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THE WALSH TRANSFORM OF WAVELET TYPE SYSTEMS: 
CONVERGENCE ALMOST EVERYWHERE 

BARBARA WOLNIK 

Abstract: The main results of the paper are the following: the Fourier expansion of f E Lp, 
1 < p < oo, with 1·espect to the Walsh transform of a wavelet type system converges a.e. to f 
and if f E L1 then the same is true for the Cesaro means. 
Keywords: Uniformly bounded systems, convergence almost everywhere, Cesaro summability. 

1. Introduction 

The subject of this paper is to study pointwise convergence of Fourier expansions 
with respect to the Walsh transform of a wavelet type system on [O, l] or ']['. By 
a wavelet type system we mean a biorthogonal system of functions which have 
dyadic scaled estimates. The Walsh transform of a wavelet type system is the 
system which arises from a wavelet type system in the same way a.."l the Walsh 
system arises from the Haar system. It appears that this new system is uniformly 
bounded. 

This method has been first used by Z. Ciesielski [4J to construct a bounded 
system of polygonals starting from the Franklin system. An analogous construction 
has been applied by S. Ropela [17] to orthogonal spline bases. He has obtained 
bounded orthogonal spline systems (called Ciesielski's systems) and has proved 
that these systems are bases in Lp for 1 < p < oo. In [5] Z. Ciesielski has used this 
construction to the biorthogonal splines. The problem of pointwise convergence 
of Fourier expansions with respect to the Walsh system has been considered by 
P. Billard in [2] (p = 2) and P. Sjolin in [19] (p > 1 ), with respect to the Walsh 
transform of the Franklin system by Z. Ciesielski, P. Simon and P. Sjolin in [8] 
and in the Walsh transform of arbitrary spline system by Z. Ciesielski in [5]. We 
extend their results to the Walsh transform of wavelet type systems in Theorem 
3.4, which states that the expansion of f E Lp for 1 < p < oo converges a.e. to f. 
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The situation is different when f E £ 1 (0, 1) is considered. By the well
known result of S.V. Bockariev [3] for each uniformly bounded ONS Un}nEN on 
[O, 1] there is a function f E L1 (0, 1) whose Fourier series in the system Un}nEN 
diverges unboundedly at every point of a set EC [0, 1] of pooitive measure. More
over, K.S. Kazarian and A.S. Sargsian [13] proved that there exists a function from 
L 1 (0, 1), whose Fourier series in the bounded system of polygonals introduced by 
Z. Ciesielski diverges a.e. on [0, lj. This result was extended to the Walsh trans
form of biorthogonal wavelet type systems by A. Kamont and the author in [12]. 

Therefore, in the case of functions from L 1 ;arious methods of summation 
are studied. In this direction, N.J. Fine [10] has proved that the Cesaro means of 
the Fourier series of any f E L 1(0, 1) with respect to the Walsh system converge 
to f a.e. on [O, 1] and F. Weisz [20] has proved this fact in the case of the Walsh 
transform of spline systems. It occures that this result can be extended to the 
Walsh transform of arbitrary wavelet type systems (see Theorem 4.1). 

2. Preliminaries and notation 

Let ([, d) denote either the metric space ([O, 1], d1 ) or ("JI', d2), where 

d1 (x, y) = Ix YI, x, YE [O, 11, d2(x, y) min(lx - YI, 1 - Ix - yl), x, y E "JI'. 

By lj,k we will denote the interval [\;1
,;,] and for n EN we define n * Ij,k as 

the set {x E [: d(x,;) :;;; ; } . 
By a biorthogonal wavelet type system on lI we mean a biorthogonal system 
{ t/Jn, <Pn} := _ N , where natural N ~ -1 is given, consisting of functions on ][ 
satisfing the following conditions: 

(I) There is a constant M > 0 such that for any n E {-N, ... , 0, 1} and 
XE I[ 

lt/Jn(x)I :;;; M and ]</>n(x)I :;;; M. 

(II) For j ~ 0, k E { 1, 2, ... , 2J} and x E [ 

where 
(III) S : [O, oo) -+ JR. is a nonincreasing function such that 

1= ln(l + x)S(x)dx < +oo. 

In this paper we will suppose an additional condition, namely, that the system 
{ 1µ}:=-N is a Riesz basis in L2([). 

As we will see, conditions (I), (II), (III) and the fact that the system { 1µ }:=-N 
is a lliesz basis in L2([) are sufficient to secure a lot of good properties of wavelet 
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type system. Let us note that many classical or newly introduced systems satisfy 
these conditions. The most known ones are: the Haar system, the Franklin system, 
the orthogonal and biorthogonal bases discussed in [6], adaptations of Daubechies' 
wavelets to the interval [0, 1] (see [1], [9], [15]), periodic wavelets (see for instance 
[21]) and the Petrushev systems [16] consisting of rational functions of uniformly 
bounded degrees. 

Remark. As a consequence of the monotonicity of S and of condition (III) one 
can get 

Lemma 2.1. There is a constant C such that 
00 00 

LL 2j S(k2j) < C (1) 
j=O k=l 

and for j ~ 0 and x, y E JI 

(2) 

Moreover, 
lim log(x + l)S(x) 0. 

X-+00 
(3) 

Let {xn}nEN and {wn}nEN denote the Haar and Walsh functions, respec
tively. For any j ~ 0 we define the matrix (see for instance [18]) 

(j) -i (2l -1) 
Ak,l = (w2-i+k, X2-i+1) = 2 Wk 

2
i+1 , k, l 1, 2, ... , 2j (4) 

which is orthogonal and symetric ( the la.st fact wa.s proved in [4]). 
The Walsh transform of the wavel~t type system { 1/Jn, <Pn}~=-N is the system 

{ 1/J:, ¢:}~=-N given by formulae: 
for n E {-N, .. . ,0,1} 

b b 

1Pn(x) = 1/Jn(x), <Pn(x) = ¢n(x), 

for j ~ 0, k l, ... , 2i 

Let Pn : L1 (JI) -+ L1 (JI) denote the projections 

n 

Pnf = L (f, <Pi)t/Ji, n ~ -N. 
i=-N 

Theorem 2.2 below summarises necessary facts concerning the systems 

{ 1/Jn}~=-N and { 1/J~}~=-N. 
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Theorem 2.2. Let {1/Jn, ¢n}~=-N be a biorthogonal system fulfilling conditions 
(I), (II), (III). In addition, assume that { 1/,ln} ~""- N is a Riesz basis in L2 (][) . Then 
we have: 

(o) The system {1/Jn}~=-N is an unconditional basis in Lp(H) for 1 < p < oo. 
Moreover, the systems {¢n}~=l and {xn}~=l are Lp-equivalent. 

(i) The maximal operator 

P* f(x) = sup IPnf(x)I 
n~-N 

is of type (p,p) for 1 <p < oo and of the weak type (1, 1). 
(ii) For any f E L1(Il) we have Pnf(x)-) f(x) a.e. on Il. 

(iii) The system { ¢:}~=-N is a basis in Lp(H) for 1 < p < oo. 
(iv) The series 

n=2 

are equiconvergent in Lp(H) for 1 < p < oo and their norms are equivalent. 

The above properties of the wavelet type systems have been proved by the 
author in [22]. We have decided not to present here the proof of Theorem 2.2, 
since the methods of proofs are similar to the proofs of the analogous results in 
the case of wavelets on JR. More precisely, the unconditionality of {¢n}~=-N 
in Lp(H) is proved analogously as the unconditionality of wavelet bases on IR in 
P. Wojtaszczyk [21], and its LP-equivalence to the Haar system is checked as in 
G.G. Gevorkyan, B. Wolnik [11]. The proofs of properties (i) and (ii) follow by 
arguments analogous to those used in S.E. Kelly, M.A. Kon and L.A. Raphael [14] 
in case of wavelets on ]Rn. Once we know (o), properties (iii) and (iv) are obtained 
similarly as the corresponding results for the spline systems or the Franklin system 
in S. Ropela [17] and Z. Ciesielski and S. Kwapier'i [7]. 

3. Convergence a.e. for f E Lp(IT), 1 < p < oo 

We start with the theorem concerning the type (p, p) of maximal operator for the 

partial sums with respect to the system { w:}~=-N. The crucial role in the proof 
is played by P. Sjolin's result [19] concerning (p,p)-type for the maximal operator 
for partial sums with respect to the Walsh system: 

Theorem 3.1. (P. Sjolin [19]) Let 1 < p < oo. There is a constant GP such that 

n 00 

II sup IL aiwil IIP ~ CPII L aiwillp• 
_n i=l i=l 

The type (p, p) for the maximal operator for the bounded orthonormal set 
of polygonals was proved in [8] and for the remaining Ciesielski's systems in [5]. 
We extend this result to the Walsh transform of arbitrary wavelet type systems. 
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Theorem 3.2. Let { 1Pn, 4>n}~'"'-N be a biorthogonal system fulfilling conditions 
(I), (II), (III). If { -r/Jn}~=-N is a Riesz basis in L2(ll) then the maximal opera.tor 
T* 

n '°' b b T* J(t) := sup IL,(/, 4>1 )¢1 (t)I 
n-;,:.-N l=l 

(5) 

is of type (p, p) for 1 < p < oo. 

Before we begin the proof of Theorem 3.2 we show the following auxiliary 
result, which for the Franklin system was proved in [8]: 

Lemma 3.3. Let { "Pn, 4>n}~=-N be a biorthogonal system fulfilling conditions 
(I), (II), (III). Let r3 be the j-th Rademacher function. For j ~ 0 we define tl1e 
functions 011 JI2 by formulae 

· k-1 k 
Gi(t, s) = 2½ri+1 (s)-r/J•>J+k(t) for -.- ::;; s < -:- and k = 1, ... , 2J. (6) 

~ 21 21 

Then there is a constant C such that for h E L1 (ll) we have 

1 fn Gi(t, s)h(s)dsl ::;; CMh(t), t Ell, 

where Mh denotes the Hardy-Littlewood maximal function of h. 

Proof. It follows directly from the definition of G3 that if s E Ij,k, then 

IG·(t )I~ 2iS(2id(t -)) ~ 21s(O) for d(s,t)::;; ?-f k { · 2 

1 's ~ '2i ~ 2i S(2i- 1d(s, t)) for d(s, t) > l 
Now, let t E lI. Then 

(7) 

, r GJ(t, s)h(s)ds! ::;; 1 IGj(t, s)llh(s)lds + 1 !Gj(t, s)llh(s)lds =: Jn d(s,t),.; 
2
2, d(s,t)> 

2
2, 

=: B1 + B2. 

For the first term we obtain from (7) 

B1 ::;; S(0)2i 1 !h(s)lds::;; CMh(t). 
d(s,t),.;-f; 

For the second term we get using (7) and Lemma 2.1 
j-1 l 

B2::;; L f 23S(2j-l~)lh(s)lds::;; 
j~S:::d( t)s:2::!;.!. 21 

I= 1 2, "' 
8 

• "' 2J 

j-1 ::;; '°' S(21
-

1)2i 1 lh(s)lds::;; 
L, ( ) 21+1 
l=l d s,t ,.;21 

,; ~ 8(21-1 )2' I { s , d(s, t) ,; 2'; 1 } I Mh(t) ,; 

j-1 

::;; CL S(i- 1 )i+1 Mh(t) ::;; C' Mh(t). 
!=l 

• 
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The proof of Theorem 3.2: Introduce 

Since for each j ~ 0 and t, s E ll 

2j 2i 

L ¢~(s)¢!(t) = L <Pn(s)¢n(t) 
n:ccl n=l 

then it follows from (i) of Theorem 2.2 that it is enough to show the type (p,p), 
1 < p < oo , for the operator T* . 

Since 1/J~i+k(t) J; w2;+kGj(t, s)ds, thus from Lemma 3.3 we have 

which gives 

where 

k k 

1 I::u, ¢~+1)¢2i+1(t)I ~ cM ( I::u, ¢~;+1)W2i+1) (t) 
l=l l=l 

T* f(t) ~ CMw*(t), 

k 

w* (t) sup sup 11::U, ¢;;+1)'lll3i+!(t)1, 
j~O l~k~2i l=l 

(8) 

Using Theorem 3.1, (iv) of Theorem 2.2 and the fact that {¢:}~-N is a basis in 
Lp(ll) we get 

00 00 

llw* llr ~ 2Crll 1::U, ¢;)willr ~ CII 1::U, ¢;)¢; llr ~ Cll/llr• (9) 
i=l i=l 

Now, from (8), the (p,p)-type for the Hardy-Littlewood maximal function and (9) 
it follows that 

!IT* fl!r ~ CIIMw*llr ~ C'llw*llr ~ C"ll/llr, 
which proves the type (p, p) of operator T* . 

(10) 

• 
Combining Theorem 3.2 with the usual density argument (see [18], Theorem 

3.1.2) we get 

Theorem 3.4. Let { ¢n, ¢n}~=-N be a biorthogonal system fulfilling conditions 
(I), (II), (III). If {¢n}~=-N is a Riesz basis in L2(ll) then for f E Lp(ll) (I < p < 
< oo) the series 

n=-N 

converges a.e. to f. 
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4. Cesaro summability for f E L 1 (H) 

In this part of the paper we will prove that the sequence of the arithmetic means 
of the Fourier series of f with respect to the system { 'lj;:};~0=-N converges to f 
a.e. on IL 

Without loss of generality we can assume that d = d2. (If the system { 'lfln} 
fulfils condition (II) with d1 then of course it fulfils (II) with d2). 

First we introduce a notation. The Walsh-Dirichlet and the Walsh-Fejer 
kernels are denoted by Dn and Fn respectively, i.e. 

_ n _ l n _ 

Dn(t, x) = L Wi(t)wi(x}, Fn(t, x) = L Dj(t, x). 
i=l n j=l 

It is known (see [18]), that if we denote by + the dyadic addition then 

n 

Dn(t, x} = Dn(t+x) = L Wi(t+x), Fn(t, x) Fn(t+x) 

and 

i=l 

n 

F2n(x) ~ L2i-nD2,,(x+ri-l). 
j=O 

Moreover, for 2N - l ~ n < 2N 

N-1 N-1 

IFn(x)I ~ 3 L 2j-N L D2,(x+rj- 1 ). 

j=O i=j 

(11) 

(12) 

(13) 

For the partial sums Snf and the Fejer means anf of the function f with respect 
b 

to the system { 'lfln}:;"=-N we have 

Snf(x) := t (!, cp:)1/J: (x) = 1 Dt(x, t)f(t)dt, 
i=-N JI 

1 n 1 <Inf(x) :=:;;: ~ Sj/(x) n F:f (x, t)f(t)dt, 

where 

1 n j 

:;;: I: I: "'; (t)1/); <x> 
j=l i=-N 

are the Dirichlet and Fejer kernels for the system { 'lj;:}:;"=-N, respectively. (For 
the simplification in the definition of <In we consider the sum from j = 1, the 
partial sums S-N, ... , S0 can be ignored.) 
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The main result of this section is 

Theorem 4.1. Let { 1/Jn, ¢n}~=-N be a biorthogonal system fulfilling conditions 
(I), (II), (III). If {1/Jn}~=-N is a Riesz basis in L2(IT), then for any f E L1(0, 1) 
we have 

anf - f a.e. 

Our method is based on the proof of Weisz's result [20J concerning the 
bounded Ciesielski systems, but there are some differences. F. Weisz proved that 
the maximal operator for Cesaro means is bounded from the Hardy space H11 to 
L11 for 1/2 < p < oo and by the interpolation he obtained the weak-type (1, 1) 
of this operator. The usual density argument (see [18], Theorem 3.1.2) then im
plied the convergence result. His proof depends heavily on the estimates for the 
derivatives of basic functions. In our case we do not have such estimates. How
ever, it occures that in case of wavelet type bases, it is possible to prove that the 
limes superior operator for the Cesaro means of the Fourier series with respect to 

b 
the system {1/Jn}~=-N is of the weak-type (1, 1) (as a consequence of its quasi-
locality). Moreover, this result is also sufficient to obtain the required convergence 
as it follows from the following weaker version of Theorem 3.1.2 from (18]: 

Lemma 4.2. Let Xo be a dense subset of L1(IT). Let Tn (n E N), S be linear 
operators from L1 (JI) to Lo (IT). Let us assume that the opera.tor S is of the weak
type (1, 1) and that for any function f E Xo we have limn-.oo Tnf Sf a.e. on 
H. If the operator T defined as 

T f(x) := limsup ITnf (x)I, 
n-+oo 

is also of the weak-type (1, 1), then for every function f E L1(Il) we have 

Um Tnf = Sf a.e. on H. 
n-+oo 

Proof. Let us fix f E L1(ll). Let us choose fm E Xo such that lim !If - fmll1 = 
m-+oo 

= 0. Since limsup ITnfm - Sfml = 0 a.e. on H hence 

limsup ITnf - Sfl ~ limsup ITn(t - fm)I + limsup!Tnfm - Sfml + ISfm Sfl = 
n-+oo n->oo n->oo 

= T(f- fm) + ISfm Sfj. 

As T and S are of the weak-type (1, 1) we have 

l{x E Il: limsup ITnf(x) - Sf(x)I > 2y}I ~ l{x E JI: T(t- fm)(x) > y}I+ 
n-+oo 

+ l{x E Il: ISfm(x) - Sf(x)I > y}I ~ ell/ - fmll1, 
y 

where the constant C is independent of y and m. 
Since llf - fmlli -. 0, hence l{x: limsup ITnf(x) - Sf(x)I > 2y}I O for 

n->oo 
every y > 0. We thus get limsup ITnf - Sfl O a.e. on Il. • 

n-+oo 

1 Here and in Lemma 4.3 below Lo(ll) denotes the space of measurable functions. 
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Below we will use the notion of quasi-local operator (see [18)): 
Operator T : L 1 (H) -. Lo(H) is called quasi-local if there is a constant C such 

that for every dyadic interval I and every function J E L1(Il) satisfying supp/CI 
we have 

1 ITJ(x)jdx ~ C!IJl!i-
(2*I)c 

Lemma 4.3. If the subadditive operator T: L 1 (H) -. Lo(H) is quasi-local and of 
the weak-type (2, 2), then T is also of the weak-type (1, 1). 

The proof is similar to the proof of Theorem 6.2.4 from [18). • 
The proof of Theorem 4.1: For the natural number n > 1 we define µ and r, 
as the unique natural numbers such that n = 2µ + r, and 1 ~ r, ~ 2µ. Using this 
notation we can write 

where 
µ-1 

TJ1
) f = ¾ ( Sif + L 2iS2if + r,S2.,.f) 

i=O 

1 µ-1 2' 

;; (LL ( S2•+if - 82,f)) 
i=O 1=1 

¾ (t (s2.,.+lf-S2.,.J) ). 
1=1 

TJ3)J 

Since 82, J = P2, f, where P2, f is the partial sum of f with respect to the 
unbounded system { 1/Jn} , we get 

TJ1
) f(x) 

It follows by (ii) of Theorem 2.2 that P2,f(x)-. f(x) a.e. on Il. Let us fix x E JI, 
for which the above convergence is true. Let us choose any E > 0. Then there is 
M such that for i ~ M we have 
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For n > 2M we can write 

ITJ1
) f(x) f(x)I ~ 
1 TJ 1 µ.-l . 

~ -IPif(x) - f(x)I + -IP2µf(x) - f(x)I + - L2i!P2,f(x) -f(x)I ~ 
n n n 

i=O 

1 1J 1 M-1 . 1 µ.-1 . 

~ -IPif(x) - f(x)I + -E + - L 2i1P2,f(x) - f(x)I + - L 2iE ~ 
n n n . n 

t=O i=M 

2M 
~ E + - sup IP2,f(x) - f(x)I, 

n O~i<M 

hence rJ1
) f(x) - f(x) a.e. on rr. 

It remains to prove that 

Um (TJ2
) f(x) + T2) f(x)) = 0 a.e. 

n-->OO 
(14) 

Since for any function ¢; we have an¢; (t) -+ ¢; (t), and the finite linear 

combinations of w: are dense in L1 (li), the convergence (14) is fulfilled on the 
dense subset. It is not hard to prove that operators T(2) and T(3) defined by 

r<m) f := lim sup ITJm) fl, m 2, 3 
n-->OO 

are of type (2, 2) . In fact, from the definitions of TJ2
) and TJ3

) we have 

r<2> & t* r<3> & t* 
~ ' ~ ' 

Therefore the type (2,2) follows from (10). By Lemmas 4.2 and 4.3 it suffices to 
show that the operators T(2 ) and T(3) are quasi-local. 

In [20] F. Weisz gives formulae and estimates for the kernels of the operators 

TJ2> and rJ3
) in the case of the bounded Ciesielski systems ([20], Theorem 1 and 

Lemma 1). Below we extend his result in the general version (Lemmas 4.4 and 
4.5). 

Lemma 4.4. For n = 2µ. + TJ ( µ ~ 0, 1 ~ r, ~ 2µ.) we have 

TJ2) f (x) 
µ.-1 1 

~ L 1 Li(x, t)f(t)dt, 
i=O O 

111 - Mn(x, t)f(t)dt, 
n o 

where 

Li(x,t) 1111 

ri(s+u)2iF2,(s+u)Gf(x,s)Gf(t,u)dsdu, 

f 1 f 1 . . 1P 4> 
Mn(x, t) = lo lo rµ.(s+u)TJF,.,(s+u)Gµ. (x, s)Gµ.(t, u)dsdu, 

and G'f., at are defined by (6) for the systems {¢n} and {ci>n}, respectively. 
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Proof. We will present the sketch of the proof only for T;?> . Since 

1/J;,+k(t) 11 

w2,+k(s)Gf (t, s)ds 11 

ri(s)wk(s)Gf (t, s)ds, 

</);,+k(t) 11 

w2•+k(s)Gf (t, s)ds = 11 

r.(s)wk(s)Gf (t, s)ds, 

hence 

2' l 

L I:u, <P2,+k)1/J2•+k(x) 

By the definitions of Dn and Fn we obtain 

21 ! 2• ! 

LL r.(s)wk(s)ri(u)wk(u) = ri(s+u) LL wk(s+u) 
l=l k=l l=l k=l 

2' 

ri(s+u) L D1(s+u) ri(s+u)2•F2, (s+u). 
1=1 

Putting above formulae to the formula of r!2
) we obtain the thesis. 

Lemma 4.5. Using notation of Lemma 4.4 we have 

and 

IMn(x, t)I ~ 
µ-1 i 

~ cI::2i I::2i 
i=O j=O 

wl1ere 

2µ-j-l +2µ-•-1 

L (sc2µ- 1d(x,rbt)) +S(2µ- 1d(x,r __ 
1=2µ-j-l_2µ-•+1 

{ 
t + h for O ~ t < 1 h 
t+h-1 forl-h~t<l. 

• 

t))) 

(16) 

Proof. Since the proof of Lemma 4.5 is similar to the proof of the original lemma 
of Weisz from [20], we present only the sketch for L • . 
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By the definition of Li, Gi and by (12) we conclude that 

i 2' 2' 

~ C2i L 21 LL j j D2,(s+u+ 
2
j~l )l1/J2;+k(x)ll<l>2•+1(t)ldsdu ~ 

j=O k=l l=l l;,1c I;,1 

. 2i 2i 

~ C2i t~LL j j D2,(s-t-u+
2
j~ 1 )2iS(2id(x, ;i))S(id(t, ;i)). 

j=O k=l l=l I;,k I,,1 

From (11) it follows that if we fix j and k then there are at most two numbers 
l such that the integral h h D2, ( s-t-u+ 21~ 1 )dsdu is not equal to zero. For 

i,k t,l 

j = i, i - 1 we have than l = k, and for j = 0, ... , i - 2 we have l = k ± 2i-j-l _ 

Hence 

ILi(x, t)I ~ 

,;; C2' t. 21 t S(2' d(x, ! )) [ S(2'd(t, k + ;:-; 
1

)) + S(2'd(t, k - ;:-f-l))] ~ 

Hence by Lemma 2.1 we have 

The estimates for Mn we obtained similarly using (13). • 
Now we are ready to prove that T(2) and T(3) are quasi-local, which will 

complete the proof of Theorem 4.1. 

Lemma 4.6. The operator T<2> f := limsupn-+oo ITA2
) /I is quasi-local. 

Proof. Let I be any dyadic interval of lenght 2-K, and / let be a function from 
L1 (IT) with support contained in I. Then, according to the definition of T(2) and 
the assumption concerning the support of/ we have 

Hence 
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The estimate for Li(x, t) in (15) consists of two terms. We show calculations for 
the first one, for the second they are similar. We divide the considered integral 
into three pieces: 

l K-l i 2K 

~ (
2

K) 2 L 2iL2jL sup sup8(2i-ld(x,T2K-j-it)) ~ 
i=O j=O l=l xEIK,t tEl 2K 

l K-1 i 2K 

~ (2K)2 L 2i L 2j L S(2i-ld(h<,1, 
i=O j=O 1=1 

I)). 

Note that d(IK,1, T 2K-j-i I) takes only the values ~, m EN, because 2K-j-l E 
2K 

E N. Moreover, if j is fixed, then for each m E N there are at most three l such 
that 

m 
I)= 2K. 

Hence 
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Since h ~ 2i-l;, < h+ I if and only if 2K-i-lh ~ m < 2K-i- 1(h+ 1), it follows 
by Lemma 2.1 

C ~ -~ -~ K · C ~~ · 
A1 ~ (2K)2 to 2

1 f;;t/1 f:'o 2 -i S( h) ~ 2K to 'ko 21 ~ C. (17) 

Let us estimate the second term, i.e. A2. Since i ~ K, and the function S 
is nonincreasing, 

Similarly as for A1 we get 

K-1 2K 

A2 ~ L 21 L 
2
~s(2K-1d(IK,1i T2K-j-l I)) 

j=O l=l -:;,r-

and using the same argument we obtain 

K-1 2K K-1 

A2 ~ ~ L 2i L S(m) ~ C L 21 ~ C. (18) 
2 

1=0 m=O 1=0 

To estimate As let us note that if j ~ K, then 21\1 ~ ! III. Thus, if 
d(x,I) ~ ~, then d(x, T _,i_I) ~ '>:i+i , and if we denote (2 * I)c = { x : d(x,I) ~ 

- m+1 -
~ 21 } we obtain 

As= 1 sup (.!_ I: 2i t 21 sup8(2i-1d(x, T ;;n:-r-t))) dx ~ 
(2•1? n>2K n i=K j=K tEl 23 

,;2 t, 2~ n~fK ( ~ ~ 2j~ 2' 8(21-1 2,; + 1)) ,; 
2K 1 00 l 

:;:::: ~ - ~ 2£ 8(2i-2-) ~L2KL 2K 
!=2 i=K 
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Thus, by Lemma 2.1 we have 

00 00 

As ~ CL 2i L S(2i-2l) ~ C. (19) 
i=O l=l 

It follows from (17), (18) and (19) that 

1 r<2) J(x)da; ~ Cll/1!1, 
{2•I)c 

which completes the proof of Lemma 4.6. • 
Lemma 4. 7. The operator T(3) J := lim sup,..-.00 ITA3

) f I is qua.si-local. 

Proof. Let I denote a dyadic interval of lenght 2-K, and let / E £ 1 (IT) have 
support contained in I. Fix M such that log(x+ l)S(x) < -b for x > 2M-2 (the 
existence of such M follows from (3)). Analogously, as in the proof of Lemma 4.6, 
we can write 

This time we present the calculations only for the first element in (16). We 
again decompose the integal 

into three pieces and each of them we estimate separately. So 

Since 2µ-l > 2K, we have from the fact that S is noincreasing 

2µ-j-l+2µ-i_l 2µ-i+l 

L s(2,..-1d(x,Twt)) ~ L S(2Kd(x, 

Let now 

r(l, i,j, s) := sup{r EN: d(IK,1, T 1 _.1,.+ s I) ~ rK }. 
iiTT 2• iR'TT 2 
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Since 

hence 

~ 2K
1+ 1 , thus if d(IK l, T 1 -..!,.+ s I) ~ 2~ for certain r E N, then 

I vTT 2' :iR+T 

r 
d(IK,l, T vh-f.+vfTT+':ii'J) ~ 2K+l' 

2K K+l i 2K-i+2 

~ (
2
~)2 LL 2i L 2j L S(r(l, i,j, s)). 

1=1 i=O j=O s=O 

Changing the order of the summation we get 

Let us note that Ir 1 _..!..+---L-11 = Jr therefore, for fixed i, j, sand r EN 
2;+1 2• 2K+l -

there are at most four l such that r(l, i, j, s) r. Thus 

The second integral is treated similarly 

Let us note that I i• - ;:, I < hence if for any r EN+ 

then 
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which gives 

2µ-i+l 

~ 8(2µ-ld(IKt,T 1 -...!..+"'I)):;;;;2µ-i+ls(2µ-K- 2r). 
L_,; ' :iJTT 2' :W 
m=l 

On the other hand if d(IK 1, T 1 J) < 2~, then 
' :iJTT 

2µ-i+l_l 

8(2µ-ld(IK i, T 1 -...!..+"' I)) :,;;; 2 ~ 8(2µ-l 2sµ) :::;; C 
' :iJTT 2• :W L._,; 

m=l s=O 

Introducing 

f3(l,j) = sup{r EN: d(IK 1, T __ 1_l) ~ r }. 
1 2J+1 

we note that 
(21) 

Thus, 

It follows from (21) that B~2
) :::;; C. Since S(x) is nonincreasing function, we may 

estimate Bf) in the following way: 

C K+l 2K 

B~1
) :::;; K L 2i L sup (µ - I( - 2}8(2µ-K-2) = 

2 . >2K+M J=O r=l n 

C K+i 
= K L 2i · 2K sup (µ - K - 2)8(2µ-K- 2). 

2 j=O n>2K+M 

By the choice of M we have 

Consequently, we get 

C 
sup (µ - K - 2)8(2µ-K-2) < K. 

n>2K+M 2 

C K+i . 
Bf):::;; L 2.1:,;; C. 

j=O 
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Finally 

(22) 

It remains to estimate the third term. We have 

Since I ;J:. I :::;;; 2)+ 1 , thus if d(x, I)~ ,fr, then d(x, Tft,I) ~ 2i/+r . Therefore 

Changing the order of the summation we get from Lemma 2.1 

00 2K 

B3 :::;;; c L 2i L s(2i l) :::;;; c. (23) 
j=O l=l 

Lemma 4.7 follows now from (20), (22) and (23). • 
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