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ON PRIMES p FOR WHICH d DIVIDES ORD,,(g) 
PIETER MOREE 

Abstract: Let N9 (d) be the set of primes p such that the order of 9 modulo p, ordp(9), is 
divisible by a prescribed integer d. Wiertelak showed that this set has a natural density, 89 (d), 
with 89 (d) E (ho. Let N9 (d)(x) be the number of primes p ~ x that are in N9 (d). A simple 
identity for N9 (d)(x) is established. It is used to derive a more compact expression for 89 (d) 
than known hitherto. 
Keywords: multiplicative order, natural density. 

1. Introduction 

Let g be a rational number such that g (/'. {-1,0,1} (this assumption on g will 
be maintained throughout this note). Let N9 (d) denote the set of primes p such 
that the order of g( mod p) is divisible by d ( throughout the letter p will also 
be used to indicate primes). Let N9 (d)(x) denote the number of primes in N9 (d) 
not exceeding x. The quantity N9 (d)(x) (and some variations of it) has been the 
subject of various publications 11, 3, 4, 7, 9, 11-19]. Hasse showed that N9 (d) 
has a Dirichlet density in case d is an odd prime 13], respectively d = 2 [4]. The 
latter case is of additional interest since N9 (2) is the set of prime divisors of the 
sequence {i + 1 }'.('=1 . (One says that an integer divides a sequence if it divides 
at least one term of the sequence.) Wiertelak [12] established that Ng(d) has a 
natural density 89 (d) (around the same time Odoni [9] did so in the case d is a 
prime). In a later paper Wiertelak [15] proved, using sophisticated analytic tools, 
the following result (with Li(x) the logarithmic integral and with w(d) = I:p[d 1 ), 
which gives the best known error term to this date. 

Theorem 1 115]. We have 

Ng(d)(x) = 8g(d)Li(x) + od,g (+(log log xt(d)+l) . 
log x 

Wiertelak also gave a formula for 89 (d) which shows that this is always 
a positive rational number. A simpler formula for 89 (d) (in case g > 0) has 
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only recently been given by Pappalardi [10]. With some effort Pappalardi's and 
Wiertelak's expressions can be shown to be equivalent. 

In this note a simple identity for Ng( d)(x) will be established (given in 
Proposition 1). From this it is then inferred that Ng( d) has a natural density 
Dg(d) that is given by (4), which seems to be the simplest expression involving 
field degrees known for Dg( d). This expression is then readily evaluated. 

In order to state Theorem 2 some notation is needed. Write g ±g8, where 
go is positive and not an exact power of a ra~ional and h as large as possible. 
Let D(go) denote the discriminant of the field Q( Jgo) . The greatest common 
divisor of a and b respectively the lowest common multiple of a and b will 
be denoted by (a, b), respectively [a, b]. Given an integer d, we denote by d00 

the supernatural number (sometimes called Steinitz number), f1Pldp00
• Note that 

( V doo) = IT pvµ(v) 
' pld . 

Definition. Let d be even and let cg(d) be defined as in Table 1 with , = 
max{0, 112(D(go)/dh )} . 

Table 1: Eg(d) 

g\, ,=O ,=l 'Y 2 

g>0 -1/2 1/4 1/16 

g<0 1/4 -1/2 1/16 

Note that 1 ~ 2. Also note that cg(d) = (-1/2) 2., if g > 0. 

Theorem 2. We have 

£1 p2 

Dg(d) = d(h d00 ) II - l' 
, pld 

with 

{ 
i + 3(1 - sgn(g))(2v2 (h) - 1)/4 

E1 = i + 3(1 - sgn(g))(2v3 (h) - 1)/4 + Eg(d) 

1 + EJgl (d) 

In particular, if g > 0, then 

_ { l + ( -l / 2)2max{O,v3(D(go )/dh)} 

£1 -
1 

and if h is odd, then 

{ 
l/2)2max{O,v3(D(9)/dh)} 

£1 = i + ( 

if 2 t d; 
if 21Jd and D(go) t 4d; 
if 2lld and D(go)J4d; 
if 4ld, D(go) t 4d; 
if 4jd, D(go)l4d. 

if2ld and D(go)J4d; 
otherwise, 

if 2jd and D(g)l4d; 
otherwise, 

Using Proposition 1 of Section 2 it is also very easy to infer the following 
result, valid under the assumption of the Generalized Riemann Hypothesis (GRH). 
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Theorem 3. Under GRH we have 

Ng(d)(x) Dg(d)Li(x) + Od,g( y'xlogw(d)+l x), 

where the implied constant depends at most on d and g. 

In Tables 2 and 3 (Section 6) a numerical demonstration of Theorem 2 is 
given. 

2. The key identity 

Let rrL(x) denote the number of unramified primes p ~ x that split completely in 
the number field L. For integers rls let Ks,r = Q((.,,9 1/r). 

The starting point of the proof of Theorem 2 is the following proposition. By 
rp(g) the residual index of g modulo p is denoted (we have rg(P) = [IFp : (g)]). 
Note that ordp(g)rp{g) p - 1. 

Proposition 1. We have Ng(d)(x) = Lvld"" Loldµ(o:)11'Kdv,aJx) • 

Proof. Let us consider the quantity Lo:ld µ(o:)rrKdu,ov (x). A prime p counted 
by this quantity satisfies p ~ x, p = l(mod dv) and rp(g) vw for some in
teger w. Write w = w1 w2, with w1 = ( w, d). Then the contribution of p to 
Lojdµ(o:)rrKdv, 0 Jx) is Lo:iwi µ(o:). We conclude that 

Lµ(o:)11'Kdv,ov(x) = #{p ~ x: p = l(mod dv), vlrp(g) and (p~g) ,d) = 1}. (1) 
old 

It suffices to show that 

Ng(d)(x) = L #{p ~ x: p = l(mod dv), vlrp(g) and (P~g) ,d) = 1 }. 
vld00 

Let p be a prime counted on the right hand side. Note that it is counted only once, 
namely for v = (rp(g),d00

). From ordp(g)rp(g) = p- 1 it is then inferred that 
dlordp(g). Hence every prime counted on the right hand side is counted on the 
left hand side as well. Next consider a prime p counted by Ng(d)(x). It satisfies 
p = l(mod d). Note there is a (unique) integer v such that vld00

, p = l(mod dv) 
and (rp(g )/v, d) = 1. Thus p is also counted on the right hand side. • 
Remark 1. From (1) and Chebotarev's density theorem it follows that 

0 
'\"""" µ(o:) 1 

~~[ ]~[ 1· c,fd Kdv,ov : Q Kdv,v : Q 
(2) 

3. Analytic consequences 

Using Proposition 1 it is rather straightforward to establish that N 9 (d) has a 
natural density 69 (d). 
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Lemma 1. Write 9 = 9if 92 with 91 and 92 integers. Then 

( ( 
(log log xt(d))) . 

Ng{d)(x) = bg(d) + od,g logl/8 X L1(x), (3) 

where the implied constant depends at most on d and 9 and 

89 (d) LL Kµ(a)_ · 
vldoo n,jd [ dv,ov · Q] 

(4) 

Corollary 1. The set N 9 (d) has a natural density 89 (d). 

The proof of Lemma 1 makes use of the following consequence of the Brun
Titchmarsh inequality. 

Lemma 2. Let rr(x; l, k) I:;p~x, P=l(mod k) 1. Then 

L rr(x;dv, 1) 

uniformly for 3 ~ z ~ y'x. 

( 
x (log z)w(d)) 

Qd ------
logx z ' 

Proof. On noting that Md(x) := #{v ~ x: vld00
} ~ (logx)w(d)/Iog2, it stra

ightforwardly follows that 

By the Brun-Titchmarsh inequality we have rr( x; w, l) « x / ( 1.fJ( w) log( x / w)) , 
where the implied constant is absolute and w < x. Thus 

X l x (logz)w(d) L 1r(x; dv, 1) « (d) l L - «d -1 ------'-. (5) 
1P ogx v ogx z 

z<v, du~a:2/3 11>~ 
u!doo vld 

Using the trivial estimate rr(x; d, 1) ~ x/d we see that 

L rr(x;dv, 1) ~ L ::V ~ L : «d x 113 (1ogxt<d)_ 
dv>:r2/3 dv>rr2/3 m>x2/3 

(6) 

dju 00 vldoo u>]d00 

On combining (5) and (6) the proof is readily completed. • 
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Proof of Lemma 1. From [10, Lemma 2.1) we recall that there exist absolute 
constants A and B such that if v ~ B(logx) 118 /d, then 

( ) _ Li(x) 0 ( _ \/1v) 
'TrKdv,av X - [K . ,11\l + g xe ' 

dv,ov · '\I!. 
(7) 

Let y = B (log x) 1 /B / d. From the proof of Proposition 1 we see that 

N,(d)(x) •i ;1,(a)•K,,.,.,(x) + 0 ( f n(x; dv, 1)) Ii+ O(l2), 

say. By Lemma 2 we obtain that h = O(x(loglogx)w(d) log- 918 x). Now, by (7), 
we obtain 

"'"" "'"" µ(a) X Ji = L,; L,; [K . 1'11] + Od,g(Y 5/4 ). 
uld"" old dv,av . '\I!, log X 
tJ~y 

Denote the latter double sum by /3. Keeping in mind Remark 1 we obtain 

( 
"'"" "'"" JJ, (a) ) h = 8g(d) + 0 L,; L,; [K : Q] . 
uld"" aid dv,o:v 
v>y 

Using (2) and Lemma 3 it follows that 

LL J1,(a) = O ( L 1 
) = 0(-

1 L !!._) 
,,1,100 ojd [Kdv,av: Q] vld"" [Kdv,v : Q] ip(d) vld"" v2 
ti>v v>v v>y 

h(log y t(d) ((logy )w(d)) 
Od(---)=Odg --- ) y ' y 

and hence 

I = 8 (d) + 0 ((logyt(d)) 
3 g d,g y , 

The result follows on collecting the various estimates. • 

4. The evaluation of the density 69 (d) 

A crucial ingredient in the evaluation of bg(d) is the following lemma. 
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Lemma 3. [6] Write g = ±g8, where g0 is positive and not an exact power of a 
rational. Let D(go) denote the discriminant of the field Q( ffo). Put m = D(go)/2 
if v2{h) = 0 and D(go) = 4(mod 8) or v2 (h) = 1 and D(go) = O(mod 8), and 
m = [2v2 (h)+Z, D(g0 )] otherwise. Put 

{ 
m if g < 0 and r is odd; 
[2v2(hr)+l, D(go)] otherwise. 

We have 

[ . ] _ [ l/k . _ ip(kr)k 
Kkr,k. Q - Q((kr, g ) . Q] - t:(kr, k)(k, h)' 

where, for g > 0 or g < 0 and r even we have 

{ 
2 if nrlkr; 

t:(kr,k) = 1 f J-k i nr 1 r, 

and for g < 0 and r odd we have 

if nrlkr; 
t:(kr, k) if2jk and 2v2(h)+l f k; 

otherwise. 

Remark 2. Note that if h is odd, then nr = [2v2 (r)+ 1 , D(g)]. Note that nr 
n2v2{1·). 

The 'generic' degree of [Kdv,ov : Q] equals ip(dv)av/(av, h) and on substituting 
this value in (4) we obtain the quantity S1 which is evaluated in the following 
lemma. 

Lemma 4. We have 

where 

S1 := L L µ(a~av, h) = S(d, h), 
1/l( .v)av 

vld00 old r 

1 p2 
S(d, h) := d(h d00 ) IT 21· 

' Pld p 

Proof. Since for vld00 we have ip(dv) = v1.p(d), we can write 

81 = _I_ '°' L µ(a)(av, h) = _I_ '°' (v, h) '°' µ(a)(av, h). 
1/l(d) L....., av2 1/l(d) L....., v2 L....., a(v h) 
r vld"" old r vld"° old ' 

The expression in the inner sum is multiplicative in a and hence 

L µ(a)(av, h) = IT (1 - (pv, h)) = { '£J/l if (h, doo)j(v, doo); 
old a( v, h) Pld P( v, h) 0 otherwise. 
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On noting that (v, h)/v2 is multiplicative in v and that for k ~ vp(h) 

one concludes that 

This completes the proof. • 
Remark 3. Note that the condition (h, d00 )l(v, d00

) is equivalent with vp(v) ~ 
vp(h) for all primes p dividing d. 

By a minor modification of the proof of the latter result we infer: 

Lemma 5. Let k ~ 0 be an integer. Then 

The next lemma gives an evaluation of yet another variant of 81. 

Lemma 6. Let D be a fundamental discrimant. Then 

83 (D) := '°' '°' µ(n)(nv, h) 
L..t L..t ,n(dv)nv 
vjd"° aid 'I' 

(2"2(hd/a)+l .DJ!dv 

{

4--Y8(d,h) if2ld, Dl4d andry ~ l; 
S(~,

h
) if 2ld, Dl4d and 'Y = 0; 

0 otherwise, 

where 'Y max{0, v2(D/dh)}. 

Proof. The integer [2v2 (hd/a}+I, DJ is even and is required to divide d00
, hence 

83(D) 0 if d is odd. Assume that d is even. If D has an odd prime divisor not 
dividing d, then D f d00 and hence 83(D) = 0. On noting that v2(D) ~ v2(4d) 
and that the odd part of D is squarefree, it follows that if 83 ( D) =I- 0, then 
Dl4d. So assume that 2ld and Dl4d. Note that the condition [2v2 (hd/a)+1, D]ldv 
is equivalent with v2 (v) ~ v2 (h) + max{l, v2(D/dh)} for then that are odd, and 
v2(v) ~ v2(h) + 'Y for the even n. Thus if 'Y ~ 1 the condition [2vz(hd/a)+1, D]ldv 
is equivalent with v2(v) ~ v2(h) + 'Y and then, by Lemma 5, 83{D) = 82{"!) 
4-1 8(d,h). If 'Y = 0 then 
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By Lemma 5 it follows that S2(0) = S(d, h). A variation of Lemma 4 yields that 
the latter double sum equals 3S(d, h)/2. • 
Remark 4. Put 

t2(D) = { (-1/2)2"""'{0,vi(D/dh)} • if 2ld and Dl4d; 
0 otherwise. 

Note that Lemma 6 can be rephrased as stating that if D is a fundamental discri
minant, then S3(D) = t2(D)S(d, h). 

Let g > 0. It turns out that ordp(g) is very closely related to ordp(-g) and this 
can be used to express N_ 9 (d)(x) in terms of N9 (*)(x). From this L 9 (d) is then 
easily evaluated, once one has evaluated J9 (d). 

Lemma 7. Let g > O. Then 

{ 
N 9 (~)(x) + N 9(2d)(x) - N 9 (d)(x) + 0(1) if d 2(mod 4); 
N 9 (d)(x) + 0(1) otherwise. 

In particular, 

J (d) = { J9 (1) + J9 (2d) - J9 (d) if d:::: 2(mod 4); 
-g J9 (d) otherwise. 

The proof of this lemma is a consequence of Corollary 1 and the following 
observation. 

Lemma 8. Let p be odd and g f. 0 be a rational number. Suppose that vp(g) = 0. 
Then 

{ 

2ordp (g) if 2 f ordp(9); 
ordp(-g) = ordp(g)/2 ifordp(g) = 2(mod 4); 

ordp(g) if 4lordp(g). 

Proof. Left to the reader. • 
Remark 5. It is of course also possible to evaluate J9 (d) for negative g using the 
expression ( 4) and Lemma 3, however, this turns out to be rather more cumbersome 
than proceeding as above. 

5. The proofs of Theorems 2 and 3 

Proof of Theorem 2. By Lemma 1 it suffices to show that 

~ ~ µ(a) 
L, L, [K . Q] = t1S(d, h) 

vld"" aid dv,av . 

If g > 0, then it follows by Lemma 3 that J9 (d) = S1 + S3(D(go)) and by Lemmas 
4 and 6 (with D = D(g0 ) ), the claimed evaluation then results in this case. If h 
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is odd, then similarly, '59 (d) = S1 + S3(D(9)) (cf. the remark following Lemma 3) 
and, again by Lemma 4 and 6, the claimed evaluation then is deduced in this case. 
If 9 < 0, the result follows after some computation on invoking Lemma 7 and the 
result for 9 > 0. • 
Proof of Theorem 3. Recall that 1r L { x) denotes the number of unramified primes 
p ~ x that split completely in the number field L. Under GRH it is known, cf. 
[5], that 

_ Li(x) ( VX [L:Q] ) 
1rL(x) - [L: <Q] + 0 [L: <Q] log(dLx ) , 

where dL denotes the absolute discriminant of L. From this it follows on using 
the estimate log ldKdui,"" I ~ dv(log(dv) + log 191921) from 16] that, uniformly in v, 

Li(x) 
7rKdv,auCx) = [K . <Q] + od,g(/xlogx), 

dv,<xv · 

where a is an arbitrary divisor of d. On noting that in Proposition 1 we can restrict 
to those integers v satisfying dv ~ x and hence the number of non-zero terms in 
Proposition 1 is bounded above by 2w(d) (log x)w(d), the result easily follows. • 

6. Some examples 

In this section we provide some numerical demonstration of our results. 
The numbers in the column 'experimental' arose on counting how many 

primes p ~ P10s = 2038074743 with vp(9) = 0, satisfy dlordp(9). 

Table 2: The case 9 > 0 

9 90 h D(90) d fl '5g( d) numerical experimental 

2 2 1 8 2 17/16 17/24 o. 70833333 ... 0.70831919 

2 2 1 8 4 5/4 5/12 0.41666666 · · · 0.41667021 

2 2 1 8 8 1/2 1/12 0.08333333 · · . 0.08333144 

3 3 1 12 11 1 11/120 0.09166666 · · · 0.09165950 

3 3 1 12 12 1/2 1/16 0.06250000 · · · 0.06249098 

4 2 2 8 5 1 5/24 0.20833333 · · · 0.20833328 

4 2 2 8 6 5/4 5/32 0.15625000 · · · 0.15625824 
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Table 3: The case g < 0 

g go h D(go) d €1 o9 (d) numerical experimental 

-2 2 1 8 2 17/16 17/24 0. 70833333 · · · 0.70835101 

-2 2 1 8 4 5/4 5/12, 0.41666666 · · · 0.41667021 

-2 2 1 8 6 17/16 17/64 0.26562500 · · · 0.26562628 

-3 3 1 12 5 1 5/24 0.20833333 · · · 0.20834107 

-3 3 1 12 12 1/2 1/16 0.06250000 · · · 0.06249098 

-4 2 2 8 2 2 2/3 0. 66666666 · · · 0.66666122 

-4 2 2 8 4 1/2 1/8 0.08333333 · · · 0.08333144 

-9 3 2 12 2 5/2 5/6 0.83333333 · · · 0.83333215 

-9 3 2 12 6 11/4 11/32 0.34375000 · · · 0.34375638 

Acknowledgement. I like to thank Francesco Pappalardi for sending me his 
paper [10]. Theorem 1.3 in that paper made me realize that a relatively simple 
formula for o9 (d) exists. The data in the tables are produced by a c++ program 
kindly written by Yves Gallot. 
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