ON PRIMES p FOR WHICH d DIVIDES ORD $p_{p}(g)$

Pieter Moree

Abstract

Let $N_{g}(d)$ be the set of primes p such that the order of g modulo p, ord $p(g)$, is divisible by a prescribed integer d. Wiertelak showed that this set has a natural density, $\delta_{g}(d)$, with $\delta_{g}(d) \in \mathbb{Q}>0$. Let $N_{g}(d)(x)$ be the number of primes $p \leqslant x$ that are in $N_{g}(d)$. A simple identity for $N_{g}(d)(x)$ is established. It is used to derive a more compact expression for $\delta_{g}(d)$ than known hitherto.

Keywords: multiplicative order, natural density.

1. Introduction

Let g be a rational number such that $g \notin\{-1,0,1\}$ (this assumption on g will be maintained throughout this note). Let $N_{g}(d)$ denote the set of primes p such that the order of $g(\bmod p)$ is divisible by d (throughout the letter p will also be used to indicate primes). Let $N_{g}(d)(x)$ denote the number of primes in $N_{g}(d)$ not exceeding x. The quantity $N_{g}(d)(x)$ (and some variations of it) has been the subject of various publications $[1,3,4,7,9,11-19]$. Hasse showed that $N_{g}(d)$ has a Dirichlet density in case d is an odd prime [3], respectively $d=2$ [4]. The latter case is of additional interest since $N_{g}(2)$ is the set of prime divisors of the sequence $\left\{g^{k}+1\right\}_{k=1}^{\infty}$. (One says that an integer divides a sequence if it divides at least one term of the sequence.) Wiertelak [12] established that $N_{g}(d)$ has a natural density $\delta_{g}(d)$ (around the same time Odoni [9] did so in the case d is a prime). In a later paper Wiertelak [15] proved, using sophisticated analytic tools, the following result (with $\mathrm{Li}(x)$ the logarithmic integral and with $\omega(d)=\sum_{p \mid d} 1$), which gives the best known error term to this date.
Theorem 1 [15]. We have

$$
N_{g}(d)(x)=\delta_{g}(d) \operatorname{Li}(x)+O_{d, g}\left(\frac{x}{\log ^{3} x}(\log \log x)^{\omega(d)+1}\right)
$$

Wiertelak also gave a formula for $\delta_{g}(d)$ which shows that this is always a positive rational number. A simpler formula for $\delta_{g}(d)$ (in case $g>0$) has
only recently been given by Pappalardi [10]. With some effort Pappalardi's and Wiertelak's expressions can be shown to be equivalent.

In this note a simple identity for $N_{g}(d)(x)$ will be established (given in Proposition 1). From this it is then inferred that $N_{g}(d)$ has a natural density $\delta_{g}(d)$ that is given by (4), which seems to be the simplest expression involving field degrees known for $\delta_{g}(d)$. This expression is then readily evaluated.

In order to state Theorem 2 some notation is needed. Write $g= \pm g_{0}^{h}$, where g_{0} is positive and not an exact power of a rational and h as large as possible, Let $D\left(g_{0}\right)$ denote the discriminant of the field $\mathbb{Q}\left(\sqrt{g_{0}}\right)$. The greatest common divisor of a and b respectively the lowest common multiple of a and b will be denoted by (a, b), respectively $[a, b]$. Given an integer d, we denote by d^{∞} the supernatural number (sometimes called Steinitz number), $\prod_{p \mid d} p^{\infty}$. Note that $\left(v, d^{\infty}\right)=\prod_{p \mid d} p^{\nu_{p}(v)}$.
Definition. Let d be even and let $\epsilon_{g}(d)$ be defined as in Table 1 with $\gamma=$ $\max \left\{0, \nu_{2}\left(D\left(g_{0}\right) / d h\right)\right\}$.

Table 1: $\epsilon_{g}(d)$

$g \backslash \gamma$	$\gamma=0$	$\gamma=1$	$\gamma=2$
$g>0$	$-1 / 2$	$1 / 4$	$1 / 16$
$g<0$	$1 / 4$	$-1 / 2$	$1 / 16$

Note that $\gamma \leqslant 2$. Also note that $\epsilon_{g}(d)=(-1 / 2)^{2^{2}}$ if $g>0$.
Theorem 2. We have

$$
\delta_{g}(d)=\frac{\epsilon_{1}}{d\left(h, d^{\infty}\right)} \prod_{p \mid d} \frac{p^{2}}{p^{2}-1},
$$

with

$$
\epsilon_{1}= \begin{cases}1 & \text { if } 2 \nmid d ; \\ 1+3(1-\operatorname{sgn}(g))\left(2^{\nu_{2}(h)}-1\right) / 4 & \text { if } 2| | d \text { and } D\left(g_{0}\right) \nmid 4 d ; \\ 1+3(1-\operatorname{sgn}(g))\left(2^{\nu_{2}(h)}-1\right) / 4+\epsilon_{g}(d) & \text { if } 2| | d \text { and } D\left(g_{0}\right) \mid 4 d ; \\ 1 & \text { if } 4 \mid d, D\left(g_{0}\right) \nmid 4 d ; \\ 1+\epsilon_{|g|}(d) & \text { if } 4\left|d, D\left(g_{0}\right)\right| 4 d .\end{cases}
$$

In particular, if $g>0$, then

$$
\epsilon_{1}= \begin{cases}1+(-1 / 2)^{2^{m a x\left\{0, \nu_{2}\left(D\left(g_{0}\right) / t h\right)\right\}}} & \text { if } 2 \mid d \text { and } D\left(g_{0}\right) \mid 4 d ; \\ 1 & \text { otherwise },\end{cases}
$$

and if h is odd, then

$$
\epsilon_{1}= \begin{cases}1+(-1 / 2)^{2^{\max \left(0, \nu_{2}(D(g) / d h)\right\}}} & \text { if } 2 \mid d \text { and } D(g) \mid 4 d ; \\ 1 & \text { otherwise } ;\end{cases}
$$

Using Proposition 1 of Section 2 it is also very easy to infer the following result, valid under the assumption of the Generalized Riemann Hypothesis (GRH).

Theorem 3. Under GRH we have

$$
N_{g}(d)(x)=\delta_{g}(d) \operatorname{Li}(x)+O_{d, g}\left(\sqrt{x} \log ^{\omega(d)+1} x\right),
$$

where the implied constant depends at most on d and g.
In Tables 2 and 3 (Section 6) a numerical demonstration of Theorem 2 is given.

2. The key identity

Let $\pi_{L}(x)$ denote the number of unramified primes $p \leqslant x$ that split completely in the number field L. For integers $r \backslash s$ let $K_{s, r}=\mathbb{Q}\left(\zeta_{s}, g^{1 / r}\right)$.

The starting point of the proof of Theorem 2 is the following proposition. By $r_{p}(g)$ the residual index of g modulo p is denoted (we have $r_{g}(p)=\left[\mathbb{F}_{p}:\langle g\rangle\right]$). Note that $\operatorname{ord}_{p}(g) r_{p}(g)=p-1$.
Proposition 1. We have $N_{g}(d)(x)=\sum_{v \mid d \infty} \sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{i u, \alpha v}}(x)$.
Proof. Let us consider the quantity $\sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{d v, \alpha v}}(x)$. A prime p counted by this quantity satisfies $p \leqslant x, p \equiv 1(\bmod d v)$ and $r_{p}(g)=v w$ for some integer w. Write $w=w_{1} w_{2}$, with $w_{1}=(w, d)$. Then the contribution of p to $\sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{d v, o v}}(x)$ is $\sum_{\alpha \nmid w_{1}} \mu(\alpha)$. We conclude that

$$
\begin{equation*}
\sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{d v, c u}}(x)=\#\left\{p \leqslant x: p \equiv 1(\bmod d v), v \mid r_{p}(g) \text { and }\left(\frac{r_{p}(g)}{v}, d\right)=1\right\} \tag{1}
\end{equation*}
$$

It suffices to show that

$$
N_{g}(d)(x)=\sum_{v \mid d^{\infty}} \#\left\{p \leqslant x: p \equiv 1(\bmod d v), v \mid r_{p}(g) \text { and }\left(\frac{r_{p}(g)}{v}, d\right)=1\right\} .
$$

Let p be a prime counted on the right hand side. Note that it is counted only once, namely for $v=\left(r_{p}(g), d^{\infty}\right)$. From ord ${ }_{p}(g) r_{p}(g)=p-1$ it is then inferred that $d \mid \operatorname{ord}_{p}(g)$. Hence every prime counted on the right hand side is counted on the left hand side as well. Next consider a prime p counted by $N_{g}(d)(x)$. It satisfies $p \equiv 1(\bmod d)$. Note there is a (unique) integer v such that $v \mid d^{\infty}, p \equiv 1(\bmod d v)$ and $\left(r_{p}(g) / v, d\right)=1$. Thus p is also counted on the right hand side.
Remark 1. From (1) and Chebotarev's density theorem it follows that

$$
\begin{equation*}
0 \leqslant \sum_{\alpha \mid d} \frac{\mu(\alpha)}{\left[K_{d v, \alpha v}: \mathbb{Q}\right]} \leqslant \frac{1}{\left[K_{d v, v}: \mathbb{Q}\right]} . \tag{2}
\end{equation*}
$$

3. Analytic consequences

Using Proposition 1 it is rather straightforward to establish that $N_{g}(d)$ has a natural density $\delta_{g}(d)$.

Lemma 1. Write $g=g_{1} / g_{2}$ with g_{1} and g_{2} integers. Then

$$
\begin{equation*}
N_{g}(d)(x)=\left(\delta_{g}(d)+O_{d, g}\left(\frac{(\log \log x)^{\omega(d)}}{\log ^{1 / 8} x}\right)\right) \operatorname{Li}(x) \tag{3}
\end{equation*}
$$

where the implied constant depends at most on d and g and

$$
\begin{equation*}
\delta_{g}(d)=\sum_{v \mid d^{\infty}} \sum_{\alpha \mid d} \frac{\mu(\alpha)}{\left[K_{d v, \alpha v}: \mathbb{Q}\right]} . \tag{4}
\end{equation*}
$$

Corollary 1. The set $N_{g}(d)$ has a natural density $\delta_{g}(d)$.
The proof of Lemma 1 makes use of the following consequence of the BrunTitchmarsh inequality.

Lemma 2. Let $\pi(x ; l, k)=\sum_{p \leqslant x, p \equiv l(\bmod k)} 1$. Then

$$
\sum_{\substack{v>2 \\ v \mid d i \infty}} \pi(x ; d v, 1)=O_{d}\left(\frac{x}{\log x} \frac{(\log z)^{\omega(d)}}{z}\right)
$$

uniformly for $3 \leqslant z \leqslant \sqrt{x}$.
Proof. On noting that $M_{d}(x):=\#\left\{v \leqslant x: v \mid d^{\infty}\right\} \leqslant(\log x)^{\omega(d)} / \log 2$, it straightforwardly follows that

$$
\sum_{\substack{v \gg \\ v i d \infty}} \frac{1}{v}=\int_{z}^{\infty} \frac{d M_{d}(z)}{z}<_{d} \frac{(\log z)^{\omega(d)}}{z}
$$

By the Brun-Titchmarsh inequality we have $\pi(x ; w, 1) \ll x /(\varphi(w) \log (x / w))$, where the implied constant is absolute and $w<x$. Thus

$$
\begin{equation*}
\sum_{x<v, d u \leq x^{2 / 3}} \pi(x ; d v, 1) \ll \frac{x}{\varphi(d) \log x} \sum_{\substack{v>x \\ v / d \infty}} \frac{1}{v} \ll d \frac{x}{\log x} \frac{(\log z)^{\omega(d)}}{z} . \tag{5}
\end{equation*}
$$

Using the trivial estimate $\pi(x ; d, 1) \leqslant x / d$ we see that

$$
\begin{equation*}
\sum_{\substack{d v>2>2 / 3 \\ d / v \infty}} \pi(x ; d v, 1) \leqslant \sum_{\substack{d v>r^{2 / 3} \\ \vdots 1 d d^{2}}} \frac{x}{d v} \leqslant \sum_{\substack{w>x^{2 / 3} \\ w / d \infty \infty}} \frac{x}{w} \lll x^{1 / 3}(\log x)^{\omega(d)} . \tag{6}
\end{equation*}
$$

On combining (5) and (6) the proof is readily completed.

Proof of Lemma 1. From [10, Lemma 2.1] we recall that there exist absolute constants A and B such that if $v \leqslant B(\log x)^{1 / 8} / d$, then

$$
\begin{equation*}
\pi_{K_{d v, a v}}(x)=\frac{\operatorname{Li}(x)}{\left[K_{d v, \alpha v}: \mathbb{Q}\right]}+O_{g}\left(x e^{-\frac{A}{d v} \sqrt{\log x}}\right) . \tag{7}
\end{equation*}
$$

Let $y=B(\log x)^{1 / 8} / d$. From the proof of Proposition 1 we see that

$$
N_{g}(d)(x)=\sum_{\substack{v \| \infty \\ v \leqslant y}} \sum_{\substack{\mid d}} \mu(\alpha) \pi_{K_{d v, \alpha v}}(x)+O\left(\sum_{\substack{v>y \\ u|d| \infty}} \pi(x ; d v, 1)\right)=I_{1}+O\left(I_{2}\right),
$$

say. By Lemma 2 we obtain that $I_{2}=O\left(x(\log \log x)^{\omega(d)} \log ^{-9 / 8} x\right)$. Now, by (7), we obtain

$$
I_{1}=\sum_{\substack{v \mid d \alpha \infty \\ v \leqslant v}} \sum_{\alpha \mid d} \frac{\mu(\alpha)}{\left[K_{d v, \alpha v}: \mathbb{Q}\right]}+O_{d, g}\left(y \frac{x}{\log ^{5 / 4} x}\right)
$$

Denote the latter double sum by I_{3}. Keeping in mind Remark 1 we obtain

$$
I_{3}=\delta_{g}(d)+O\left(\sum_{\substack{v d d \infty \\ v>v}} \sum_{\substack{\alpha \mid d}} \frac{\mu(\alpha)}{\left[K_{d v, \alpha v}: \mathbb{Q}\right]}\right) .
$$

Using (2) and Lemma 3 it follows that

$$
\begin{aligned}
\sum_{\substack{v d d \infty \\
v>y}} \sum_{\alpha \mid d} \frac{\mu(\alpha)}{\left[K_{d v, \alpha v}: \mathbb{Q}\right]} & =O\left(\sum_{\substack{v \mid d \infty \\
v>y}} \frac{1}{\left[K_{d v, v}: \mathbb{Q}\right]}\right)=O\left(\frac{1}{\varphi(d)} \sum_{\substack{v \mid d \infty \\
d>y}} \frac{h}{v^{2}}\right) \\
& =O_{d}\left(\frac{h(\log y)^{\omega(d)}}{y}\right)=O_{d, g}\left(\frac{(\log y)^{\omega(d)}}{y}\right),
\end{aligned}
$$

and hence

$$
I_{3}=\delta_{g}(d)+O_{d, g}\left(\frac{(\log y)^{\omega(d)}}{y}\right) .
$$

The result follows on collecting the various estimates.

4. The evaluation of the density $\delta_{g}(d)$

A crucial ingredient in the evaluation of $\delta_{g}(d)$ is the following lemma.

Lemma 3. [6] Write $g= \pm g_{0}^{h}$, where g_{0} is positive and not an exact power of a rational. Let $D\left(g_{0}\right)$ denote the discriminant of the field $\mathbb{Q}\left(\sqrt{g_{0}}\right)$. Put $m=D\left(g_{0}\right) / 2$ if $\nu_{2}(h)=0$ and $D\left(g_{0}\right) \equiv 4(\bmod 8)$ or $\nu_{2}(h)=1$ and $D\left(g_{0}\right) \equiv 0(\bmod 8)$, and $m=\left[2^{\nu_{2}(h)+2}, D\left(g_{0}\right)\right]$ otherwise. Put

$$
n_{T}= \begin{cases}m & \text { if } g<0 \text { and } r \text { is odd; } \\ {\left[2^{\nu_{2}(h r)+1}, D\left(g_{0}\right)\right]} & \text { otherwise. }\end{cases}
$$

We have

$$
\left[K_{k r, k}: \mathbb{Q}\right]=\left[\mathbb{Q}\left(\zeta_{k r}, g^{1 / k}\right): \mathbb{Q}\right]=\frac{\varphi(k r) k}{\epsilon(k r, k)(k, h)}
$$

where, for $g>0$ or $g<0$ and r even we have

$$
\epsilon(k r, k)= \begin{cases}2 & \text { if } n_{r} \mid k r ; \\ 1 & \text { if } n_{r} \nmid k r,\end{cases}
$$

and for $g<0$ and r odd we have

$$
\epsilon(k r, k)= \begin{cases}2 & \text { if } n_{r} \mid k r ; \\ \frac{1}{2} & \text { if } 2 \mid k \text { and } 2^{\nu_{2}(h)+1} \nmid k ; \\ 1 & \text { otherwise. }\end{cases}
$$

Remark 2. Note that if h is odd, then $n_{T}=\left[2^{\nu_{2}(r)+1}, D(g)\right]$. Note that $n_{r}=$ $n_{2^{\nu_{2}}(r)}$.
The 'generic' degree of $\left[K_{d v, \alpha v}: \mathbb{Q}\right]$ equals $\varphi(d v) \alpha v /(\alpha v, h)$ and on substituting this value in (4) we obtain the quantity S_{1} which is evaluated in the following lemma.

Lemma 4. We have

$$
S_{1}:=\sum_{v \mid d^{\infty}} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\varphi(d v) \alpha v}=S(d, h)
$$

where

$$
S(d, h):=\frac{1}{d\left(h, d^{\infty}\right)} \prod_{p \mid d} \frac{p^{2}}{p^{2}-1} .
$$

Proof. Since for $v \mid d^{\infty}$ we have $\varphi(d v)=v \varphi(d)$, we can write

$$
S_{1}=\frac{1}{\varphi(d)} \sum_{v \mid d^{\infty}} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\alpha v^{2}}=\frac{1}{\varphi(d)} \sum_{v \mid d^{\infty}} \frac{(v, h)}{v^{2}} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\alpha(v, h)} .
$$

The expression in the inner sum is multiplicative in α and hence

$$
\sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\alpha(v, h)}=\prod_{p \mid d}\left(1-\frac{(p v, h)}{p(v, h)}\right)= \begin{cases}\frac{\varphi(d)}{d} & \text { if }\left(h, d^{\infty}\right) \mid\left(v, d^{\infty}\right) \\ 0 & \text { otherwise } .\end{cases}
$$

On noting that $(v, h) / v^{2}$ is multiplicative in v and that for $k \geqslant \nu_{p}(h)$

$$
\sum_{r=k}^{\infty} \frac{\left(p^{r}, h\right)}{p^{2 r}}=\frac{p^{\nu_{p}(h)+2-2 k}}{p^{2}-1}
$$

one concludes that

$$
S_{1}=\frac{1}{d} \sum_{\substack{v|d \infty \\(h, d \infty)| v}} \frac{(v, h)}{v^{2}}=\frac{1}{d} \prod_{p \mid d} \sum_{r \geqslant \nu_{p}(h)} \frac{\left(p^{r}, h\right)}{p^{2 r}}=\frac{1}{d} \prod_{p \mid d} \frac{p^{2-\nu_{p}(h)}}{p^{2}-1}=S(d, h) .
$$

This completes the proof.
Remark 3. Note that the condition $\left(h, d^{\infty}\right) \mid\left(v, d^{\infty}\right)$ is equivalent with $\nu_{p}(v) \geqslant$ $\nu_{p}(h)$ for all primes p dividing d.

By a minor modification of the proof of the latter result we infer:
Lemma 5. Let $k \geqslant 0$ be an integer. Then

$$
S_{2}(k):=\sum_{\substack{v \mid d \infty \\ \nu_{2}(v) \geqslant \nu_{2}(h)+k}} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\varphi(d v) \alpha v}=4^{-k} S(d, h) .
$$

The next lemma gives an evaluation of yet another variant of S_{1}.
Lemma 6. Let D be a fundamental discrimant. Then
$S_{3}(D):=\sum_{\substack{v \neq d \infty \\\left[2^{\nu}(\{d / \alpha)+1, D \mid\{d v\right.}} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\varphi(d v) \alpha v}= \begin{cases}4^{-\gamma} S(d, h) & \text { if } 2|d, D| 4 d \text { and } \gamma \geqslant 1 ; \\ -\frac{S(d, h)}{2} & \text { if } 2|d, D| 4 d \text { and } \gamma=0 ; \\ 0 & \text { otherwise, }\end{cases}$
where $\gamma=\max \left\{0, \nu_{2}(D / d h)\right\}$.
Proof. The integer $\left[2^{\nu_{2}(h d / \alpha)+1}, D\right]$ is even and is required to divide d^{∞}, hence $S_{3}(D)=0$ if d is odd. Assume that d is even. If D has an odd prime divisor not dividing d, then $D \nmid d^{\infty}$ and hence $S_{3}(D)=0$. On noting that $\nu_{2}(D) \leqslant \nu_{2}(4 d)$ and that the odd part of D is squarefree, it follows that if $S_{3}(D) \neq 0$, then $D \mid 4 d$. So assume that $2 \mid d$ and $D \mid 4 d$. Note that the condition $\left[2^{\nu_{2}(h d / \alpha)+1}, D\right] \mid d v$ is equivalent with $\nu_{2}(v) \geqslant \nu_{2}(h)+\max \left\{1, \nu_{2}(D / d h)\right\}$ for the α that are odd, and $\nu_{2}(v) \geqslant \nu_{2}(h)+\gamma$ for the even α. Thus if $\gamma \geqslant 1$ the condition $\left[2^{\nu_{2}(h d / \alpha)+1}, D\right] \mid d v$ is equivalent with $\nu_{2}(v) \geqslant \nu_{2}(h)+\gamma$ and then, by Lemma $5, S_{3}(D)=S_{2}(\gamma)=$ $4^{-\gamma} S(d, h)$. If $\gamma=0$ then

$$
S_{3}(D)=S_{2}(0)-\sum_{\substack{v \not \|^{\infty} \\ \nu_{2}(v)=\nu_{2}(h)}} \sum_{\substack{\alpha \mid d \\ 2 \nmid \alpha}} \frac{\mu(\alpha)(\alpha v, h)}{\varphi(d v) \alpha v} .
$$

By Lemma 5 it follows that $S_{2}(0)=S(d, h)$. A variation of Lemma 4 yields that the latter double sum equals $3 S(d, h) / 2$.
Remark 4. Put

$$
\epsilon_{2}(D)= \begin{cases}(-1 / 2)^{m^{\max \left\{0, \nu_{2}(D / d h)\right\}}} & \text { if } 2 \mid d \text { and } D \mid 4 d ; \\ 0 & \text { otherwise } .\end{cases}
$$

Note that Lemma 6 can be rephrased as stating that if D is a fundamental discriminant, then $S_{3}(D)=\epsilon_{2}(D) S(d, h)$.
Let $g>0$. It turns out that $\operatorname{ord}_{p}(g)$ is very closely related to $\operatorname{ord}_{p}(-g)$ and this can be used to express $N_{-g}(d)(x)$ in terms of $N_{g}(*)(x)$. From this $\delta_{-g}(d)$ is then easily evaluated, once one has evaluated $\delta_{g}(d)$.
Lemma 7. Let $g>0$. Then

$$
N_{-g}(d)(x)= \begin{cases}N_{g}\left(\frac{d}{2}\right)(x)+N_{g}(2 d)(x)-N_{g}(d)(x)+O(1) & \text { if } d \equiv 2(\bmod 4) \\ N_{g}(d)(x)+O(1) & \text { otherwise }\end{cases}
$$

In particular,

$$
\delta_{-g}(d)= \begin{cases}\delta_{g}\left(\frac{d}{2}\right)+\delta_{g}(2 d)-\delta_{g}(d) & \text { if } d \equiv 2(\bmod 4) ; \\ \delta_{g}(d) & \text { otherwise }\end{cases}
$$

The proof of this lemma is a consequence of Corollary 1 and the following observation.

Lemma 8. Let p be odd and $g \neq 0$ be a rational number. Suppose that $\nu_{p}(g)=0$. Then

$$
\operatorname{ord}_{p}(-g)= \begin{cases}2_{\operatorname{ord}_{p}(g)} & \text { if } 2 \nmid \operatorname{ord}_{p}(g) ; \\ \operatorname{ord}_{p}(g) / 2 & \text { if } \operatorname{ord}_{p}(g) \equiv 2(\bmod 4) ; \\ \operatorname{ord}_{p}(g) & \text { if } 4 \mid \operatorname{ord}_{p}(g) .\end{cases}
$$

Proof. Left to the reader.
Remark 5. It is of course also possible to evaluate $\delta_{g}(d)$ for negative g using the expression (4) and Lemma 3, however, this turns out to be rather more cumbersome than proceeding as above.

5. The proofs of Theorems 2 and 3

Proof of Theorem 2. By Lemma 1 it suffices to show that

$$
\sum_{v \mid d^{\infty}} \sum_{\alpha \mid d} \frac{\mu(\alpha)}{\left[K_{d v, \alpha v}: \mathbb{Q}\right]}=\epsilon_{1} S(d, h)
$$

If $g>0$, then it follows by Lemma 3 that $\delta_{g}(d)=S_{1}+S_{3}\left(D\left(g_{0}\right)\right)$ and by Lemmas 4 and 6 (with $D=D\left(g_{0}\right)$), the claimed evaluation then results in this case. If h
is odd, then similarly, $\delta_{g}(d)=S_{1}+S_{3}(D(g))$ (cf. the remark following Lemma 3) and, again by Lemma 4 and 6 , the claimed evaluation then is deduced in this case. If $g<0$, the result follows after some computation on invoking Lemma 7 and the result for $g>0$.

Proof of Theorem 3. Recall that $\pi_{L}(x)$ denotes the number of unramified primes $p \leqslant x$ that split completely in the number field L. Under GRH it is known, of. [5], that

$$
\pi_{L}(x)=\frac{\mathrm{Li}(x)}{[L: \mathbb{Q}]}+O\left(\frac{\sqrt{x}}{[L: \mathbb{Q}]} \log \left(d_{L} x^{[L: \mathbb{Q}]}\right)\right)
$$

where d_{L} denotes the absolute discriminant of L. From this it follows on using the estimate $\log \left|d_{K_{d v_{1}, \alpha u}}\right| \leqslant d v\left(\log (d v)+\log \left|g_{1} g_{2}\right|\right)$ from $[6]$ that, uniformly in v,

$$
\pi_{K_{d v, \alpha v}}(x)=\frac{\mathrm{Li}(x)}{\left[K_{d v, \alpha v}: \mathbb{Q}\right]}+O_{d, g}(\sqrt{x} \log x)
$$

where α is an arbitrary divisor of d. On noting that in Proposition 1 we can restrict to those integers v satisfying $d v \leqslant x$ and hence the number of non-zero terms in Proposition 1 is bounded above by $2^{\omega(d)}(\log x)^{\omega(d)}$, the result easily follows.

6. Some examples

In this section we provide some numerical demonstration of our results.
The numbers in the column 'experimental' arose on counting how many primes $p \leqslant p_{10^{s}}=2038074743$ with $\nu_{p}(g)=0$, satisfy $d \mid \operatorname{ord}_{p}(g)$.

Table 2: The case $g>0$

g	g_{0}	h	$D\left(g_{0}\right)$	d	ϵ_{1}	$\delta_{g}(d)$	numerical	experimental
2	2	1	8	2	$17 / 16$	$17 / 24$	$0.70833333 \cdots$	0.70831919
2	2	1	8	4	$5 / 4$	$5 / 12$	$0.41666666 \cdots$	0.41667021
2	2	1	8	8	$1 / 2$	$1 / 12$	$0.08333333 \cdots$	0.08333144
3	3	1	12	11	1	$11 / 120$	$0.09166666 \cdots$	0.09165950
3	3	1	12	12	$1 / 2$	$1 / 16$	$0.06250000 \cdots$	0.06249098
4	2	2	8	5	1	$5 / 24$	$0.20833333 \cdots$	0.20833328
4	2	2	8	6	$5 / 4$	$5 / 32$	$0.15625000 \cdots$	0.15625824

Table 3: The case $g<0$

g	g_{0}	h	$D\left(g_{0}\right)$	d	ϵ_{1}	$\delta_{g}(d)$	numerical	experimental
-2	2	1	8	2	$17 / 16$	$17 / 24$	$0.70833333 \cdots$	0.70835101
-2	2	1	8	4	$5 / 4$	$5 / 12$	$0.41666666 \cdots$	0.41667021
-2	2	1	8	6	$17 / 16$	$17 / 64$	$0.26562500 \cdots$	0.26562628
-3	3	1	12	5	1	$5 / 24$	$0.20833333 \cdots$	0.20834107
-3	3	1	12	12	$1 / 2$	$1 / 16$	$0.06250000 \cdots$	0.06249098
-4	2	2	8	2	2	$2 / 3$	$0.66666666 \cdots$	0.66666122
-4	2	2	8	4	$1 / 2$	$1 / 8$	$0.08333333 \cdots$	0.08333144
-9	3	2	12	2	$5 / 2$	$5 / 6$	$0.83333333 \cdots$	0.83333215
-9	3	2	12	6	$11 / 4$	$11 / 32$	$0.34375000 \cdots$	0.34375638

Acknowledgement. I like to thank Francesco Pappalardi for sending me his paper [10]. Theorem 1.3 in that paper made me realize that a relatively simple formula for $\delta_{g}(d)$ exists. The data in the tables are produced by a C^{++}program kindly written by Yves Gallot.

References

[1] C. Ballot, Density of prime divisors of linear recurrences, Mem. Amer. Math. Soc. 115 (1995), no. 551, viii+102 pp.
[2] K. Chinen and L. Murata, On a distribution property of the residual order of $a(\bmod p)$. I, J. Number Theory $105(2004), 60-81$.
[3] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von durch eine vorgegebene Primzahl $l \neq 2$ teilbarer bzw. unteilbarer Ordnung mod. p ist, Math. Ann. 162 (1965/1966), 74-76.
[4] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von gerader bzw.ungerader Ordnung mod. p ist, Math. Ann. 166 (1966), 19-23.
[5] S. Lang, On the zeta function of number fields, Invent. Math. 12 (1971), 337-345.
[6] P. Moree, On the distribution of the order and index of $g(\bmod p)$ over residue classes I, arXiv:math.NT/0211259, J. Number Theory, to appear.
[7] P. Moree, Asymptotically exact heuristics for prime divisors of the sequence $\left\{a^{k}+b^{k}\right\}_{k=1}^{\infty}$, arXiv:math.NT/0311483, submitted (already electronically available).
[8] L. Murata and K. Chinen, On a distribution property of the residual order of $a(\bmod p)$. II, J. Number Theory $105(2004), 82-100$.
[9] R.W.K. Odoni, A conjecture of Krishnamurthy on decimal periods and some allied problems, J. Number Theory 13 (1981), 303-319.
[10] F. Pappalardi, Square free values of the order function, New York J. Math. 9 (2003), 331-344.
[11] K. Wiertelak, On the density of some sets of primes. I, Acta Arith. 34 (1977/78), 183-196.
[12] K. Wiertelak, On the density of some sets of primes. II, Acta Arith. 34 (1977/78), 197-210.
[13] K. Wiertelak, On the density of some sets of primes. III, Funct. Approx. Comment. Math. 10 (1981), 93-103.
[14] K. Wiertelak, On the density of some sets of primes. III. Studies in pure mathematics, 761-773, Birkhäuser, Basel, 1983.
[15] K. Wiertelak, On the density of some sets of primes. IV, Acta Arith. 43 (1984), 177-190.
[16] K. Wiertelak, On the density of some sets of integers, Funct. Approx. Comment. Math. 19 (1990), 71-76.
[17] K. Wiertelak, On the density of some sets of primes p, for which $\left(\operatorname{ord}_{p} b, n\right)=$ d, Funct. Approx. Comment. Math. 21 (1992), 69-73.
[18] K. Wiertelak, On the distribution of the smallest natural numbers having order mod p not coprime with a given integer, Acta Math. Hungar. 80 (1998), 271-284.
[19] K. Wiertelak, On the density of some sets of primes p, for which $n \mid \operatorname{lord}_{p} a$, Funct. Approx. Comment. Math. 28 (2000), 237-241.

Address: Pieter Moree, Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany.
E-mail: moree@mpim-bonn.mpg.de
Received: 27 July 2004

