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ON THE SUM OF A PRIME AND A k-FREE NUMBER
ALESSANDRO LANGUASCO

Abstract: We prove a refined asymptotic formula for the number of representations of sufficien-
tly large integer as a sum of a prime and a k-free number, k 2 2.
Keywords: prime numbers, k-free numbers.

1. Introduction

The problem of counting the number of representations of an integer as a sum of a
prime and a square-free integer was first considered by Estermann [3] in 1931. He
obtained an asymptotic formula that was subsequently refined by Page {11] and
then by Walfisz [13] in 1936. In 1949 Mirsky (10} generalized such results te the
case of the sum of a prime and a k-free number, where k 2 2 is a fixed integer.
He obtained, for every A > 0, that

n
re(m) = 3 = 9) = Seli(n) + 0( =) wsm—veo ()
on log™ n
where pg(n) = Za.,!m u(a) is the characteristic function of the k-free numbers,
u(n) is the Mobius function, li(n) = f' lo‘% and
&(n) =[] (1 - “ﬁl_) (2)
pPi(p—1)

pin

is the singular series of this problem.

The aim of this paper is to prove a refinement of Walfisz-Mirsky asymptotic
formula (1). This refinement depends on inserting a new term connected with the
existence of the Siegel zero of Dirichlet L-functions (see Lemmas 1-2 below) and
by sharping the error term in the asymptotic formula.
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Denoting by A(n) the von Mangoldt function, we define

ZA m)k(n — m)

m<n

to be the weighted number of representations of an integer n as a sum of a prime
and a k-free number. As usual Ry is easily related with ry. We have the following

Theorem. Let k 2> 2 be a fixed integer. Then there exists a constant ¢ = ¢(k) > 0
such that, for every sufficiently large n € N, we have

o~

3
Ri(n) = (n - (5~x(n)nﬁ )Gk( ) + Ok (nG exp(—cy/log n)),

where 5 is the Siegel zero, X Is the Siegel character, T is the Siegel modulus
associated with the set of Dirichlet L-functions with modulus ¢ < exp (c'v/logn),
where ¢’ = /(k) > 0 is a suitable constant,

G- { (1- ﬁ)vﬂogn jf@ exists = { 1 ifé exists
13 if 3 does not exist, A 0 if 8 does not exist

(see also Lemmas 1-2 below).

An analogous result, but with a weaker error term, can also be obtained
via the circle method using some recent results on exponential sums over k-free
numbers proved by Briidern-Granville-Perelli-Vaughan-Wooley [1].

Acknowledgments. We wish to thank Professors Jorg Bridern and Alberto Pe-
relli for some useful suggestions and Professor Doychin Tolev for some discussions
on this topic.

2. Lemmas

We recall now some analytic results on the zero-free region of Dirichlet L-functions.

Lemma 1. [Davenport [2], §13-14] Assume T’ > 0. There exists a constant ¢; > 0
such that L(o + it, x) # 0 whenever

€y
log T’

og21- It T

for all the Dirichlet characters X modulo ¢ £ T, with the possible exception of
at most one primitive character ¥ (mod r), 7 T’. If it exists, the character X is
real and the exceptional zero 3 of L(s,X) is unique, real, simple and there exists
a constant cp > 0 such that

[t < T



On the sum of a prime and a k-free number 21

Fix now 71 > 0 such that log Ty =< v/logn. According to Lemma 1, applied
with 7' = T, we denate by /I the Siegel zero, X the Siegel character and by 7 its
modulus. Let now

T, if F< T
;= 1/4 .
T otherwise.

Now Lemma 1 remains true for 77 == T5, with a suitable change in the constant ¢, .
In the following we will continue to call c; this modified constant. Hence 7 < Tzl/4 ,
if it exists. From now on we set T = T5.

Moreover we need also the following form of Deuring-Heilbronn phenomenon
whose proof can be found in Knapowski [9], see also §4 of Gallagher [5].

Lemma 2. Under the same hypotheses of Lemma 1 applied with T' = T, if E
exists, then for all the Dirichlet characters x modulo ¢ < T, there exists a constant
c3 > 0 such that L(o +it,x) # 0 whenever

Ca [Z63]
czl- lo ( = ), t<T
logT ° (1-08)logT i

and 3 is still the only exception.
The next Lemma is the explicit formula for ¥(z, x).

Lemma 3. {Davenport [2], §19] Let x a Dirichlet character to the modulus q and
2T < z. Then

E r P
Z A(m)x(m) = dyz — 6x,§i: - r + O(; log® gz + /% log z),
msz {pl<T

where §, = 1 if x is the principal character, J§, = 0 otherwise, §_ ~=1if x = ¥
X X XX X

and § ~ =0 otherwise and 33" means that the sum runs over the non-exceptional
Z€ros.

We will need also a zero-density result for Dirichlet’s L-functions.
Lemma 4. [Huxley [7} and Ramachandra [12]] Let x be a Dirichlet character

(mod q) and N(o,T,x) ={p=0+1iv: L{p.x) = 0,8 2 0 and |y| £ T'}|. Then,
for o € [1/2,1], there exists & positive absolute constant c4 such that

> N(o, T, x) < (qT)**/*1=2) log qT)*. (3)
X
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3. Proof of the theorem

Following Walfisz [13] and Mirsky [10}, we have

-YAm Y ud =Y Am| Y wd+ Y u@)]-

mgn d*{(n-m) mgn d*|(n-m) d*|(n—-m)
d<pD d>D
=Y u(d) Yoo Am+ D) wd) D Am)= (4)
dg D mgn a>D megn
a*{(n—m) d*|(n—m)
=Y wld(n;d*n) + Y wd)yp(n;d¥,n) = A + B,
dgD a>D
say, where (z:¢q,a) = 3 A(m) and 1 £ D £ nY/* will be chosen later
msz

mz=a (mod q)
n (12).
First of all, we estimate B. By Brun-Titchmarsh Theorem, see, e.g., Fried-
lander-Iwaniec [4], and Theorem 328 of Hardy-Wright [6], we get

logd
< Y windt ) < Z kY loglogd @ ,D'"*loglog D. (5)

dk
d>D a>p ¥ d>D

Then we remark that, if (d,n) > 1, we have ¢¥(n;d*,n) < log%(dn) and
hence
A= > udw(n;d*,n) + Ox(Dlog?(Dn)). (6)
d<D
{d,n)=1
We now insert ¢(x;q,a) = w—(ltﬁ 2 (mod ) X(@)¥(2.X) in (6). Hence, by Lemma
3 and the previous remarks, we get

s~

Iéj e
,U/ ~ n — rn
S N OL SN M LD D
dd<D s x (mod d:) lpl<T

(dn) XFE XX

+ O(go(dk)(% log®(d*n) + n'/* log n))] + Ox(Dlog?(Dn)) =

=(n~5~x )Z pld -y ud ) S oxm Y B

2 d<D wd x (mod d¥) lelgT p
(@m)=1 (e n) ! XAX0X
+ O( Z (% log®(d*n) + n”“logn)) + Ox(Dlog?(Dn)) =
d<D
(dn)=1
=3, + Xy + X, (7)

say.
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Evaluation of ;.

To evaluate the singular series we use again Theorem 328 of Hardy-Wright [6],
thus obtaining

d) d)
Z :(( k) Z “((dk + (Z = G(n) + Ox(D' " *loglog D)
(;‘E)li (d. n) 1

by the Euler identity and (2). Hence we easily get

o~

= (n - Jgi“(n)%j)Gk(n) + O(nD'"*loglog D). (8)

Estimation of 3.
Writing p = 3 + iy we have

ﬁ i}
' Tl 1 T
me Y o Y TECY L Y Y@
a< D X (mod d*) |oI<T g<D* x (mod g) {a|<T
(dm)=1 X#X0:X (@:n)=1 X#X0.X

Now, to estimate X,, we first split the summation over p according to
0 <ipl £1and 1 < |p| < T. Arguing as in §20 of Davenport [2] and using
Lemmas 1-2, we get

1 :
—_— Z Z n <<1'L1 1M og? n, (10)
P o o) 0iprcal?
X#£X0,X
< £c
where f(T) = ;=5 if the Siegel zero does not exist or f(T) = e 108 ((1—2'7)-:;;—5)

if the Siegel zero exxsts.

In the range 1 < [p| < T, we follow the line of §12 of Ivi¢ [8]. Recalling
Lemmas 1-2 and 4 and Theorem 328 of Hardy-Wright [6], we have, for D* < T,
that

, nB
Z Z .T_L < ( log°‘+3 n) max n? max (t]t)u/"’(l @)-1 (11)
x(mOdq 1<Iﬂl<T 1/2<0<1~f(T)  1<t€T

X#X0,X

where f(T) is as in (10).
Choosing now

T =D%* and T = exp(Cy/logn), (12)
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where C > 0 is an absolute constant, we split the interval over o in two parts: the
first one is for o € [1/2,7/12} and the second one is for ¢ € [7/12,1 - f(T)]. In
the first case the maxima are attained at t =T and ¢ = 7/12 and in the second
case they are attained at t =1 and o =1 - f(T'). The total contribution of (11)

is then
< (n7/12 4 n]—f(T))Tl/z logEn & TV 1= H(T) logE n,

(13)

where E > 0 is a suitable constant, not necessarily the same at each occurrence.
An analogous argument for (10) gives the same estimate. Hence, by (10) and

(12)-(13), we obtain
Yo & T/ 21—/ logE n.

If the Siegel zero does not exist than we have

logn

logT) logE i

Yy < TV ?n exp(—c1

while, if the Siegel zero exists, we get

logn
lo -
logT g((l ~B)logT

[S05]

Yo <k TV *nexp ( —c3 )) logfn «

logn
logT

< T'?n[(1 - B) log T] exp(—ca—-) log® n,
and hence, combining (15)-(16) we finally have

|
Yo &« TY2nG exp(—cs lz:;) log? n,

where ¢5 = min(c;;c3) and

G = {(1 ~ B)logn if § exists

1 Ifﬁ does not exist.

Estimation of X3 and the final argument.
Recalling T = D* and T = exp(C+/logn), we get from (17) that

Y9 <, nGexp(—ce/logn),

with
C=.,/cs and cg = /cs5/3.

From (8) we obtain

3k

] -
)= (n - 55~(n)ﬂ )Gk(n) + Ok (n exp(—CU\/Iog n)).

(14)

(15)

(16)

(17)
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Moreover, the error terms collected in X3 can be estimated as follows:
¥ 2_12 2/ 1k 1/4 2
3 Kk T log®(D*n) + n"/*Dlogn + Dlog*(Dn) «
2k — 1
k3k Vlogn). (21)

Hence, if the Siegel zero does not ex1st inserting (18)- (21) into (4)-(5) and
(7) we have the Theorem with ¢ = C%Z1 a5 Provided that C < “-'“‘Cﬁ (which holds
by {19)).

If the Siegel zero exists, we remark that

< nexp(—C

] ] n ~ -
n —jz(n)%— >n— —%— =/T (1=tPNdt + O(T) > n(1 - TP 1 + O(T) >

> Gn + O(T)

and, by L.emma 1, that

Viogn k-1
et —C /1
G > Fj/"’-log2F>>exP( 3k Viogn),
since 7 € T'/* = exp( C/4)\/logn)
Provided that C < _..:_ ¢ (which holds by (19)), the Theorem follows also

in this case with ¢ = C% by inserting (18)—(21) into (4)-(5) and (7).
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