\delta \Rightarrow|f(x)-f(y)-\langle\nabla f(y), x-y\rangle| \leqslant \varepsilon|x-y|)$.

By Lemma 1 and the Heine-Borel theorem we obtain:
Lemma 2. Let K be compact connected subset of domain $D \subset \mathbf{R}^{n}$. If $f \in$ $C^{1}(D)$, then
$(\forall \varepsilon>0)(\exists \delta>0)(\forall x, y \in K)(|x-y|<\delta \Rightarrow|f(x)-f(y)-\langle\nabla f(y), x-y\rangle| \leqslant \varepsilon|x-y|)$.

Lemma 3. If $\rho(x)$ is a defining function for a proper domain $D \subset \mathbf{R}^{n}$ then there are $A, B>0$ such that $A d(x, \partial D)<\rho(x)<B d(x, \partial D)$ whenever $x \in D$.
Proof. For any $x \in D$ there is $x_{m} \in \partial D$ such that $d\left(x, x_{m}\right)=d(x, \partial D)$.
By Lemma 2

$$
\left|\rho(x)-\rho\left(x_{m}\right)-\left\langle\nabla \rho\left(x_{m}\right), x-x_{m}\right\rangle\right|<\varepsilon\left|x-x_{m}\right| \quad \text { when } \quad\left|x-x_{m}\right|<\delta
$$

Since $\rho\left(x_{m}\right)=0$, it follows that

$$
|\rho(x)|>\left|\left\langle\nabla \rho\left(x_{m}\right), x-x_{m}\right\rangle\right|-\varepsilon\left|x-x_{m}\right|, \quad \text { when } \quad\left|x-x_{m}\right|<\delta
$$

On the other hand, the vector $x-x_{m}$ is orthogonal on the tangential hyperplane of the hypersurface $\rho(x)=0$ in x_{m} i.e. $\nabla \rho\left(x_{m}\right)$ and $x-x_{m}$ are colinear vectors. Therefore

$$
\left|\left\langle\nabla \rho\left(x_{m}\right), x-x_{m}\right\rangle\right|=\left|\nabla \rho\left(x_{m}\right)\right|\left|x-x_{m}\right|
$$

from which we get

$$
|\rho(x)|>\left(\left|\nabla \rho\left(x_{m}\right)\right|-\varepsilon\right)\left|x-x_{m}\right|, \quad \text { when } \quad\left|x-x_{m}\right|<\delta .
$$

Since $\rho(x)$ is a defining function then $\nabla \rho(x) \neq 0, x \in \partial D$. Consequently from $\rho \in C^{1}(\bar{D})$ we get that $\min _{x \in \partial D}|\nabla \rho(x)|=m>0$. For $\varepsilon<m$ choosing $\varepsilon=m / 2$ we get $|\rho(x)|>\frac{m}{2}\left|x-x_{m}\right|$ i.e. $\rho(x)>\frac{m}{2}\left|x-x_{m}\right|$ when x is in the δ-neighbourhood of ∂D. The set $D_{1}=\{x \in D \mid d(x, \partial D) \geqslant \delta\}$ is compact, therefore $\rho(x)$ has a minimum $M_{1}>0$. In the same manner we can conclude that $d(x, \partial D)$ has a maximum $M_{2}>0$ in D_{1}. For $c<M_{1} / M_{2}, c>0$ we get $\rho(x)>c d(x, \partial D), x \in$ D_{1}. From all of the above we conclude that we can choose $A=\min \left(c, \frac{m}{2}\right)$.

From

$$
\begin{aligned}
|\rho(x)| & =\left|\rho(x)-\rho\left(x_{m}\right)\right| \leqslant\left|x-x_{m}\right| \sup _{t \in[0,1]}\left|\nabla \rho\left(x+\left(x_{m}-x\right) t\right)\right| \\
& \leqslant\left|x-x_{m}\right| \sup _{x \in \bar{D}}|\nabla \rho(x)|
\end{aligned}
$$

we can conclude that we can choose $B=\sup _{x \in D}|\nabla \rho(x)| . B$ is finite since $\rho \in$ $C^{1}(\bar{D})$.

Hereafter we shall consider that the defining function $\rho(x)$ is a real valued C^{2} function.
'Then next lemma is a special case of the Green's formula which is valid on Riemannian manifolds.

Lemma 4. Let $\rho(x)$ be a defining the function of D, and let function $f \in C^{2}(\bar{D})$. Then

$$
\int_{B(a, r)} \Delta_{\rho} f d V_{\rho}=\int_{\partial B(a, r)} \frac{\partial f}{\partial n_{\rho}} d \sigma_{\rho} \quad \text { whenever } \overline{B(a, r)} \subset D
$$

3. Proof of the main results

In this section $\rho(x)$ is a defining function for a proper domain $D \subset \mathbf{R}^{n}$ with a conformal metric with density equal to the reciprocal value of the defining function for this domain i.e. $d s=\rho^{-1}(x)|d x|, \Delta_{\rho}$ is the corresponding Laplace-Beltrami operator for such a metric.

The following three lemmas generalize Theorem B in the case $K_{0}=0$.
Lemma 5. Let D be a proper subdomain of $\mathbf{R}^{n}, f \in C^{2}(D)$ such that

$$
|\Delta f(a)| \leqslant \frac{\mathrm{c}}{r^{k}} \sup _{x \in B(a, r)}|\nabla f(x)|
$$

for some $c>0$ and $k \in \mathbf{N}$, whenever $B(a, r) \subset D$. Then

$$
|\nabla f(a)| \leqslant \frac{c_{1}}{r^{k}} \sup _{x \in B(a, r)}|f(x)-f(a)|
$$

for some $c_{1}>0$, whenever $B(a, r) \subset D$.
Proof. Since D is a proper domain we can suppose that $r \in[0,1]$. Also, it is enough to prove the theorem for closed balls in D.

In [8], the following inequality was proved:

$$
|\nabla f(a)| \leqslant \frac{n}{r} \sup _{x \in B(a, r)}|f(x)|+\frac{n}{n+1} r \sup _{x \in B(a, r)}|\Delta f(x)|
$$

whenever $B(a, r) \subset D$ for $f \in C^{2}(D)$.
By translations we can reduce the proof to the case $a=0$. Let $\overline{B(0, \rho)} \subset D$ and $M_{f}=\sup _{B(0, \rho)}|f(x)|$. Choose $\hat{a} \in B(0, \rho)$ so that the function $g(x)=$ $|\nabla f(x)|(\rho-|x|)^{k}$ attains its maximum at $\hat{a} \in \overline{B(0, \rho)}$. This implies that on the ball $B\left(\hat{a}, \frac{\rho-|\hat{a}|}{2}\right)$ we have:

$$
|\nabla f(x)| \leqslant|\nabla f(\hat{a})| \sup _{x \in B\left(\hat{a}, \frac{\rho-1 a}{2}\right)}\left(\frac{\rho-|\hat{a}|}{\rho-|x|}\right)^{k}=2^{k}|\nabla f(\hat{a})| .
$$

From the hypotheses we have

$$
|\nabla f(\hat{a})| \leqslant \frac{n}{r} M_{f}+\frac{n c}{n+1} \frac{r}{t^{k}} \sup _{x \in B(\hat{a}, s)}|\nabla f(x)|,
$$

where $s=r+t, r, t>0$.
Let $s=\frac{\rho-\mid \hat{|a|}}{2}$ and $\frac{n c}{n+1} \frac{r}{t^{k}}=\frac{1}{2^{k+1}}$. From that we have $\frac{(n+1)}{c n 2^{k+1}} t^{k}+t=\frac{\rho-|\hat{a}|}{2}$. It is easy to see that this equation has a unique positive root t_{0} which belongs to the interval $\left(0, \frac{\rho-|\hat{a}|}{3}\right)$. Since $t \in(0,1)$ we have $\left(\frac{(n+1)}{c n^{k}+\dot{L}}+1\right) t>\frac{\rho-|\hat{a}|}{2}$, which implies $L_{1}\left(\frac{\rho-|\hat{a}|}{2}\right)^{k}<r<L_{2}\left(\frac{\rho-|\hat{a}|}{2}\right)^{k}$ for some $L_{1}, L_{2}>0$. From all of the above we get

$$
|\nabla f(\hat{a})| \leqslant \frac{n}{r} M_{f}+\frac{1}{2^{k+1}} 2^{k}|\nabla f(\hat{a})| \quad \text { i.e. } \quad|\nabla f(\hat{a})| \leqslant \frac{2 n M_{f}}{r} \leqslant \frac{2^{k+1} n M_{f}}{L_{1}(\rho-|\hat{a}|)^{k}} .
$$

Thus

$$
g(0)=|\nabla f(0)| \rho^{k} \leqslant|\nabla f(\hat{a})|(\rho-|\hat{a}|)^{k} \leqslant \frac{2^{k+1} n M_{f}}{L_{1}}=\frac{2^{k+1} n}{L_{1}} \sup _{x \in B(0, \rho)}|f(x)| .
$$

Applying the above to the function $f(x)-b, b \in \mathbf{R}$ and puting $b=f(0)$ we obtain the desired result.

Lemma 6. Let D be a proper subdomain of $\mathbf{R}^{n}, f \in C^{(1)}(D)$ such that

$$
|\nabla f(a)| \leqslant \frac{c}{r^{k}} \sup _{x \in B(a, r)}|f(x)|
$$

for some $c>0$ and $k \in \mathbf{N}$, whenever $B(a, r) \subset D$. Then the function $|f|^{p},(p>$ $0)$ possesses the HL-property.
Proof. We may assume that $B \subset D$, in contrary we shall consider the function $f(a+r x)$, for $r<d(a, \partial D)$ it is defined on B. Also we may assume that $\int_{B}|f|=1$ and $\bar{B} \subset D$.

Let $g(x)=|f(x)|(1-|x|)^{n k}$. Since $g \in C(\bar{B}),\left.g\right|_{\partial B} \equiv 0$, there is a point $a \in B$ so that the function $g(x)$ attains its maximum i.e. $g(x) \leqslant g(a), x \in B$. By the mean value theorem we have

$$
|f(x)-f(a)| \leqslant \sup _{h \in[0,1]}|\nabla f(a+h(x-a))||x|, \text { where } x \in B(a, t) \subset B .
$$

By the hypotheses we get

$$
|f(a)| \leqslant|f(x)|+\frac{t c}{r^{k}} \sup _{x \in B(a, s)}|f(x)|, \quad \text { for } \quad s=t+r, \quad x \in B(a, t)
$$

Now choose $t, r>0$ such that $t+r=\frac{1-|a|}{2}$ and $\frac{t c}{r^{k}}=\frac{1}{2^{n k+I}}$. As in the proof of the previous lemma we can conclude that this system has a unique solution and there are $L_{1}, L_{2}>0$ such that $L_{1}(1-|a|)^{k}<t<L_{2}(1-|a|)^{k}$.

On $B\left(a, \frac{1-|a|}{2}\right)$ we have

$$
|f(x)| \leqslant\left(\frac{1-|a|}{1-|x|}\right)^{k n}|f(a)| \leqslant \frac{(1-|a|)^{k n}|f(a)|}{\left(1-\left|a+\frac{a}{|a|} \frac{1-|a|}{2}\right|\right)^{k n}}=2^{k n}|f(a)|
$$

Therefore $|f(a)| \leqslant|f(x)|+\frac{1}{2}|f(a)|$, for $x \in B(a, t)$ i.e. $|f(a)| \leqslant 2|f(x)|$. Integrating this inequality over $B(a, t)$ we obtain

$$
v_{n} t^{n}|f(a)| \leqslant 2 \int_{B(a, t)}|f(x)| d V(x) \leqslant 2
$$

which implies

$$
|f(a)| \leqslant \frac{2}{v_{n} t^{n}} \leqslant \frac{c_{1}}{(1-|a|)^{k n}}
$$

From that we have $|f(0)| \leqslant c_{1}=c_{1} \int_{B}|f| d V$, as desired.
So, the function $|f|$ possesses the $H L$-property. Thus by Theorem A we obtain that the function $|f|^{p}$ possesses the $H L$-property for every $p>0$.

Lemma 7. Let D be a proper subdomain of $\mathbf{R}^{n}, f \in C^{1}(D)$ such that

$$
|\nabla f(a)| \leqslant \frac{c}{r^{k}} \sup _{x \in B(a, r)}|f(x)-f(a)|
$$

for some $c>0$, and $k \in \mathbf{N}$, whenever $B(a, r) \subset D$. Then $|\nabla f|^{p}(p>0)$ possesses the $H L$-property.

Proof. By Theorem A it is enough to prove that there is a $q>0$ such that the function $|\nabla f|^{q}$ possesses the $H L$-property.

Also it is enough to prove the inequality

$$
|\nabla f(0)|^{q} \leqslant \int_{B}|\nabla f(x)|^{q} d V(x)
$$

Let $g(x)=f(x)-f(0)$ then

$$
|\nabla g(0)| \leqslant \frac{2 c}{r^{k}} \sup _{x \in r B}|g(x)|
$$

where $r B=B(0, r)$.

By Lemma 6, $|g|^{p}$ possesses the $H L$-property for every $p>0$. Thus, we have

$$
\begin{aligned}
|\nabla f(0)| & =|\nabla g(0)| \leqslant \frac{2^{k+1} c}{r^{k}} \sup _{x \in \frac{r}{2} B}|g(x)| \leqslant \frac{2^{k+1} c}{r^{k}} \frac{c_{1}}{r^{n}} \int_{r B}|g(x)| d V(x) \\
& =\frac{c_{2}}{r^{n+k}} \int_{r B}|g(x)| d V(x)
\end{aligned}
$$

Taking $r=1$ we obtain

$$
\begin{aligned}
|\nabla f(0)| & \leqslant c_{2} \int_{B}|g(x)| d V(x)=c_{2} \int_{B}\left|\int_{0}^{1} f^{\prime}(t x) d t\right| d V(x) \\
& \leqslant c_{2} \int_{B} \int_{0}^{1}|\nabla f(t x)||x| d t d V(x)=c_{2} \int_{B}|\nabla f(y)| \int_{|y|}^{1}\left|\frac{y}{t}\right| d t \frac{1}{t^{n}} d V(y) \\
& =c_{2} \int_{B}|\nabla f(y)||y| \frac{|y|^{-n}-1}{n} d V(y) \leqslant \frac{c_{2}}{n} \int_{B}|\nabla f(y)||y|^{1-n} d V(y)
\end{aligned}
$$

since from $y=t x$ we have $0 \leqslant|y|=t|x|<t<1$. By Hölder's inequality we get

$$
|\nabla f(0)| \leqslant \frac{c_{2}}{n}\left(\int_{B}|\nabla f(y)|^{q} d V(y)\right)^{1 / q}\left(\int_{B}|y|^{(1-n) p} d V(y)\right)^{1 / p}
$$

Choose $p>1$, such that the last integral converges. Using polar coordinates we have

$$
\int_{B}|y|^{-(n-1) p} d V(y)=\int_{0}^{1} \int_{S} \rho^{-(n-1) p} \rho^{n-1} d \sigma(\zeta) d \rho=\frac{1}{(n-1)(1+p)+1}
$$

for $\frac{n}{n+1}>p>1$. For such p we obtain $q=\frac{p}{p-1}$ such that the function $|\nabla f|^{q}$ possesses the $H L$-property.

We are now in a position to prove Theorem 1.
Proof of Theorem 1. From (2) we have:

$$
\Delta_{\rho} f=\rho^{2}\left(\Delta f-(n-2) \frac{1}{\rho}\langle\nabla \rho, \nabla f\rangle\right)
$$

So, the eigenfunction of the Laplace-Beltrami operator satisfies the partial diffeential equation

$$
\Delta f-(n-2) \frac{1}{\rho}\langle\nabla \rho, \nabla f\rangle=\frac{\lambda f}{\rho^{3}}
$$

From this we have

$$
|\Delta f| \leqslant \frac{|\lambda||f|}{\rho^{2}}+\frac{(n-2)}{|\rho|}|\nabla f||\nabla \rho|
$$

If $\max _{x \in \bar{D}}|\nabla \rho(x)|=M_{\rho}$ and A is a constant chosen in a manner described in the proof of the Lemma 3, then

$$
|\Delta f(x)| \leqslant \frac{M_{\rho}|\nabla f(x)|(n-2)}{A d(x, \partial D)}+\frac{|\lambda||f(x)|}{A^{2} d(x, \partial D)^{2}}
$$

Thus the eigenfunction satisfies the condition (1). By Theorem B we get that the function $|f|^{p}, p>0$ possesses the $H L$-property.

Let us now show that $|\nabla f|^{p}, p>0$ possesses the $H L$-property. Let $\overline{B(a, r)} \subset$ $\cdot D$, by Lemma 4 and since f is an eigenfunction of the Laplace-Betrami operator we have:

$$
\Delta_{\rho} f(a) \int_{B(a, r)} d V_{\rho}(x)=-\lambda \int_{B(a, r)}(f(x)-f(a)) d V_{\rho}(x)+\int_{\partial B(a, r)} \frac{\partial f}{\partial n_{\rho}} d \sigma_{\rho} .
$$

Hence

$$
\left|\Delta_{\rho} f(a)\right| \int_{B(a, r)} d V_{\rho}(x) \leqslant|\lambda| \int_{B(a, r)}|f(x)-f(a)| d V_{\rho}(x)+\int_{\partial B(a, r)}\left|\frac{\partial f}{\partial n_{\rho}}\right| d \sigma_{\rho} .
$$

Since

$$
\begin{aligned}
\int_{B(a, r)}|f(x)-f(a)| d V_{\rho}(x) & =\int_{B(a, r)}\left|\int_{0}^{1} f^{\prime}(a+t(x-a)) d t\right| d V_{\rho}(x) \\
& =\int_{B(a, r)}\left|\int_{0}^{1}(\nabla f(a+t(x-a)),(x-a)\rangle d t\right| d V_{\rho}(x) \\
& \leqslant \sup _{x \in B(a, r)}|\nabla f(x)| \int_{B(a, r)}|x-a| d V_{\rho}(x) \\
& \leqslant r \sup _{x \in B(a, r)}|\nabla f(x)| \int_{B(a, r)} d V_{\rho}(x)
\end{aligned}
$$

and

$$
\int_{\partial B(a, r)}\left|\frac{\partial f}{\partial n_{\rho}}\right| d \sigma_{\rho} \leqslant M_{\rho} \sup _{x \in B(a, r)}|\nabla f(x)| \int_{\partial B(a, r)} d \sigma_{\rho}
$$

where $M_{\rho}=\max _{x \in \bar{D}}|\rho(x)|$, we obtain

$$
\begin{equation*}
\left|\Delta_{\rho} f(a)\right| \leqslant \sup _{B(a, r)}|\nabla f(x)|\left(r|\lambda|+M_{\rho} \frac{\int_{\partial B(a, r)} d \sigma_{\rho}}{\int_{B(a, r)} d V_{\rho}(x)}\right) \tag{3}
\end{equation*}
$$

whenever $\overline{B(a, r)} \subset D$.
By Lemma 3 we have

$$
\frac{\int_{\partial B(a, r)} d \sigma_{\rho}}{\int_{B(a, r)} d V_{\rho}(x)} \leqslant C_{1} \frac{\int_{\partial B(a, r)} \frac{d \sigma(\xi)}{d(\xi, \partial D)^{n-1}}}{\int_{B(a, r)} \frac{d V(x)}{d(x, \partial D)^{n}}}, \quad \text { whenever } \overline{B(a, r)} \subset D \text {. }
$$

It is clear that $B(a, r / 2) \subset B(a, d(a, \partial D) / 2)$. If $x \in B(a, d(a, \partial D) / 2)$, we can conclude that

$$
\begin{equation*}
\frac{1}{2} d(a, \partial D)<d(x, \partial D)<\frac{3}{2} d(a, \partial D) . \tag{4}
\end{equation*}
$$

From that we get

$$
\begin{equation*}
\frac{\int_{\partial B(a, r / 2)} \frac{d \sigma(\xi)}{d(\xi, \partial D)^{n-1}}}{\int_{B(a, r / 2)} \frac{d V(x)}{d(x, \partial D)^{n}}} \leqslant C_{2} d(a, \partial D) \frac{\int_{\partial B(a, r / 2)} d \sigma(\xi)}{\int_{B(a, r / 2)} d V(x)} \leqslant C_{3} \frac{\operatorname{diarn}(\bar{D})}{r} . \tag{5}
\end{equation*}
$$

From (3) and (5) we have

$$
\left|\Delta_{\rho} f(a)\right| \leqslant \sup _{B(a, r / 2)}|\nabla f(x)|\left(\frac{r}{2}|\lambda|+M_{\rho} C_{3} \frac{\operatorname{diam}(\bar{D})}{r}\right) \leqslant \frac{K}{r} \sup _{B(a, r / 2)}|\nabla f(x)| .
$$

Thus,

$$
|\Delta f(a)| \leqslant \frac{K}{r^{3}} \sup _{x \in B(a, r)}|\nabla f(x)|
$$

whenever $B(a, r) \subset D$.
By Lemma 5 and Lemma 7 , we obtain that $|\nabla f(x)|^{p}, p>0$ possesses the $H L$-property.

Lemma 8. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ}, then

$$
\begin{equation*}
\left(r^{3}|\nabla f(x)|\right)^{p} \leqslant \frac{C}{r^{n}} \int_{B(x, r)}|f|^{p} d V, p>0 \tag{6}
\end{equation*}
$$

whenever $B(x, r) \subset D$, where $C=C(p, n, \lambda)$ is a constant.
Proof. By Theorem 1, we have

$$
|f(x)|^{p} \leqslant \frac{C_{1}}{r^{n}} \int_{B(x, r)}|f|^{p} d V, \quad \text { whenever } \quad B(x, r) \subset D .
$$

By Lemma 5, we have

$$
\begin{equation*}
|\nabla f(x)| \leqslant \frac{K}{r^{3}} \sup _{y \in B(x, r)}|f(y)| \tag{7}
\end{equation*}
$$

From (7) we get

$$
|\nabla f(x)|^{p} \leqslant\left(\frac{8 K}{r^{3}} \sup _{y \in B(x, r / 2)}|f(y)|\right)^{p}
$$

Since

$$
|f(y)|^{p} \leqslant \frac{C_{1} 2^{n}}{r^{n}} \int_{B(y, r / 2)}|f|^{p} d V, \quad y \in B(x, r / 2)
$$

we have

$$
\sup _{y \in B(x, r / 2)}|f(y)|^{p} \leqslant \frac{C_{1} 2^{n}}{r^{n}} \int_{B(x, r)}|f|^{p} d V
$$

and thus (6) follows.

Proof of Theorem 2. Let us put $r=d(a, \partial D) / 2$ in (6), we have

$$
d(a, \partial D)^{3 p}|\nabla f(a)|^{p} \leqslant \frac{C}{d(a, \partial D)^{n}} \int_{B(a, d(a, \partial D) / 2)}|f(x)|^{p} d V(x) .
$$

Since, by Lemma 3 there are $A, B>0$ such that

$$
\begin{equation*}
A d(a, \partial D)<\rho(a)<B d(a, \partial D) \tag{8}
\end{equation*}
$$

whenever $a \in D$, we have

$$
\begin{equation*}
\rho^{3 p}(a)|\nabla f(a)|^{p} \leqslant \frac{C}{d(a, \partial D)^{n}} \int_{B(a, d(a, \partial D) / 2)}|f(x)|^{p} d V(x) . \tag{9}
\end{equation*}
$$

Multiplying (9) by $\rho^{\alpha}(a) d V_{\rho}(a)$ and then integrating over D, we obtain

$$
\begin{aligned}
& \int_{D} \rho^{\alpha+3 p}(a)|\nabla f(a)|^{p} d V_{\rho}(a) \\
\leqslant & C \int_{D} \frac{\rho^{\alpha}(a)}{d(a, \partial D)^{n}} \int_{B(a, d(a, \partial D) / 2)}|f(x)|^{p} d V(x) d V_{\rho}(a) .
\end{aligned}
$$

By Fubini's theorem we have

$$
\begin{aligned}
& \int_{D} \frac{\rho^{\alpha}(a)}{d(a, \partial D)^{n}} \int_{B(a, d(a, \partial D) / 2)}|f(x)|^{p} d V(x) d V_{\rho}(a) \\
= & \int_{D}|f(x)|^{p} \int_{E(x)} \frac{\rho^{\alpha}(a)}{d(a, \partial D)^{n}} d V_{\rho}(a) d V(x),
\end{aligned}
$$

where $E(x)=\{a \mid x \in B(a, d(a, \partial D) / 2)\}$. From (8) we have

$$
\begin{aligned}
& \int_{D}|f(x)|^{p} \int_{E(x)} \frac{\rho^{\alpha}(a)}{d(a, \partial D)^{n}} d V_{\rho}(a) d V(x) \\
\leqslant & C \int_{D}|f(x)|^{p} \int_{E(x)} d(a, \partial D)^{\alpha-2 n} d V(a) d V(x)
\end{aligned}
$$

From (4), we obtain

$$
\begin{aligned}
& \int_{D}|f(x)|^{p} \int_{E(x)} d(a, \partial D)^{\alpha-2 n} d V(a) d V(x) \\
\leqslant & C \int_{D}|f(x)|^{p} d(x, \partial D)^{\alpha-2 n} \int_{E(x)} d V(a) d V(x) .
\end{aligned}
$$

Using (8) one more time, we obtain

$$
\begin{aligned}
& \int_{D}|f(x)|^{p} d(x, \partial D)^{\alpha-2 n} \int_{E(x)} d V(a) d V(x) \\
\leqslant & C \int_{D}|f(x)|^{p} \rho^{\alpha-2 n}(x) \int_{E(x)} d V(a) d V(x)
\end{aligned}
$$

Since $E(x) \subset\{a \| a-x \mid<d(x, \partial D)\}$ we get $\int_{E(x)} d V(a) \leqslant C d(x, \partial D)^{n} \leqslant C \rho^{n}(x)$. Thus

$$
\begin{aligned}
& \int_{D}|f(x)|^{p} \rho^{\alpha-2 n}(x) \int_{E(x)} d V(a) d V(x) \\
\leqslant & C \int_{D}|f(x)|^{p} \rho^{\alpha-n}(x) d V(x)=C \int_{D}|f(x)|^{p} \rho^{\alpha}(x) d V_{\rho}(x)
\end{aligned}
$$

From all of the above we obtain the result.

Remark. Throughout the above proof we used C to denote a positive constant which may vary from line to line.

Lemma 9. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ}, for $\lambda \neq 0$, then

$$
|f(a)| \leqslant C\left(r+\frac{1}{r|\lambda|}\right) \sup _{x \in B(a, r)}|\nabla f(x)|, \quad \text { whenever } B(a, r) \subset D,
$$

where C is a constant depending only on D, λ and n.
Proof. Let $\overline{B(a, r)} \subset D$. By Lemma 4 and since f is an eigenfunction of LaplaceBetrami operator we have

$$
\lambda f(a) \int_{B(a, r)} d V_{\rho}(x)=-\lambda \int_{B(a, r)}(f(x)-f(a)) d V_{\rho}(x)+\int_{\partial B(a, r)} \frac{\partial f}{\partial n_{\rho}} d \sigma_{\rho}
$$

If we literarly quote the proof of the second part of Theorem 1 we obtain our result.

Lemma 10. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ}, for $\lambda \neq 0$, then

$$
\begin{equation*}
(r|f(a)|)^{p} \leqslant \frac{C}{r^{n}} \int_{B(a, r)}|\nabla f(x)|^{p} d V(x) \tag{10}
\end{equation*}
$$

$p>0$, whenever $B(a, r) \subset D$, where C is constant depending only on D, p, λ and n.

Proof. By Theorem 1, we get

$$
|\nabla f(a)|^{p} \leqslant \frac{C}{r^{n}} \int_{B(a, r)}|\nabla f|^{p} d V, \quad \text { whenever } \quad B(a, r) \subset D
$$

On the other hand, by Lemma 9, we have

$$
\begin{equation*}
|f(a)| \leqslant K\left(r+\frac{1}{r|\lambda|}\right) \sup _{x \in B(a, r)}|\nabla f(x)| \tag{11}
\end{equation*}
$$

From (11) we get:

$$
\begin{equation*}
|f(a)|^{p} \leqslant(2 K)^{p}\left(r+\frac{1}{r|\lambda|}\right)^{p}\left(\sup _{y \in B(a, r / 2)}|\nabla f(y)|\right)^{p} . \tag{12}
\end{equation*}
$$

Since

$$
|\nabla f(y)|^{p} \leqslant \frac{C 2^{n}}{r^{n}} \int_{B(y, r / 2)}|\nabla f|^{p} d V, \quad y \in B(a, r / 2)
$$

we have

$$
\begin{equation*}
\sup _{y \in B(a, r / 2)}|\nabla f(y)|^{p} \leqslant \frac{C 2^{n}}{r^{n}} \int_{B(a, r)}|\nabla f|^{p} d V \tag{13}
\end{equation*}
$$

Inequality (10) now follows from (12) and (13).
By Lemma 10, in the same manner as in Theorem 2, we can prove the following:

Theorem 3. If f is an eigenfunction of the Laplace-Beltrami operator Δ_{ρ}, for $\lambda \neq 0$, then

$$
\int_{D} \rho^{\alpha+p}(x)|f(x)|^{p} d V_{\rho}(x) \leqslant C \int_{D}|\nabla f(x)|^{p} \rho^{\alpha}(x) d V_{\rho}(x), \quad p>0, \quad \alpha>0
$$

where C is constant depending only on D, p, n, λ and α.
We leave the proof of this theorem to the reader.

References

[1] L. Ahlfors, Möbius transformations in sevenal dimensions, University of Minesota, School of Mathematics (1981).
[2] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, New York 1992.
[3] C. Fefferman and E. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[4] G. Hardy and J. Littlewood, Some properties of conjugate function, J. Reine Angew. Math. 167 (1931), 405-423.
[5] U. Kuran, Subharmonic behaviour of $|h|^{p}(p>0, h$ harmonic $)$, J. London Math. Soc. 8 (1974) 529-538.
[6] K. Muramoto, Harmonic Bloch and BMO functions on the unit ball in several variables, Tokyo J. Math. 11, no. 2, (1988), 381-386.
[7] M. Pavlovic, On subharmonic behaviour of functions on balls in R^{n}, Publ. Inst. Math. (Belgrade) 55 (1994), 18-22.
[8] M. Pavlović, Subharmonic behaviour of smooth functions, Mat. Vesnik 48 no. 1-2 (1996), 15-21.
[9] R. Range, Holomorphic functions and integral representations in several complex variables, New York Berlin Heidelberg Tokyo, Springer-Verlag (1986).
[10] S. Stević, An equivalent norm on BMO spaces, Acta Sci. Math. 66 (2000), 553-564.

Address: Matematicki Fakultet, Studentski Trg 16, 11000 Beograd, Serbia E-mail: sstevicoptt.yu; sstevo@matf.bg.ac.yu Received: 27 February 2001

