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INHOMOGENEOUS DISCRETE CALDERON REPRODUCING 
FORMULAE ASSOCIATED TO PARA-ACCRETIVE FUNCTIONS 
ON METRIC MEASJ]RE SPACES 

YONGSHENG HAN & DACHUN YANG 

Abstract: Let (X, p, µ)d,0 be a space of homogeneous type which includes metric measure 
spaces and some fractals, namely, X is a set, p is a quasi-metric on X satisfying that there exist 
constants Co> 0 and 0 E (0, lJ such that for all x, x', y EX, 

lp(x, y) - p(x', y)I ~ Cop(x, x')°[p(x, y) + p(x', y)J 1 -e, 

and µ is a nonnegative Borel regular measure on X satisfying that for some d > 0, all x E X 
and all 0 < r < diam X , 

µ({y EX: p(x,y) < r}) ~ rd. 

In this paper, the authors establish the inhomogeneous discrete Calderon reproducing formulae 
on spaces of homogeneous type associated to a given special para-accretive function introduced 
by G. David, which wi!! pave the way for developing the theory of Besov and Triebel-Lizorkin 
spacP.s on spaces of homogeneous type associated to a given special para-accretive function. 
Keywords: space of homogeneous type, para-accretive function, discrete Calderon reproducing 
formula. 

1. Introduction 

It is well-known that the remarkable Tl theorem given by David and Journe 
provides a general criterion for the £ 2 (Rn)-boundedness of generalized Calder6n
Zygmund singular integral operators; see [5, 4, 35]. The Tl theorem, however, 
cannot be directly applied to the Cauchy integral on Lipschitz curves. Meyer in 
[30] (see also [33]) observed that if the function 1 in the Tl theorem is allowed to 
be replaced by a bounded complex-valued function b satisfying O < 8 ~ Re b(x) 
almost everywhere, then it would imply the L2 (Rn) boundedness of the Cauchy 
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integral on all Lipschitz curves. Replacing the function 1 by an accretive func
tion b, McIntosh and Meyer in [30J proved the Tb theorem. David, Journe, and 
Semmes in [6] (see also [4]) introduced a more general class of V'°(Rn) functions 
b, namely, the so-called para-accretive functions. They proved that the function 1 
in the Tl theorem can be replaced by a such para-accretive function, which is by 
now called the Tb theorem. Moreover, they proved that the para-accretivity is also 
necessary in the sense that the Tb theorem holds for a bounded function b, then 
b is para-accretive. Meyer in [33] also observed that if b(x) is a bounded function 
and l :,;; Reb(x), one can then define the modified Hardy space Hl(Rn) simply 
via the classical Hardy space H 1(Rn), namely, the space Hl(Rn) is defined by the 
collection of all functions f such that bf is in the classical Hardy space H 1(Rn). 
This space has the advantage of the cancellation adapted to the complex measure 
b(x) dx and is closely related to the Tb theorem, where b is an accretive function. 
In fact, Han, Lee and Lin recently in [17] proved that if T* ( b) = 0, then the Cal
der6n-Zygmund operator Tis bounded from the classical H 11 (Rn) to a new Hardy 
space Hf (Rn) for n/(n + c) < p:,;; 1, where c E (0, l} is some positive constant 
which depends on the regularity of the kernel of the considered Calder6n-Zygmund 
operators. When p, q > 1, the Besov spaces, bBt,q(X) and b- 1 i3;q(X), and the 

Triebel-Lizorkin spaces, bF;q(X) and b- 1 P;q(X), of such type are considered by 
Han in [14] and the related Tb theorem was also established in that paper. Re
cently, Deng and the author in [8] complete this theory by establishing the theory 
of the Besov spaces, bB;q(X) and b- 1 i3;q(X), and the Triebel-Lizorkin spaces, 

bP;q(X) and b- 1 P;q(X), when p:,;; l or q :,;; l. The key tool for developing the 
theory of such type spaces of functions is the homogeneous continuous or discrete 
Calderon reproducing formulae; see [14, 17]. 

The main purpose of this paper is to establish the inhomogeneous discrete 
Calderon reproducing formulae associated to a given special --para-accretive func
tion b introduced by G. David in [4], to pave the way for developing the theory of 
Besov and Triebel-Lizorkin spaces with p :,;; l or q :,;; l of such type, which will be 
considered in another paper; see [18, 19, 20, 22, 23]. The inhomogeneous continu
ous Calderon reproducing formulae of such type have recently been established in 
[44], and when b = 1 , the inhomogeneous discrete Calderon reproducing formulae 
were obtained in [20]. We point out that due to the inhomogeneity, some new ideas 
and techniques different from the homogeneous case on Rn in [14,17] are needed. 
Moreover, we establish the inhomogeneous discrete Calderon reproducing formulae 
on spaces of homogeneous type in the sense of Coifman and Weiss in [2, 3J, which 
include metric measure spaces and some fractals. We remark that the analysis 
on metric spaces has recently obtained an increasing interest; see [34, 25, 13, 27]. 
Especially, the theory of function spaces on metric spaces, or more generally, the 
spaces of homogeneous type has been well developed; see [28, 29, 21, 15, 18, 19, 20, 
22, 23, 41, 43]. We also point that the spaces of homogeneous type considered in 
this paper include metric measure spaces, the Euclidean space, the C00 -compact 
Riemannian manifolds, the boundaries of Lipschitz domains and, in particular, 
the Lipschitz manifolds introduced recently by Triebel in [40] and the isotropic 
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and anisotropic d-sets in !Rn. It has been proved by Triebel in [38, 39] that the 
isotropic and anisotropic d-sets in !Rn include various kinds of self-affine fractals, 
for example, the Cantor set, the generalized Sierpinski carpet and so forth. We 
particularly point that the spaces of homogeneous type considered in this paper 
also include the post critically finite self-similar fractals studied by Kigami in [26] 
and by Strichartz in [34], and the metric spaces with heat kernel studied by Gri
gor'yan, Hu and Lau in [12]. More examples of spaces of homogeneous type can 
be found in [2, 3, 34]. 

To establish the inhomogeneous discrete Calderon reproducing formulae as
sociated to a special para-accretive function b of David on spaces of homogeneous 
type, we will use Coifman's idea in [6]. That is, based on a given approximation 
to the identity and the continuous Calderon reproducing formulae in [44), we in
troduce some kind of discrete Riemann sum operator S (see (3.4) below) and we 
then verify that S is invertible in the considered space of test functions. To this 
end, we need to estimate the operator norm of the linear operator R = I - S 
in the same space of test functions, where I is the identity operator. This will 
be done by using the related theory of Calder6n-Zygmund operators, which needs 
R(l) R*(b) = 0. To guarantee this, we need to make some special choices for 
the inhomogeneous terms in our discrete Riemann sum operator S. 

We remark that using the inhomogeneous discrete Calderon reproducing 
formulae associated to a special para-accretive function in this paper, we can 
further establish the inhomogeneous Plancherel-Polya inequalities as in [7]. Based 
on this, we can then develop the theory of Besov and Triebel-Lizorkin spaces 
associated to a special para-accretive function as in [23], 22]. The details will be 
presented in another paper. 

In the next section, we will recall some definitions and notation, especially, 
the related theory of Calderon-Zygmund operators and the continuous Calderon 
reproducing formulae. The discrete Calderon reproducing formulae will be establi
shed in Section 3. 

2. Preliminaries 

A quasi-metric p on a set X is a function p : X x X ---, [O, oo) satisfying that 
(i) p(x, y) 0 if and only if x = y; 

(ii) p(x, y) = p(y, x) for all x, y EX; 
(iii) There exists a constant A E [l, oo) such that for all x, y and z EX, 

p(x, y) ~ A[p(x, z) + p(z, y)]. 

Any quasi-metric defines a topology, for which the balls 

B(x,r) ={YE X: p(y,x) < r} 

for all x E X and all r > 0 form a basis. 
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In what follows, we set diamX = sup{p(x, y) : x, y E X}. We also make 
the following conventions. We denote by f ~ g that there is a constant C > 0 
independent of the main parameters such that c-1g < f <Cg. Throughout the 
paper, we will denote by C a positive constant which is independent of the main 
parameters, but it may vary from line to line. Constants with subscripts, such as 
C1, do not change in different occurrences. For any q E [1, oo], we denote by q' 
its conjugate index, namely, 1/ q + 1/ q1 = 1. Let A be a set and we will denote by 
XA the characteristic function of A. 

Definition 2. 1. ( [22]) Let d > 0 and 0 E (0, 1]. A space of homogeneous type, 
(X, p, µ)d,e, is a set X together with a quasi-metric p and a nonnegative Borel 
regular measure µ on X, and there exists a constant Co > 0 such that for all 
0 < r < diam X and all x, x', y E X , 

µ(B(x, r)) ~ rd (2.1) 

and 
jp(x, y) - p(x', y)I ~ Cop(x, x')0 [p(x, y) + p(x', y))1-0

. (2.2) 

The space of homogeneous type defined above is a variant of the space of 
homogeneous type introduced by Coifman and Weiss in [2]. In [28], Macias and 
Segovia have proved that one can replace the quasi-metric p of the space of homo
geneous type in the sense of Coifman and Weiss by another quasi-metric p which 
yields the same topology on X as p such that (X, p, µ) is the space defined by 
Definition 2.1 with d 1. 

The following construction given by Christ in [1] provides an analogue of the 
grid of Euclidean dyadic cubes on spaces of homogeneous type. 

Lemma 2.1. Let X be a space of homogeneous type. Then there exists a collection 

of open subsets, where Ik is some index set., and constants o E (0, 1) and Ci, C2 > 0 
such that 

(i) µ(X \ Ua Qt) = 0 for each fixed k and Q! n Q~ = 0 if a # (J; 

(ii) for any a, (J, k, l with l ;;;;: k, either Q~ c Qt or Q~ n Q~ = 0; 
(iii) for each (k, a) and each l < k there is a unique (J such that Q~ C Q~; 

(iv) diam(Q~) ~ C1ok; 
(v) each Qt contains some ball B(z!, C2ok), where z! EX. 

In fact, we can think of Q! as being a dyadic cube with diameter rough ok 
and centered at z!. In what follows, we always suppose o = 1/2; see [21, pp. 96-98] 
for how to remove this restriction. Also, in the following, for k E Z+ and T E lk, 
we denote by Q~·v, v = 1, 2, • • •, N(k, r), the set of all cubes Q!:j C Q~, where 
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j is a positive large integer whose value will be determined later. Denote by y~·v 
a point in Q!·v. For any dyadic cube Q and any J E Lloc (X), we set 

mq(f) = µ(~) l J(x) dµ(x). 

In the sequel, we let 

the set of all dyadic cubes on X. 
Let us now recall the definitions of the para-accretive functions (see [6, 4]) 

and the space of test functions (see [14]). 

Definition 2.2. function on X, a space of homogeneous type. 
(i) b is said to be para-accretive if there exist constants C3 > 0 and K. E (0, l] 

such that for all balls B c X, there is a ball B' c B with K.µ(B) ~ µ(B') 
satisfying 

µ(~) ]l, b(x) dµ(x)\ ~ C3 > 0. 

(ii) b is said to be special para-accretive if there exists constant C4 > 0 such 
that for any dyadic cube Q E J, 

µ(~) !l b(x) dµ(x)I ~ C4 > 0. 

In this case, we simply write b E SPF( X). 

Obviously, a special para-accretive function is also a para-accretive function. 

Definition 2.3. Fix 'Y > 0 and 0 ~ {) > 0. A function f defined on X is said to 
be a test function of type (xo, r, {), -y) with xo E X and r > 0, if f satisfies the 
following conditions: 

(i) lf(x)I ~ C (r+p(;:o))a+.; 

(ii) IJ(x)- f(Y)I ~ C ( r:~(;:Jo) Y' (r+p(;:o))ah for p(x, y) ~ 2\ [r+p(x, Xo)]. 

If f is a test function of type ( xo, r, {), -y) related to a para-accretive function 
b, we write f E Q(xo,r,/3,-y), and the norm off in Q(xo,r,/3,-y) is defined by 

llfllg(xo,r,/3,-r) = inf{C: (i) and (ii) hold}. 

Now fix xo EX and let 9(/3, -y) = Q(xo, 1, {), -y). It is easy to see that 

Q(x1,r,/3,-y) = 9(/3,'Y) 
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with an equivalent norm for all x 1 E X and r > 0. Furthermore, it is easy to 
check that Q(/3, -y) is a Banach space with respect to the norm in Q(/3, -y). Also, 
let the dual space (Q(/3,-y))' be all linear functionals£ from Q(/3,'Y) to C with 
the property that there exists C ~ 0 such that for all J E Q(/3, 'Y ), 

1£(!)1 ~ CIIJll9(/3,1'J· 

We denote by (h,J) thenaturalpairingofelements h E (Q(/3,-y))' and J E Q(/3,'Y). 
Clearly, for all h E (Q(/3,'Y))', (h,J) is well defined for all J E Q(xo,r,/3,'Y) with 
xo E X and r > 0. 

Itiswell-knownthatevenwhen X JR.n, Q(/31,'Y) is not dense in Q(/32 ,1) 
if /31 > f32, which will bring us some inconvenience. To overcome this defect, in 
what follows, for a given e E (0, 0], we let 9({3, -y) be the completion of the space 
Q(E, e) in Q(f3, 'Y) when O < /3, 'Y < c:. 

Let b be a para-accretive function. As usual, we write 

bQ(/3,'Y) = {J: J = bg for some g E Q(f3,-y)}. 

If J E bQ ({3, 'Y) and J = bg for some g E Q ({3, 'Y), then the norm of J is defined 
by 

By this definition, it is easy to see that 

f E (b9(,B,1))' if and only if bf E (9(,8,1))', (2.3) 

where we define bf E ( Q(f3, 1) )' by 

(b J, g) = {J, bg) 

for all g E 9(/3, 'Y). 
In what follows, we also let 

Oo(xo, r, /3, 'Y) = { J E Q(xo, r,,B, 'Y) : l J(x)b(x) dµ(x) 0}; 
for ry E (0,0], we define CJ(X) be the set of all functions having compact support 
such that 

11 /11 •1 = sup IJ(x) ~ J(y)I < oo. 
Co(X) #Y p(x, y)TJ 

Endow C(l(X) with the natural topology and let (C(l(X))
1 

be its dual space. 
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Definition 2.4. Let c E (0, 0]. A continuous complex-valued function K(x, y) on 

n = {(x, y) EX XX: Xi= y} 

is called a Calderon-Zygmund kernel of type c if there exists a constant C5 > 0 
such that 

(i) IK(x, y)I ( C5p(x, y)-d, 
(ii) IK(x,y)- K(x',y)I ( C5p(x,x1tp(x,y)-d-t for p(x,x') ( P~;,_Yl, 

(iii) IK(x, y) K(x, y')I ( C5p(y, y'r p(x, y)-d-€ for p(y, y') ( p(;;,_Y). 

A continuous linear operator T: CJ(X) (CJ(X))
1 

for all ry E (0, OJ is a Cal
deron-Zygmund singular integral operator of type c if there is a Calderon-Zygmund 
kernel K ( x, y) of the type f as above such that 

(Tf, g) = l !'< K(x, y)f(y)g(x) dµ(x) dµ(y) 

for all /, g E C3(X) with disjoint supports. 

We also need the following notion of the strong weak boundedness property 
in [21, 16]. 

Definition 2.5. A Calder6n-Zygmund singular integral operator T of the kernel 
K is said to have the strong weak boundedness property, if there exist ry E (0, O] 
and constant C6 > 0 such that 

l(K, !)I ( C6rd 

for all r > 0 and all continuous f on X x X with supp f <;;; B(x1, r) x B(y1, r), 
where X1 and Y1 EX, 11/IIL""(XxX) ( 1, II/(·, y)llc3(X) ( r-'1 for all y EX and 
I1/(x, ·)llqp() ( r-'1 for all x EX. We denote this by TE SW BP. 

In what follows, we use Mb to denote the multiplication operator defined 
by b, namely, for suitable functions /, Mb(/) =bf. The following lemma when 
b = 1 was established in [16] and when b is a general para-accretive function, it 
was established in [44]. 
Lemma 2.2. Let b be a para-accretive function as in Defi.nition 2.2 and c E (0, 0]. 
Let T be a continuous linear operator from CJ(X) to (C3(X))

1 
for all ry E (0, 0] 

such that the kernels of T and b- 1T* Mb respectively satisfy the conditions (i) 
and (ii) and only the condition (ii) of Defi.nition 2.4 with the regularity exponent c, 
T(l) = 0, and TE SW BP. Furthermore, K(x, y), the kernel of T, satisfies the 
following smoothness condition that 

I [K(x, y)b- 1(y) - K(x', y)b- 1(y)] - [K(x, y')b- 1 (y') K(x', y')b- 1 (y')] I (2.4) 

( C p(x, x't p(y, y')f p(x, y)-d-2€ 

for all x, x', y, y' EX such that p(x,x'), p(y,y') ( P~~fl. Then for any x0 EX, 
r > 0 and O < /3, 1 < c, T maps 9o(xo,r,/3,,) into itself. Moreover, ifwe denote 
by II TII the smallest constant in the estimates of the kernel of T, then there exists 
a constant C > 0 such that 

IIT Jllg(xo,r,/3,-y) ( CIITII II/ llg(xo,r,/3,-y) · 

We now recall the definition of approximations to the identity in [14]. 
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Definition 2.6. Let b be a para-accretive function. A sequence { Sk} kEZ+ of 
linear operators is said to be an approximation to the identity of order c E (0, 0] 
associated to b if there exists C7 > 0 such that for all k E Z and all x, x', y and 
y' EX, Sk(x, y), the kernel of Sk is a function from X x X into C satisfying 

. 2-k, 
(1) !Sk(x, Y)I :s;; C7 (2-k+p(x,y))a+•; 

(ii) ISk (x, Y) - Sk(x', y)I :s;; C7 ( 2-~~~(;,y) r (2-J.+~(=~y))a+. for p(x, x') 

:s;; 2~ (2-k + p(X, y)); 

(iii) ISk(x, y) - Sk(x, y')I :s;; C1 ( 2-~~:C~,y))' (2..:"+~(;:y))a+, for p(y, y') 

:s;; 2~ (2-k + p(x, y)); 

(iv) l[Sk(X, y)-Sk(x, y')]-[Sk(x', y)-Sk(x', y')]I :s;; C1 ( 2-~~~~).y) r ( 2-~~~(J,y) r 
x(2-k+~~;:y))H• for p(x,x') :s;; 2~(2-k+p(x,y)) and p(y,y') 

:s;; 2~(2-k+p(x,y)); 

(v) J x Sk(X, y)b(y) dµ(y) = 1; 

(vi) f x Sk(x, y)b(x) dµ(x) = 1. 

Remark 2.1. By Coifman's construction in [6], if b is a given para-accretive 
function, one can construct an approximation to the identity of order 0 such that 
Sk(x, y) has a compact support when one variable is fixed, namely, there is a 
constant Cs > 0 such that for all k E Z, Sk(x, y) = 0 if p(x, y) ~ Cs2-k. 

Remark 2.2. We also remark that in the sequel, if the approximation to the 
identity as in Definition 2.6 exists, then all the results still hold when b and b- 1 

are bounded. It seems that we do not need to assume that b is a para-accretive 
function. However, in [6], it was proved that the existence of the approximation to 
the identity as in Definition 2.6 is equivalent to the para-accretivity of b. 

The continuous Calderon reproducing formulae associated to a given para
accretive function were established in [44]. 

Lemma 2.3. Let b be a para-accretive function, c E (0, 0], {Sk}k=o be an appro
ximation to the identity of order c. Set Dk Sk - Sk- i for k E N and Do = So. 
Then there exists a family of linear operators i\ for k E Z+ and a fixed large 
integer NE N such that for all f E Q(/3, -y) with O < /3, -y < c, 

00 00 

f = L DkMbDkMb(f) = L DkMbE\Mb(f), (2.5) 
k=O k=O 

where the series converge in the norm of Q(/3', -y') for O < /3' < /3 and O < -y' < -y. 
Moreover, ( 2.5) also converge in the norm of LP ( X) for p E ( 1, oo) , and the 

kernels of tl1e operators Eh satisfy tlie conditions (i) and (ii) of Definition 2.6 
with c replaced by c1 for O < c' < c, and 

[~ [~ {1 k=0l .. ·N J x Dk(x, y)b(y) dµ(y) = J x Dk(x, y)b(y) dµ(x) = o'. k ~ N; l;' ' (2.6) 
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the kernels of the operators Ek satisfy the conditions (i) and (iii) of Definition 2.6 
with E replaced by E

1 for O < E
1 < E and (2.6). 

Lemma 2.4. With all the notation as in Lemma 2.3, then for aJJ f E bQ(/3, 'Y), 

00 00 

f = L MbDkMbDk(f) = L MbDkMbEk(f) 
k=O k=O 

holds in both the norm of bQ (/31
, -y') for O < /3 1 < j3 and O < 1' < 1 , and the 

norm of LP(X) with p E (1, oo). 

Lemma 2.5. With all the notation as in Lemma 2.3, then for all f E ( 9(/3, -y) )' 
with O < {3, 'Y < E, 

00 00 

f = L MbDkMbEk(f) = L MbDkMbDk(f) 
k=O k=O 

holds in ( 9((3', -y') )' with {3 < {31 < E and 'Y < -y' < E. 

Lemma 2.6. With all the notation as in Lemma 2.3, then for all f E ( b9({3, 'Y)) 
1 

with O < ,B, "f < E, 

00 00 

f = L Dk.MbDkMb(f) = L DkMbEkMb(f) 
k=O k=O 

holds in ( b9({3', -y') )' with {3 < {3 1 < E and 'Y < -y' < c 

Let b be a para-accretive function and { Sk} kEZ+ be an approximation to 
the identity associated to b as in Definition 2.6. The Littlewood-Paley g-function 
is defined by 

[ 

00 l 1/2 
g(f)(x) = ~ IDk(f)(x)l2 (2.7) 

where Do= So and Dk= Sk Sk-1 fork EN. In [44], the following Littlewood
Paley g-function was established via the above continuous Calderon reproducing 
formulae. 

Lemma 2.7. Let b beapara-accretivefunction and {Sk}~0 bean approximation 
to the identity of order E E (0, 0] as in Definition 2.6. Let { Dk hEZ+ be as above 
and g(f) be denned as in (2. 7). Then for any p E (1, oo), there exist two constants 
Ap and Bp depending on p such that for al] f E LP(X), 

\Ve also need the following Fefferman-Stein vector-valued maximal function 
inequality in [9]. 
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Lemma 2.8. Let 1 < p < oo, 1 < q ~ oo and M be the Hardy-Littlewood 
maximal operator on X. Let {fk}k=O C LP(X) be a sequence of measurable 
functions on X . Then 

{~ IM(f,)I'} 1/q ,; C 

Ll''(X) LP(X) 

where C is independent of {/k}k=o. 

3. Discrete Calderon reproducing formulae 

In this section, we establish the discrete Calder6n reproducing formulae. Let b be 
a special para-accretive function of David, {Sk}kEZ+ be an approximation to the 
identity of order EE (0, 0] as in Definition 2.6, {Dk}kEZ+ be as in Section 2 and 
Dk= 0 fork= -1, -2, •••.In what follows, for any Q E .If, we set 

For k E Z+ and N E N, let 

b(Q) l b(x) dµ(x). 

Df = L Dk+l· 
lll~N 

We now introduce the following discrete Riemann sum operator 

N N(k,r) 

S(f)(x) =LL L 1. Df (x,y)b(y)dµ(y) 
k=O ,Eh v=l Q~·" 

X { lk r b(u)DkMb(f)(u) dµ(u)} 
b(Q,'v) }Q~·" 
00 N(k,T) 

+ L L L 1 Df (x, y)b(y) dµ(y)DkMb(f)(y~•v), 
k=N + 1 ,Elk v=l Q~·" 

(3.1) 

(3.2) 

where y~·v with k E N, r E h and 11 1, • · •, N(k, r) can be any fixed point 
in Q~·v. We need these special choices to guarantee S(l) = 1 and S*(b) = b. 
Obviously, S is a linear operator. In what follows, we set 

(3.3) 
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Then the discrete Riemann sum operator can be re-written into 

N N(k,r) 

S(f)(x) L L L 1 k,, Df (x, y)b(y) dµ(y)D~:r Mb(f) 
k=O rElk v=l Q,.' 

(3.4) 

oo N(k,r) 

+ L L L 1 k,v Df (x, y)b(y) dµ(y)DkMb(f)(y~•"), 
k=N+l rEh v=l Q.,. 

We first verify that Sis well defined and bounded on L 2 (X) via the Littlewo
od-Paley theorem for the g-function, Lemma 2,3. To do so, let us first establish 
the following estimate by using Lemma 2.3. 

Lemma 3.1. Let b be a special para-accretive function. Then there exists a con
stant C > 0 such that for all NE N, all y~,v E Q~·" and all f E L2(X), 

N N(k,r) 

I: I: I: µ(Q~·")ID!:r MbU)1 2 

oo N(k,r) 

+ L L L µ(Q~·")IDkMb(J)(y~·")l
2 ~ Cllflli2(X)· 

k=N+l rEli., v=l 

Proof. By Lemma 2.3 there exists a family of linear operators { f\} ~o whose 
kernels satisfy (i) and (ii) of Definition 2.6 with t: replaced by any c' E (0, c) and 
(2.6) such that for all f E L2(X), 

00 

f = L D1MbD1Mb(f). 
l=O 

By Lemma 3.1 in [44] ( see also [14]), we have that for any t:
11 E (0, t:'), there exists 

a constant C > 0 such that 

2-(k/\l),c' 
~ -lk-llt'' 

IDkMbD1(z, x)j ~ 02 -(2---(k_/\_l)_-f_· p_(_z_, x-)-)d-+-c' 

for all x, z EX and all k, l E Z+. Note that for all x EX and any z, y E Q~·", 
by Lemma 2.1 (iv), we have that p(x, y) + 2-(k/\l) ~ 2-(k/\l) + p(x, z), where j E N 
is sufficiently large. Thus, for all x EX, any y, z E Q~•" and all k, l EN U {0}, 

From this, b E L00 (X) and b E SPF(X), it follows that for k = 0, 1, · · ·, N, 
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ID!:~ Mb(!) I (3.5) 

= r [ lk V f b(z)Dk(Z, y) dµ(z)] b(y)f(y) dµ(y) 
Jx b(Qr' ) JQ~·" 

~Cf \,., 11 k., 1 b(z)(DkMbDl)(z, x)MbDlMb(f)(x) dµ(x) dµ(z)I 
l=O µ(Qr ) Qr' X 

CX) 

~CI: rlk-1!£" M(D1Mb(f))(y)xQ~•" (y) 
l=O 

and 

CX) 

~ C Lrlk-lle" M(D1Mb(f))(Y)XQ!·"(y), 
l=O 

where M is the Hardy-Littlewood maximal function on X. By (3.5), (3.6), the 
construction of Q~·" (see Lemma 2.1) and Lemma 2.8, we obtain 

N N(k,r) = N(k,r) 

L L L µ(Q~·")ID;:~ Mb(f)l2 + L L L µ(Q~'")IDkMb(f)(y~·")l 2 

k=N+l rEh v=l 

CX) 

CX) 

~CL IID1Mb(/)lli2(X) 
l=O 

~ Cllflli2 cx1, 

which proves Lemma 3.1. • 
The next lemma can be proved by a way similar to the proof of Theorem 

(1.14) in ([11], page 12). The main idea is to combine Lemma 2.4, Lemma 2.1 and 
Holder's inequality with a dual argument. We omit the details here; see also [22]. 

Lemma 3.2. Suppose that a sequence, {a~·"}, of numbers satisfies 

= N(k,T) 

L L L Ja~'"l2 < 00. 

k=O rEh v=l 
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Then the function defined by 

N(O,r) 

f(x) = L L lµ(Q~·")]1 12a~'" 1 Df (x, y)b(y) dµ(y) 
rElo v=l Q~·v 

oo N(k,r) 

+ L L L [µ(Q!•")]l/2a!·v 1 Df (x, y)b(y) dµ(y) 
k=l rEh v=l Q;,v 

is in L2(X). Moreover, 

oo N(k,r) 

llflli2 (xl ( cI: L L ia!•"l
2

• 

Lemma 3.1 and Lemma 3.2 yield the boundedness of the discrete Riemann 
sum operator S in L2(X). 

Theorem 3.1. Let b be a special para-accretive function. The discrete Riemann 
sum operator S from (3.4) is bounded on L2(X). That is, there is a constant 
C > 0 such that for all f E L2(X), 

IIS(f)IIL2 (X) ( CllfllL2(X)· 

Next we prove that the discrete Riemann sum operator S is invertible and 
s- 1 maps Q(xo, r, (3, 1 ) into itself. To do this, we define R I S and first prove 
the following theorem. 

Theorem 3.2. Let b be a special para-accretive function, S be as in (3.4) and 
R = I S. Then R is a Calder6n-Zygmund singular integral operator, R(l) 
0 = R* ( b). Moreover, its kernel, R( x, y), satisfies the following estimates: for any 
t' E ( 0, t) and some o > 0, there exist constants C > 0 and C N > 0 (both 
depending on t') such that 

IR(x, y)I ( (Cr0N + cNrJ0 )p(x, y)-d; (3.7) 

IR(x, y)b- 1 (y) - R(x, y')b- 1(y)I ~ (Crrn + cN2-J0)p(y, y't' p(x, y)-(d+,') (3.8) 

for p(y, y') ( p(x, y)/(4A2
); 

IR(x, y) R(x', Y)I ( (Cr0N + cN2-J0)p(x, x'/ p(x, y)-(d+e') 

for p(x, x') ( p(x, y)/(4A2
); 

l[R(x,y) - R(x',y)]b-1(y)- [R(x,y')- R(x',y')]b-1(y')I 

( (c2-i5N + CN2-J0)p(x, x'{ p(y, y'/ p(x, y)-(d+2c') 

for p(x,x') ( p(x,y)/(4A2
) and p(y,y') ( p(x,y)/(4A2

); 

l(R,f)I ( (Cr0N + cNrJ0)rd 

for all r > 0 and all continuous function f on X x X with 

suppf ~ B(x1,r) x B(y1,r), where xi, Y1 EX, llfllu"'(XxX) ( 1, 

II!(·, Y)llc;(x) ( 1•-'ll for ally EX and llf(x, ·)llc;(x) ( r-'ll for all x EX. 

(3.9) 

(3.10) 

(3.11) 
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Proof. Let {Sd~o be an approximation to the identity as in Definition 2.6. We 
let Dk O when k E {-1,-2,···L Do= So and Dk= sk sk-1 fork EN. 
For any given large NE N and any k E Z, let Df: be as in (3.2). It is easy to see 
that 

00 

I= LDkMb 
k=O 

in L 2(X). By Coifman's idea, we rewrite this into 

00 (X) 

= L L Dk+lMbDkMb + L Di: MbDkMb, 
lll>N k=O k=O 

From this, it follows that 

R(f)(x) 
N N(k,T) 

= I: I: I: 1k.v Di: (x,y) [MbDkMb(f)(y)- D!:rMbU)] dµ(y) 
k=O TEh v=l QT 

CX) N(k,T) 

+ L L L 1 k.v Df: (x, y)b(y) [DkMb(f)(y) - DkMb(f)(Y~'v)] dµ(y) 
k=N+1 TEik v=l Qr 

CX) 

+ L L Dk+lMbDkMb(f)(x) 
k=O lll>N 

Ci (f)(x) + C2(f)(x) + RN(f)(x). 

For i = 1, 2, we denote by C1 ( x, z) the kernel of Ci respectively. The 
estimate for RN is established in Lemma 3.2 in [44]; see also [20]. 

We now estimate Ci for i 1, 2 and first estimate C2. Clearly, 

(X) N(k,T) 
C2(x, z) = L L L 1 D/; (x, y)b(y) [Dk(Y, z) - Dk(Y~'", z)] b(z) dµ(y). 

k=N+l TEh v=l Q!•" 

From b E LCXJ(X), 
p(y, y~•") ~ 2-j-k 

and the regularity of Df, it follows that 

(3.12) 

(3.13) 
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. } 

where if p(x, z) > 1, then the second term is empty. This verifies that G2(x, z) 
satisfies (3.7) with the constant CN2-je. 

\Ve now write 

G2(x, z)b- 1(z) G2(x, z 1 )b- 1(z 1
) 

oo N(k,r) 

= L L L 1 Df(x,y)b(y){[Dk(y,z)-Dk(y;·'',z)] 
k=N+l rEh v=l Q~,v 

- [Dk(Y, z') - Dk(Y!'v, z')]} dµ(y). 

We verify that G2 satisfies (3.8) by considering two cases. 
Case 1. p(z, z') ~ 

2
~ (rk + p(y, z)). In this case, b E L 00 (X), (iv) of 

Definition 2.6 and (3.12) yield that 

I G 2(x, z)b- 1(z) - G2(x, z')b- 1 (z')I (3.14) 

oo N(k,r) 

~ C L L L 1 \Df (x,y)\ I [Dk(y,z) - Dk(Y;,v,z)] 
k=N+l rElk v=l Q~,v 

[Dk(y,z')- Dk(Y~'v,z')]\ dµ(y) 

oo [ ( ( ') ) >.e 2-ke 
~ c2-je kl:+l lx IDf (x, Y)I 2-: :·P~Y, z) (2-k + p(y, z))d+e dµ(y) 

~ c2-je f { [ + [ } 
k=N+l }p(y,z)~ p(x,z)... }p(y,z)<,hp{x,z) ... 

oo 2-k(l-.X)e 

~ c2- je p( z, z')A"- L (2-k + ( ))d+e 
k=N+l p X, z 
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~ cri'p(z, z')A€ { L 2k(d+>.c) 
{kEz+: 2-k >p(x,z)} 

+ 1 ~ 2-k(l->-),)} 
p(x z)d+, L.,, 

' {kEZ+: 2-•"-p(x,z)} 

~ CNr j, p(z, z')>,.' p(x, z)-(d+>-£), 

where A can be any number in (0, 1) and if p(x, z) > 1, then the first term is 
empty. This is a desired estimate. 

Case 2. 2~(2-k +p(y,z)) < p(z,z') ~ . In this case, by b E V'°(X), 
(ii) of Definition 2.6 and (3.12), we have 

I G2(x,z)b- 1(z) - G2(x,z')b-1(z')I (3.15) 

_ oo { [ 2-kc 2-k, ] 
~ c2-J' k];+l ix IDf (x, Y)I (2-k + p(y, z))d+c + (2-k + p(y, z'))d+t dµ(y) 

oo 2-k(l-A)<' 
~ cri• p(z, z')>,.' L (2-k + p(x z))d+e 

k=N+l ' 
{ [ 2-kc 2-kf ] 

x Jx (2-k + p(y, z))d+, + (2-k + p(y, z'))d+c dµ(y) 
oo 2-k( 1->..)c 

::;;. c2-i'p(z z')>,.' ~ 
--.o: ' L.,, (2-k + p(x z))d+c 

k=N+I ' 
~ CN2-j' p(z, z')>,.' p(x, z )-(d+>..c), 

where A can be any number in (0, 1) and we omit some computation similar to 
(3.14), which verifies that G2 satisfies (3.8). 

Note that 

G2(x, z) - G2(x1
, z) 

OCJ N(k,r) 

= L L L 1 [Df (x,y)- Df (x',y)] b(y) 
k=N+l rEh v=I Q;,v 

x [Dk(y,z) Dk(Y;,v,z)] b(z)dµ(y), 

To verify G2 satisfies (3.9), we also consider two cases. 
Case 1. p(x, x') ~ 2~ (2-k + p(x, y)). In this case, b E LOCJ(X), (3.12) and 

(ii) of Definition 2.6 lead us that 

I G2(x,z) -G2(x1
, z)I (3.16) 

~ C ri' ~ f ( p(x,x') )>., 2-k, 
--.;: N kf-i:+1 ix 2-k + p(x, y) (2-k + p(x, y))d+' 
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2-kf 
X (2-k + p(y, z))d+f dµ(y) 

:<:;; CNTj£ p(x, x')Af p(x, z)-(d+>-.£), 

where ,\ can be any number in (0, 1) and we omit some computation similar to 
(3.14), which is a desired estimate. 

Case 2. 2~(rk + p(x,y)) < p(x,x') :<:;; Pi~~). In this case, b E L00 (X), 
(3.12) and (ii) of Definition 2.6 again tell us that 

I G2(x,z) G2(x1,z)J (3.17) 

:<:;; cNrjf f r [IDf (x,y)I + !Df (x',y)I] 
k=N+1 lx 
2-kt 

x (2-k + p(y, z))d+e dµ(y) 

oo 2-k(l->-.)e 
~ c ri" ( ')>-.e ~ "" N p x, X L., (2-k + p(x z))d+c 

k=N+1 ' 

x !'< [ID,;(x,y)I + jDf (x',y)I] dµ(y) 

oo 2-k(I->-.)e 

:<:;; cNrj"p(x, x')Af L (2-k ( ))d+t 
k=N+l +px,z 

:<::;; CN2-j" p(x, x')>-.e p(x, z)-(d+>-.£), 

where ,\ can be any number in (0, 1) and some computation similar to (3.14) is 
omitted, which verifies G2 satisfies (3.9). 

We now verify that G2(x, z) satisfies (3.10) when p(x, x') ~ P~~:> and 

p(z, z') :<::;; Pi~f). To this end, we write 

[G2(x, z) - G2(x1
, z)]b- 1(z) - [G2(x, z') - G2(x1

, z')]b- 1(z') 
oo N(k,r) 

= L L L 1 [Df (x, Y) - D,; (x', y)] b(y) { [Dk(Y, z) - Dk(Y~' 11
, z)] 

k=N+l rEh v=l Q~'" 

- [Dk(Y, z') - Dk(Y~' 11
, z')]} dµ(y). 

Now, if j is large enough, then p(x,x') ~ 2~(2-k +p(x,y)) and 

p(z,z') ~ 
2
~(rk +p(y,z)) 

imply 
1 

p(x, x') + p(z, z') ~ 
2
A (21

-k + p(x, y) + p(y, z)] 

1 
~ 2A2p(x,z), 
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which contradicts to p(x, x') ~ Pi~;) and p(z, z') ~ P~~;l. Thus, we still have 
three cases: 

(i) p(x,x') ~ 2~(2-k+p(x,y)) and p(z,z') ~ 2~(2-k+p(y,z)); 

(ii) p(x,x') ( 2~ (rk + p(x, y)) and p(z, z1
) > 2~ (rk + p(y, z)); 

(iii) p(x,x') > 2~(2-k+p(x,y)) and p(z,z') ( 2~(rk+p(y,z)). 
For the case (i), by (3.12) and Definition 2.6 (ii) and (iv), we obtain that for any 
.\E(0,l), ' 

I nt (x, y) - nt (x', Y)I I [Dk(Y, z) - Dk(Y~'v, z)] [Dk(Y, z') Dk(Y~'v, z')] I 
~c 2-je px,x 

( 

( ') ) e 2-ke 

" N 2-k + p(x, y) (2-k + p(x, y))d+c 

( 
p(z, z') ) >-, 2-kc 

X 2-k + p(y, z) (2-k + p(y, z))d+c. 

For the case (ii), noting that Pt;;) ~ p(z, z') > 2~ (rk + p(y, z)) implies that 
p(z, z') > 2-k-l A-1 and p(x, y) > P<;;t), we have 

where ,\ can be any positive number in (0, 1). For the last case (iii), noting that 
Pi~~) ~ p(x,x') > 

2
~(rk + p(x,y)) implies that p(x,x') > 2-k- 1A-1 and 

p(y, z) > P<;;tl, we obtain that for any ,\ E (0, 1), 

I Df (x, Y) - Df (x', Y)I I [Dk(Y, z) - Dk(Y~'v, z)] - [ Dk(Y, z') Dk(Y~'v, z')] I 
~ cNrJf P z, z 

( 

( ') ) < 2-kc 
2-k + p(x, z) (2-k + p(x, z))d+c 

[ 
2-k< 2-k, ] 

X (2-k+p(x,y))d+c + (2-k+p(x',y))d+c 

~C rj<( p(x,x') ),\c( p(z,zl) )€ 2-k(l-,\)c 

" N 2-k + p(x, z) 2-k + p(x, z) (2-k + p(x, z))d+(l-A)f 

[ 
2-kc 2-kE ] 

x (2-k + p(x, y))d+c + (2-k + p(x', y))d+c · 
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Combining these estimates with b E £=(X) yields that 

(3.18) 

where ,\ can be any positive number in (0, 1) and we omit some computation simi
lar to (3.14). This verifies that the kernel of G2 satisfies (3.10) with the constant 
cNr1£. 

Now, we prove that G2 satisfies (3.11). Suppose that f is a continuous 
function on Xx X with supp f C B(xi, r) x B(zi, r) for some x1 and z1 E X, 
llfllL00 (XxX) ~ 1, II/(·, Y)llcJ(X) ~ ,.-,., and 11/(x, ·)llc;(x) ~ r-,., for all x and 
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y EX. Write 

G2(x, z) 

00 N(k,T) 

= L LL lk_.,D{:(x,y)b(y)[Dk(Y,Z) Dk(Y~' 11 ,z)]b(z)dµ(y) 
k=N+I TElk 11=! QT 

00 

= L G~(x, z). 
k=N+l 

By the proof of (3.13), we have 

!(Gt f)! lfx i G~(x, z)f(x, z) dµ(x) dµ(z)I (3.19) 

~ cNrj€ { { (2-k 
2

~kc ))d+ lf(x, z)I dµ(x) dµ(z) JxJx +px,z e 

~ CNri•jlfllL 00 (XxX)rd ~ CN2-jcrd. 

On the other hand, if k E N, by 

i Dk(y, z)b(z) dµ(z) 0 

for any y EX and b E L00 (X), we then have 

N(k,T) 

= L L J J 1 D{:(x,y)b(y)[Dk(y,z) 
TEh 11=1 X X Q!'v 

-Dk(Y~' 11
, z)] b(z)f(x, z) dµ(y) dµ(x) dµ(z)I 

N(k,T) 

= L L J f 1 D{: (x, y)b(y) [Dk(Y, z) Dk(Y~' 11
, z)] b(z) 

TEfk 11=1 X X Q~•v 

x [f(x, z) - f(x, y)] dµ(y) dµ(x) dµ(z)I 

~ cr-112-jc { { r IDf:(x,y)I 
JB(xo,r) Jx 

X [i (2-k + ~:,,z ))d+2, p(y, z)TI dµ(z)] dµ(y)} dµ(x) 

~ C2-j€2-k71r- 71 rd, 

where 77 < 2c. We also have that for k ~ N + 1 , 

(3.20) 
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l(G~, !}I (3.21) 

N(k,-r) 

= L L f j 1 Df (x, y)b(y) [Dk(Y, z) 
TElk v=l X X Q~·" 

-Dk(Y~' 11
, z)] b(z)f(x, z) dµ(y) dµ(x) dµ(z)I 

( cNrj< J, { { (2-k r(Zkf ))d+2e IDf (x, y)f(x, z)I dµ(y) dµ(x) dµ(z) xlxlx +p y,z 
( CNTj€2kdllfllL00 (Xxx)r

2d 

( CN2-j<2kdr2d_ 

The geometric means of (3.19) and (3.20), and of (3.19) and (3.21) respectively 
yield 

and 
l(G~, f)I ( c2-j<2kr," rri" rd, 

where O < r/, r/' < rJ < 2t. From this, it follows that 

00 

l(G2,J)I ( L l(Gt f)I (3.22) 
k=N+l 

~ C L 2-j<2kri" rri" rd+ C L 2-j<2-kri' r-ri' rd 

{kEN: 2-k>r} {kEN: 2-k~r} 

( CN2-j<rd, 

where the first term is empty if r > I. Thus, G2 satisfies (3.11) with the constant 
CNrj<. So far, we have finished the estimates for G2. 

We now begin to estimate G1 . By the similarity, we only give an outline. 
Obviously, we have 

N N(k,T) 

L L L 1 Df (x, y)b(y) (3.23) 
k=OTElk v=l Q~•" 

x [Dk(Y, z) - \ { b(u)Dk(u, z) dµ(u)] b(z) dµ(y) 
b(QT' 11

) }q~·" 
N N(k,T) I 

= Efk ~ b(Q~'11
) l~-" h!•" Df (x, y)b(y) 

x [Dk(Y, z) Dk(u, z)] b(u)b(z) dµ(u) dµ(y). 
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Since y, u E Q~·", we then have 

p(y,u) ~ Tj-k_ (3.24) 

From this, (3.24) and b E SPF(X), similarly to (3.13), it immediately follows 
that 

(3.25) 

which shows G1 satisfies the estimate (3.7). 
We now verify G 1 satisfies (3.8). By (3.23), we have 

G1 (x, z)b- 1 (z) - G 1 (x, z')b- 1 (z') 

N N(k,r) l 

=LL L k,v 1k., fc,, v Df (x,y)b(y) 
k=OrEh v=l b(Qr ) Qr' Qr' 

x {[Dk(Y, z) - Dk(u, z)] - [Dk(y,z') - Dk(u, z')]} b(u) dµ(u) dµ(y). 

Similarly to the case for G2, we consider two cases. 
Case 1. p( z, z') :,;; 2~ (2-k + p(y, z)). In this case, similarly to the estimate 

of (3.14), (3.24) and b E SPF(X) yield that 

where >. can be any positive number in (0, 1). 
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Case 2. 2~ (2-k + p(y, z)) < p(z, z') ~ Pi~~). In this case, similarly to the 
estimate of (3.15), (3.24) and b E SPF(X) yield that 

I G1(x,z)b- 1(z)- G1(x,z1)b- 1 (z')I 

N N(k,T) l 

:,;c2-i<LL L k 1 1 IDf(x,y)I 
k=O -rEli, v=l µ(Q/") Q~•v Q~•" 

[ 
2-kE 2-kE ] 

x (2-k + p(y, z))d+< + (2-k + P(Y, z'))d+" dµ(u) dµ(y) 

N 2-k(l-.X)e 
~ C T 1€p(z z')).'""""" ------
"' N , ~ (2-k + p(x, z))d+e 

f [ 2-k< 2-k< ] 
x Jx (2-k + p(y, z))d+< + (2-k + p(y, z'))d+.: dµ(y) 

N 2-k(l-.X)< 
~ C rjt;p(z '?€""""" ------
"' N 'z ~ (2-k + p(x, z))d+< 

5:'. C 2-i< ( ')A' 1 
-...;: N p z,z p(x,z)d+>-<' 

where,\ can be any positive number in (0, 1). This verifies that G1 satisfies (3.8). 
Note that 

G1(x,z)-G1(x1 ,z) 
N N(k,T) l 

""""" "' "' -- f f [DN (x y) Df (x', y)] b(y) f::rhf;k ~ b(Q!•") jQ~·" jQ~,v k , 

x [Dk(Y, z) Dk(u, z)] b(u)b(z) dµ(u) dµ(y). 

To verify G1 satisfies (3.9), we also consider two cases. 

Case 1. p(x,x'):,; 
2
~(2-k +p(x,y)). In this case, similarly to (3.16), by 

(3.24) and b E SPF(X), we obtain 

I G1(x,z) -G1(x1,z)I 

~ C ri< ~ f ( p(x, x') ) >.e 2-k< 
"' N ~ lx 2-k + p(x, y) (2-k + p(x, y))d+< 

2-k< 

x (2-k + p(y, z))d+< dµ(y) 

. N 2-k(I->.), 

:,; CNTJ" p(x, x')>.' ~ (2-k + p(x, z))d+< 

~ C 2-J€ ( ')A< 1 
"" N p x, X p(x, z)d+>-<' 

where ,\ can be any positive number in (0, 1). 
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Case 2. 2~ (rk+p(x,y)) < p(x,x') ~ P~~;). In this cruse, similarly to (3.17), 
(3.24) and b E SPF(X) tell us that 

I G1(x,z) G1(x1,z)j 
N N(k,r) 

¾ CNrj'L L L (dk,v) { k,v { k,JIDt' (x,y)j + IDf (x',v)I] 
k=OrEh v=l µ r }qr }q,, 
2-k, 

X (2-k + p(y, z))d+€ dµ(u) dµ(y) 

. N 2-k(l-,\}, 

¾ CNrJ' p(x, x'),\e?; (2-k + p(x, z))d+e 

x l [IDf (x, v)I + jDf (x', v)I] dµ(y) 

. N 2-k(l-,\), 

~ CNrJ' p(x, x'),\'?; (2-k + p(x, z))d+e 

~ C 2-j, ( '),\' 1 
"' N p X, X ( )d+,\"' p x,z 

where >. can be any positive number in (0, 1), which verifies that G 1 satisfies 
(3.9). 

We now show that G 1 satisfies (3.10). To this end, we write 

[ G1(x,z) G1(x',z)]b- 1(z) [G1(x,z1)-G1(x',z')]b-1(z') 

N N(k,r) l 

= ?;r~k ~ b(Q~•") k!•" fo~.v [Df (x,y) - Df (x',y)] b(y) 

x {[Dk(Y, z) - Dk(u, z)] - [Dk(Y, z') - Dk(u, z')]} b(u) dµ(u) dµ(y). 

Since p(x,x'), p(z,z') ~ PiA;), similarly to the cruse for G2, we also have three 
cases: 

(i) p(x,x') ~ f;I(rk+p(x,y)) and p(z,z') ~ 2~(2-k+p(y,z)); 

(ii) p(x, x') ~ (rk + p(x, y)) and p(z, z') > 2~ (2-k + p(y, z)); 

(iii) p(x, x') > f;f (2-k + p(x, y)) and p(z, z') ~ 2~ (2-k + p(y, z)). 

The estimate (3.24), b E SPF(X) and an argument similar to that for (3.18) yield 
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that 
[ G1(x, z) Gi(x', z)] b-1(z) [G1 (x, z') G1 (x', z')] b- 1(z') 

~ C 2-jc ~ { { ( p(x,x') )>.<' 2-ke 
~ N f::a ix 2-k+p(x,y) (2-k+p(x,y))d+< 

( 
p(z,z') )>.c 2-kc 

X 2-k + p(y, z) (2-k + p(y, z))d+c dµ(y) 

r ( p(x, x') ) A<' ( p(z, z') ) >.c 2-k(l-A)< 

+ ix 2-k + p(x, z) 2-k + p(x, z) (2-k + p(x, z))d+(I->.)c 

[ 
2-kc 2-kc ] 

X (2-k + p(y, z))d+c + (2-k + p(y, z'))d+c dµ(y) 

r ( p(x, x') )>.c ( p(z, z') ) >.c 2-k(l->.)c 
+ ix 2-k + p(x, z) 2-k + p(x, z) (2-k + p(x, z))d+(l->.)c 

[ 
2-k< 2-kc ] } 

X (2-k+p(x,y))d+c + (2-k+p(x',y))d+< dµ(y) 

N 2-k(l-A)c 
~ cNrjcp(x,x')>.ep(z,z')Af. L (2-k + ( ))d+(l+>.)c 

k=O p X, Z 

~ CNrJ< p(x, x')"' p(z, z')'\c p(x, z)-(dt-Z>.c), 

where ,\ can be any positive number in (0, 1), which verifies that G1 satisfies 
(3.10). 

Finally we show that G1 satisfies (3.11). We write 
N N(k,r) I 

Gi(x, z) = L L L k 1 1 D{: (x, y)b(y) 
k=O -rE/k 11=1 b(Q-r'") Q~,v Q~•" 

x [Dk(Y, z) Dk(u, z)] b(u)b(z) dµ(u) dµ(y) 
N 

L Gt(x,z). 
k=O 

Let f be the same as in the theorem. By b E SP F(X), the estimate (3.24), the 
proof of (3.25) and an argument similar to that for (3.19), we obtain 

l(Gt,J)I ~ CNrjcrd. 

From this, it is easy to deduce that G1 satisfies (3.11). This finishes the proof of 
Theorem 3.2. • 

Note that R(l) 0 R*(b) by our special choices and 

(3.26) 
m=O 

As a simple corollary of Theorem 3.2, Lemma 2.2 and the Tb-theorem in [6] (see 
also [4j, we have the following conclusion. 
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Theorem 3.3. Let b be a special para-accretive function and S be as in (3.4). If 
j and N are large positive integers, then S has a bounded inverse on any space 
9o(xo,r,(3,-y) (xo EX, r > 0, 0 < (3, -y < t) as well as on each of the spaces 
LP(X) with 1 < p < oo. In other words, there exist constants C > 0 (depending 
on the space of test functions, but not on J ), and constants Gp > 0 such that 

and 

Now we can state and prove the main result of this section, that is, the 
following inhomogeneous discrete Calderon reproducing formulas. 

Theorem 3.4. Let b be a special para-accretive function. Suppose that { Sk} kEZ+ 

is an approximation to the identity of order t E (0, 0] as in Deflnition 2.6 and 
{Dk}kEZ+ is as in Section 2. Then there exist a fixed large integer N E N (and 

j E N) and a family of functions Dk(x, y) for k E Z+ such that for any fixed 
y~•'-' E Q~•'-' with k = N+l,••·, TE hand II E {l,•••,N(k,r)} and all 
J E 9(/31,"(i) with O < /31 < t and O < ,1 < t, 

N N(k,r) 

f(x) = L L L 1 k,, Dk(x, y)b(y) dµ(y)D!:~ Mb(!) 
k=OTElk v=l QT• 

(3.27) 

CX) N(k,T) 

+ L L L 1 Dk(x,y)b(y)dµ(y)DkMb(f)(y~•'-'), 
k=N+l TEh v=l Q;·" 

where the series converge in the norms of LP ( X), 1 < p < oo, and g (/3~, ,D for 

0 < (3~ < /31 and O < -y~ < 'YI; D~:~ for k = 0, 1, • • •, N is a linear operator 

having the kernel D!;~ defined by (3.3); Moreover, there is a constant C > 0 such 

that the function Dk(x, y) for k 1, • •., N satisfies 

(i) IDk(x, y)I ~ C (I+p(x~y))d+• for all x, y E X, and 

(ii) for any given t' E (0, t), and all x, y EX such that p(x, x') ~ 2~ (l+p(x, y), 

and 
(iii) fl( Dk(x,y)b(x)dµ(x) = 1 = fx Dk(x, y)b(y)dµ(y); 

and Dk(x, y) for k = N + 1, • • • satisfy conditions (i) and (ii) of Deflnition 2.6 
with t replaced by t' E (0, t), and 

l Dk(x, y)b(y) dµ(y) = l Dk(x, y)b(x) dµ(x) = 0. 
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Proof. Fork E Z+, let Ih(x,y) s- 1 [Df(-,y)j(x). By (3.4), Theorem 3.3, 
(S- 1)* (b) b, s- 1(1) 1 and noting that Df (·,y) E Qo(y,2-k,c:,c:) for k = 
N + 1, · · ·, and for k = 0, 1 · · · , N, 

l Df (x, y)b(y) dµ(y) 1 l Df {x, y)b(x) dµ(x), 

we can obtain all the conclusions of the theorem except (i) and (ii) and the co
nvergence in LP(X) with p E {l, oo) of the series in (3.26); see [44] and [16]. Let 
us now verify that Dk(x, y) for k = 0, 1 • · •, N satisfies (i) and (ii) of Theorem 
3.4. It is easy to see that for all x, y E X, 

IDf (x, Y)I ~ CN (l + p(~, y))d+ (3.28) 

and for all x, x' EX and p(x, x') ~ 2~ (1 + p(x, y)), 

I N ,.., , I ( p(x, x') ) f 1 
Dk (x. y) - D/;; (x, y) ~ CN 1 + p(x, y) (l + p(x, y))d+€, (3.29) 

where CN is independent of x and x'. By (3.2), we actually have that for k 
0, l, ···, N, 

From this, the fact that D1 E Qo(Y, 1, c:, c) for l = 1 · · ·, k + N and Theorem 3.3, 
it is easy to see that we only need to verify that s-1 [80(·,y)J(x) satisfies (i) and 
(ii) of Theorem 3.4. To this end, by (3.26), we first verify that for any c:' E (0, c:), 
there are <5 E (0, c:') and constants C, CN > 0 such that for all x, y EX, 

(3.30) 

and for all x, x' EX and p(x, x') ~ 2~ (1 + p(x, y)), 

IR[So(·, y)](x) R[So(·, y)](x')I ~ C(r 0
N + c'f.rr10 )p(x, x')<' (3.31) 

1 
X d ' (1 + p(x,y)) +f 

where CN is the same as in (3.28) and (3.29). 
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Similarly to the proof of Theorem 3.2, we can write 

R[So(·, y)](x) 
N N(k,T) 

=LL L 'r "·" D,C' (x, v) [MbDkMb(So(·, y))(v) - D!:~ Mb(So(·, y))] dµ(v) 
k=O rEh v==l }Q,,. 

oo N(k,r) 

+ L L L 1 D,C' (x, v)b(v) 
k=N+l rElk v=l Q~•" 

x [ DkMb(So(·, y))(v) DkMb(So(·, y))(y;·")] dµ(v) 
00 

+ L L Dk+tMbDkMb(f)(x) 
k=O lll>N 

= G1 [So(·, y)](x) + G2[So(·, y)J(x) + RN[So(-, y)](x). 

It was proved in [44] (see also [20]) that RN[So(·, y)](x) satisfies the estimates 
(3.30) and (3.31). In fact, it satisfies a stronger estimate that (3.31). 

We now verify that G2[So(·, y)](x) satisfies the estimates (3.30) and (3.31). 
Write that 

oo N(k,r) 

G2[So(·,Y)](x) = L L L 1kv J D,C' (x,v)b(v) 
k=N+1 rElk v=l Q,.' X 

x [Dk(v,z)-Dk(y;·",z)] b(z)So(z,y)dJJ.(z)dµ(v) 
oo N(k,r) 

= L L L 1 J D,C' (x, v)b(v) 
k=N+1 rE/k v=l Q~•" X 

x [ Dk(v, z) - Dk(y;•", z)] b(z) [So(z, y) - So(x, y)] dµ(z) dµ(v). 

Since v yk,v E Qk,v then 
' T T ' 

(3.32) 

which together with b E L00 (X) in turn implies that 

IG2[So(·, y)](x)I 

::;: Cric { f= { r jD,C'(x, v)I 
k=N+l j X jp(x,z)~ 2~ (l+p(x,y)) 

2-h p(x z)c' 
X c2-k + p(v, z))d+€ (1 + p(x,,y))d+e+,' dµ(z) dµ(v) 
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+ f= r r IDf (x,v)I 
k=N+l lx Jp{x,z)> (l+p(x,y)) 

2-k£ } 
x (2_k + p(v, z))d+c [ISo(z, Y)I + IBo(x, y)I] dµ(z) dµ(v) 

' { 

00 1 2-kf 
::;; cNrJf I: k d 

k=N+l p(x,z)(-h(l+p(x,y)) (2- + p(x, z)) +E 

p(x, z)c' 
x (1 + p(x, y))d+e+"' dµ(z) 

+ f= { (2-k 
2

-(kc ))d+c x [ISo(z, y)I + ISo(x, Y)I] dµ(z)} 
k=N+l }p(x,z)>-h(l+p(x,y)) + p X,Z 

:,;; CNrjc 1 f= ( rkf + rkc') 
(l + p(x, y))d+<: k=N+l 

' 1 ~c 2-.1c ____ _ 
""' N (l + p(x, y))d+e, 

where €
1 E (0, €) and we omit some computation similar to the proof of (3.18). 

This verifies G2[So(·, y)](:r) satisfies (3.30). 
We now show G2[So(·, y)](x) satisfies (3.31). To this end, set 

and 

Write that 

W1 {VEX: 

W2 = {VEX: 

W3 = { z EX: 

W4 = { z EX: 

W5 = { z EX: 

p(x, X 1
) :,;; 

2
~ (Tk + p(x, V)}} , 
1 - } p(x,x') > 

2
A (2 k + p(x, v)) , 

p(x,z)::;; 
2
~(1 +p(x,y))}, 

p(x, z) > 
2
~ (1 + p(x, y))}, 

p(x',z)::;; 
2
~(1 +p(x,y))} 

W6 = { z EX: p(x',z) > 
2
~(1 +p(x,y))}. 

G2[So(·, y)](x) - G2[So(·, y)](x') 

oo N(k,r) kI+i fk ; l~.v l [Df (x, v) - Df (x', v)] b(v) 

x [Dk(v, z) - Dk(y~·", z)] b(z)So(z, y) dµ(z) dµ(v) 
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oo N(k,r) 

= L L L 1 1 [D{: (x,v)-D,;' (x',v)J b(v) 
k=N+l rElk v=1 Q~•"nW1 XnW3 
x [Dk(v, z) Dk(Y~',,, z)] b(z) [So(z, y) - So(x, y)] dµ(z) dµ(v) 

oo N(k,r) 

+ k=~l r~ ~ l~·"nW1 lnW4 .. · 
oo N(k,r) 

+ kI+i L: ~ l~·"nW
2 
lnw

3 
Df (x, v)b(v) [Dk(v, z) - Dk(y~·,,, z)] 

x b(z) [So(z, y) - So(x, y)] dµ(z) dµ(v) 
oo N(k,r) 

+ k=~lr~ ~ l:,"nW2 f~nW4 ... 
oo N(k,r) 

- L L L 1k.v { D{:(x',v)b(v) [Dk(v,z)-Dk(y~•,,,z)] 
k=N+1 rElk v=l Q.,, nW2 J XnW3 

x b(z) [So(z,y)-So(x',y)] dµ(z)dp,(v) 
oo N(k,r) 

- k~l L: ~ l~ "nW2 ln\V4 ... 
6 

=LHi. 
i=l 

By (3.32), b E L00 (X) an<l the proof of (3.13), we have 

IH I:< C 2-1( ~ { { p(x,x')"'2-k£ 
1 "" N kfr:+1 J XnW1 J XnW3 (2-k + p(x, v))d+c+e' 

(3.33) 

k II 
Z- c p(x zY 

x (2-k + p(v, z))d+e (1 + p(x,,y))d+£+€" dµ(z)dµ(v) 

C 2 je p X,X ~ kc' ------ ( )c" ( ) ( ')<' oo j z-kc 
~ N - (1 + p(x, y))d+c+f" kfr:+1 2 X (z-k + p(x, z))d+e p x, Z dµ Z 

( ')'' 00 :< C 2-jc p X, X ~ 2-k(c" -c') 
"' N (1 + ( ))d+f+c" L....,, P x,y k=tv+1 

( I)'' ,,:::: C 2-ic P x,x 
"" N (1 + p(x, y))d+<' 

where f. 1 E (0,f.) and c11 E (t1,t), which is a desired estimate. 
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Again, (3.32), b E L00 (X) and the proof of (3.13) imply that 

where we chose E', E" as in the estimate of (3.33), which is also a desired estimate. 
From the estimate (3.32), b E L00 (X) and the proof of (3.13), it follows that 

00 

;· 1 2-kt IH3I ~ cri• L IDt' (x, v)I (2-k + (v z))d+ 
k=N+l xnW2 XnWa P l 

p(x, zl' 
X (1 + p(x, y))d+e+c" dµ(z) dµ(v) 

and 
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00 

::::: C ric ( ')€' 1 ~ (2-k(€-€')+2-k(•"-•')) 
""' N p x, X (1 + p(x y))d+c L..t 

' k=N+l 

~ C r je ( ')€' 1 
"' N px,x (l+p(x,y))d+e' 

where we chose f.', E11 as in the estimate of (3.33), which are the desired estimates. 

Similarly to the estimates for H3 and H4, we can verify that 

Since we have p(x,x') ~ 2\(1 + p(x,y)), we then deduce that 1 + p(x',y) ~ 
1 + p(x, y). Prom this, we can also deduce the desired estimates for H5 and H6. 
Thus, G2[So(·, y)](x) satisfies (3.31). 

The proof for that Gi[So(•,y)](x) satisfies (3.30) and (3.31) is quite similar 
to that for G2 [So(·, y)](x) by using that fact that b E SPF(X); see also the proof 
of Theorem 3.2. We leave the details to the reader. Thus, (3.30) and (3.31) holds. 

Note that R*(b) = 0 implies 

J'K; R[So(·, y)](x)b(x) dµ(x) = 0. (3.34) 

Thus, (3.30), (3.31) and (3.34) indicate that R[S0 (-,y)](x) E Q0 (y, l,E1,E-E') with 

By Theorem 3.2 and Lemma 2.2, we then have that for any m E N, 

Rm[So(·, y)] E 9o(y, 1, E', E - E') (3.35) 

and 

Form this and (3.26), it follows that if we choose N, j E N large enough such that 

then s-1 [So(·, y)](x) satisfies (i) and (ii) of Theorem 3.4. 
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Let us finally show that the series in (3.26) converge in the norm of LP(X) 
for p E (1, oo). To this end, for L > N, we write 

To show the theorem, we need to show that Rm(f)(x) and 

converge to zero in the norm of LP ( X) for p E (1, oo) as m and L goes to oo. By 
Theorem 3.2 and the Tb theorem in [6] (see also [4]), we have that for p E (1,oo) 
and all f E LP(X), 

IIRm(f)IILP(X) ~ C~(CNrj" + crN"rllfllu•(X), 

where C10 and CN are independent off and m. This shows lirnm_,.00 Rm(!)= 0 
in £P(X) for p E (1, oo) and fixed large positive integers j and N. It remains to 
show that for p E (1, oo), 

00 N(k,T) 

i~ .. moo L L L 1 k,,Pf (·, y)b(y) dµ(y)DkMb(f)(y~•'-') 
k=L+l TElk v=l Q.,. 

0. (3.36) 

LP(X) 
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Let 1/p + 1/q = 1. We write 

00 N(k,T) 

L L L l D{: (·, y)b(y) dµ(y)DkMb(f)(y~•v) 
k=L+l TElk v=I Q~·" 

Li'(X) 

00 N(k,T) 

= sup L L L l (Df)*(g)(y)b(y) d11(y)DkMb(/)(y~'v) 
IIYIIL'l(X):,;;I k=L+I TElk v=I Q~·" 

00 N(k,T) 

= sup L L L l l(D{:)*(g)(y)DkMb(f)(y~•v)I dµ(y), 
IIYIILq(X):,;;l k=L+l TElk v=l Q~•v 

where we used the fact that b E L00 (X). 

Let {Di}~0 be the same as in Lemma 2.3. It was proved that in Lemma 
3.1 of [44j (see also [16]) that we have that for any t 11 E (0, t'), all y E Q~·v, all 
z E X and l E Z+, 

2 -(k/ll)c' 
rv - lk II " 

l(Dk )* D1(Y, z)I ~ c2- - c (2-(kAI) + p(y, z))d+c 1 , 

which also holds if we replace (Df )* by Dk with k = N + 1, · · ·. From this, 
b E L00 (X), Lemma 2.3, Lemma 2.4, Lemma 2.7, Lemma 2.8 and the Holder 
inequality, it follows that 

00 N(k,T) 

L L L l j(Dj;)*(g)(y)DkMb(f)(y!•v)I dµ(y) 
k=L+l TElk v=l Q~·" 
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,; C Ix Lt, t.2-lk-ll•"[M(D,(g))(y)J' r/2 

X Lt, t. rlk-11," [M(D1M,(f))(y)J' r/2 dµ(y) 

,; C {t.[M(D,(g))[2 r 2 

LP(X) 

Thus, by Lemma 2. 7 and Lemma 2.8 again, we have 

00 N(k,T) 

II I: I: I: 1 Df (·, y)b(y) dµ(y)DkMb(f)(y~' 11
) 

k=L+l rElk v=l Q~"' LP(X) 

LP(X) 

LP(X) 

Lr>(X) 

}

1/2 
00 

€''L 2 2 ~ er I ll!IILP(X) + c { I: ID1MbU)I 
l=L/2+1 

LP(X) 

which converges to O as L tends to oo. That is, (3.36) holds and we complete the 
proof of Theorem 3.4. • 

Remark 3.1. Similar to the case of the continuous Calderon reproducing formu
lae, by rearranging the order of the approximation to the identity, without loss of 
generality and for the sake of simplicity, in what follows, we can take N = 0 in 
Theorem 3.4. 
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Remark 3.2. above inhomogeneous discrete Calderon reproducing formulae indi
cates an essential difference from the homogeneous Calderon reproducing formulae 
in [17]; see also [20, 16]. Also, (ii) of Theorem 3.4 indicates a difference between 
the inhomogeneous discrete Calderon reproducing formulae and the inhomogene
ous continuous Calderon reproducing formulae; see Lemma 2.3 (or [44]). However, 
if the approximation to the identity { Bk} kEZ+ is an approximation to the identity 
of order EE (0,0] with compact support as in Remark 2.1, then (ii) of Theorem 
3.4 can be improved into 

(ii)' for any given E' E (0, E), all x, x' E X and all y E X satisfying p(x, x') ~ 

2~ (1 + p(x, y)), 

ID~ ( ) D~ ( I )I C ( p(x, x') )c' 1 
k x, y k X, y ~ I+ p(x, y) (1 + p(x, y))d-llt. 

To see this, we only need to re-estimate H2, H4 and H6 in the proof of Theorem 
3.4. For H2, since suppDk(•,z) C B(z,C2-k), if H2 =/= 0, then p(v,z) ~ c2-k 
or p(y~,.,,, z) ~ c2-k and v E Q~,.,,; thus, we always have p(v, z) ~ c2-k, and 
therefore 

rk + p(x, v) ~ rk ~ C(2-k + p(v, z)), 

which implies 

Replacing this estimate into that of H 2 in the proof of Theorem 3.4, we can obtain 
a desired estimate for H2 . The same technique works for the estimates of H4 and 
H 6 in the proof of Theorem 3.4. We omit the details. 

By a duality argument, Theorem 3.4 tells us the following inhomogeneous 
discrete Calderon reproducing formulae associated to a given special para-accretive 
function in distribution spaces. 

Theorem 3.5. Let b be a special para-accretive function. Suppose that { Sk} kEZ+ 
is an approximation to the identity of order E E (0, 0] as in Definition 2.6 and 
{ Dk}kEZ+ is as in Section 2. Then there exists a family of linear operators { Dk}k=o 
such that for any fixed y~•'-' E Q~,'-' with k EN, r Eh and v E {1, .. ·, N(k, r)} 
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and all f E ( Q(J'.,i, 'Yd)' with 0 < /31, ')'1 < €, 

N(O,r) 

f(x) ro ~ b(x) [b(d~.v) l~ . ., Do(x, u)b(u) dµ(u)] l~,v b(y)Eo(f)(y) dµ(y) 

oo N(k,r) 

+ L L L b(x)Dk(x, y!•") 1 b(y)Ek(f)(y) dµ(y), 
k=1 rElk v=1 Q~,v 

where the series converge in ( Q(f3L 'YD)' with {31 < f3'i < € and 'YI < 'Y~ < E. 

Moreover,~there is a constant C > 0 such that E0 (x, y), the kernel of the linear 
operator E0 satisfies 

(i) IEo(x, Y)I ~ C (1+p(x
1
,y))d+• for all x, y EX, and 

(ii) for any given €
1 E (0, c), 

IEo(x, y) - Eo(x, y')I ~ Cp(y, y'/ (l + p(:, y))d+ 

for all x, y EX such that p(y, y') ~ 2~ (1 + p(x, y), and 

(iii) J x Eo(x, y)b(x) dµ(x) = 1 = f:.; Eo(x, y)b(y) dµ(y); 
and Ek ( x, y), the kernel of the linear operator Ek for k E N satisfies the conditions 
(i) and (iii) of Definition 2.6 with € replaced by E' E (0, c), and 

fx Ek(x, y)b(y) dµ(y) l Ek(x, y)b(x) dµ(x) = O. 

By an argument similar to the proofs of Theorem 3.4 and Theorem 3.5, we 
can prove the following several relative theorems. We only state them and leave 
the details to the reader. 

Theorem 3.6. With all the notation same as in Theorem 3.5, then for all f E 

9(/31,1'1) with O < /31, 'Yl < E, 

N(O,r) [ [ l / ] 
f(x) = L L Jc Do(x, y)b(y) dµ(y) o,v Jc b(u)EoMb(f)(u) dµ(u) 

TElo v=l Q~·" b(Qr ) Q~·" 

00 N(k,T) 

+ L L L 1 Dk(X, y)b(y) dµ(y)EkMb(f)(y!•v), 
k=1 rEl1, v=l Q~'" 

where the series converge in the norms of LP(X), 1 < p < oo, and 9(/31, 'YD for 
0 < f3'i < /31 and 0 < 'Yl. < 'Yl . 

l 
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Theorem 3. 7. With all the notation same as in Theorem 3.4 but with N = 0, 

then for all f E ( 9(/31, 1 1) )' with O < /31, 1 1 < E, 

f(x) 
N(O,r) [ l ] f L L b(x) b o,v 1 o,v Do(x, u)b(u) dµ(u) Jc o,,, b(y)Do(f)(y) dµ(y) 

rElo v=1 (Qr ) QT QT 

oo N(k,r) 
+ L L L b(x)Dk(x, y~•v) 1 b(y)Dk(f)(y) dµ(y), 

k=1 rEik v,,,,1 Q~·" 

where the series converge in ( 9(.Bi, 'YD)' with /31 < ,81 < E and ')'1 < ry1 < c 

By the definition of the space b9(/31, ry1 ), Theorem 3.4 and Theorem 3.6, we 
can obtain the following theorem. 

Theorem 3.8. With all the notation same as in Theorem 3.4 with N O and 
Theorem 3.5, then for all f E bQ(/31, 'Yl) with O < /31, 'Yl < E, 

N N(k,r) 

f(x) =LL L b(x) lk,, Dk(x,y)b(y)dµ(y)D~;~U) 
k=O rEik v=l QT· 

oo N(k,r) 
+ L L L b(x) 1 Dk(x, y)b(y) dµ(y)Dk(f)(y~•v) 

k=N+1 rEh v=l Q~·" 

N(O,r) [ l ] 
= L L b(x) 1 Do(x, y)b(y) dµ(y) o,v 1 b(u)Eo(f)(u) dµ(u) 

rElo v=1 Q~·" b(Qr ) Qe·" 
oo N(k,r) 

+ L L L b(x) 1 Dk(x, y)b(y) dµ(y)Ek(f)(y~'v), 
k=l rEh v=l Q!·" 

where the series converge in the norms of LP(X), 1 < p < oo, and bQ(/31, 'YD for 
0 < /3~ < /31 and O < 'Y1 < 11 . 

From (2.3), Theorem 3.5 and Theorem 3.7, it follows the following conclu-
sions. 
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Theorem 3.9. With all the notation same as in Theorem 3.4 with N = 0 and 

Theorem 3.5, then for all f E ( bQ(/31, 71))' with 0 < /31, 71 < t:, 

N(O,r) 

f(x) = L L [b 
1
0,,., lo,v Do(x,u)b(1t)dµ(u)] Jo_., b(y)EoMb(f)(y)dµ(y) 

rEio v=l (Qr ) QT QT 

oo N(k,r) 

+ L L L Dk(X, Y!·v) 1 b(y)EkMb(f)(y) dµ(y) 
k=l rEh v=l Q~,v 

N(O,r) l 

= L L [ o,v 1 Do(x, u)b(u) dµ(u)] 1 b(y)DoMb(f)(y) dJJ.(Y) 
rEio v=1 b( Qr ) Q~-"' Q~·" 

oo N(k,r) 

+ L L L Dk(X, Y!'v) 1 b(y)DkMb(f)(y) dµ(y), 
k=1 rEh v""l Q!·v 

where the series converge in ( bQ(/3i, 1'i))' with /31 < /3i < e: and 1'1 < 1'i < E. 
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