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ON THE MEAN SQUARE OF SHORT EXPONENTIAL SUMS
RELATED TO CUSP FORMS

Anne-Maria Ernvall-Hytönen

Abstract: The purpose of the article is to estimate the mean square of a squareroot length
exponential sum of Fourier coefficients of a holomorphic cusp form.
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1. Introduction

Let f(z) =
∑

n>1 a(n)n(κ−1)/2e(nz) be a holomorphic cusp form of weight κ with
respect to the full modular group. Long exponential sums

∑

16n6M

a(n)e(nα),

where α is a real number, have been widely studied. See e.g. Wilton [11] and
Jutila [9]. Short sums ∑

M6n6M+∆

a(n)e(nα),

where ∆ ¿ M3/4 have been studied for instance in [3] and [4]. However, it seems
that very short sums, in particular, sums with ∆ ³ M1/2 seem to be extremely
difficult to treat, even though this is an important special case. According to the
results in [1] and the computer data in [2], it is plausible to believe the correct
upper bound to be

∑

M6n6M+
√

M

a(n)e(nα) ¿ M1/4+ε.
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However, anything like this seems to be hopeless to get by at the moment, and
therefore, in the current paper, the aim is to consider the mean square of the sum
in rational points. The mean square is a common way to consider sums that seem
difficult to come by. See e.g. Jutila [7] or Ivić [6]. We prove the following theorem
which shows this conjecture to be true on the average:

Theorem 1.1. Let h and k, 0 6 h < k ¿ M1/4, be integers. Let w(x) de-
note a smooth weight function that is supported on the interval [M,M + ∆] where
k2M1/2+δ ¿ ∆ ¿ M with δ an arbitrarily small fixed positive real number. Fur-
ther assume that w(M) = w(M + ∆) = 0, 0 6 w(x) 6 1, and w(n)(x) ¿ ∆−n for
1 6 n 6 J for a sufficiently large J depending on δ. Then

∫ M+∆

M

∣∣∣∣∣∣
∑

x6n6x+
√

x

a(n)e
(

hn

k

)∣∣∣∣∣∣

2

w(x)dx ¿ ∆M1/2+ε,

where the constant implied by the ¿ symbol depends only on ε.

On the other hand, the Omega results in [1] and [5] show that
∑

M6n6M+∆

a(n) = Ω(
√

∆),

where f = Ω(g) is to be understood to mean that f = o(g) does not hold.
In Theorem 1.1 the weight function is necessary for the proofs of the lemmas.

However, it is unclear whether one might be able to remove the weight function
by using some clever trick. Anyway, as the square is positive, one may expect that
the weight function does not effect the result too much.

Throughout the paper, ε denotes a real number which can be chosen to be
arbitrarily small, however, ε is not necessarily the same at every incidence. The
constants implied by ¿ depend only on ε. Also, let w(x) denote a smooth weight
function that is defined as in Theorem 1.1.

2. Lemmas

The following slightly modified version of Jutila and Motohashi’s Lemma 6 in [10]
is extremely useful while estimating oscillating integrals. The proof is similar to
the proof of the original lemma.

Lemma 2.1. Let A be a P > 0 times differentiable function which is compactly
supported in a finite interval [a, b]. Assume also that there exist two quantities A0

and A1 such that for any non-negative integer ν 6 P and for any x ∈ [a, b],

A(ν)(x) ¿ A0A
−ν
1 .
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Moreover, let B be a function which is real-valued on [a, b], and regular throughout
the complex domain composed of all points within the distance % from the interval;
and assume that there exists a quantity B1 such that

0 < B1 ¿ |B′(x)|

for any point x in the domain. Then we have

∫ b

a

A(x)e (B(x)) dx ¿ A0 (A1B1)
−P

(
1 +

A1

%

)P

(b− a) .

Lemma 2.2. Let 0 6 h < k 6 M1/4. Now

k

2π2

∑

n6M

|a(n)|2
n3/2

∫ M+∆

M

w(x)x1/2

×
(

cos

(
4π

√
n(x +

√
x)

k
− π

4

)
− cos

(
4π

√
nx

k
− π

4

))2

dx ¿ kε∆M1/2.

Proof. Notice first that

(
cos

(
4π

√
n(x +

√
x)

k
− π

4

)
− cos

(
4π

√
nx

k
− π

4

))2

= 4 sin2

(
2π

√
n(x +

√
x)

k
+ 2π

√
nx

k
− π

4

)
sin2

(
2π

√
n(x +

√
x)

k
− 2π

√
nx

k

)
.

Since
√

n(x+
√

x)

k −
√

nx
k ¿

√
n

k , we have

sin2

(
2π

√
n(x +

√
x)

k
+ 2π

√
nx

k
− π

4

)
sin2

(
2π

√
n(x +

√
x)

k
− 2π

√
nx

k

)

¿ sin2

(
2π

√
n(x +

√
x)

k
+ 2π

√
nx

k
− π

4

)
· n

k2
,

when n 6 k2. For n > k2, estimate the sine-part of the integral to be 6 1. We
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obtain

k

2π2

∑

n6M

|a(n)|2 n−3/2

∫ M+∆

M

w(x)x1/2

×
(

cos

(
4π

√
n(x +

√
x)

k
− π

4

)
− cos

(
4π

√
nx

k
− π

4

))2

dx

¿ k
∑

n6k2

nε−3/2+1k−2

∫ M+∆

M

w(x)x1/2dx

+ k
∑

k2<n6M

nε−3/2

∫ M+∆

M

w(x)x1/2dx ¿ kε∆M1/2. ¥

Using Lemma 2.1, we get the following estimates

Lemma 2.3. Let 1 6 m, n 6 M . Then

∫ M+∆

M

w(x)x1/2e

(
±

(
2

√
nT1(x)

k
+ 2

√
mT2(x)

k

))
dx

¿ (√
n +

√
m

)−P ∆1−P kP MP/2+1/2,

where T1(x) and T2(x) are x or x +
√

x (not necessarily but possibly the same).

Lemma 2.4. Let 1 6 m < n 6 M . Then

∫ M+∆

M

w(x)x1/2e

(
±2

√
nT (x)
k

∓ 2

√
mT (x)

k

)
dx

¿ (√
n−√m

)−P ∆1−P kP MP/2+1/2,

where T (x) = x or T (x) = x +
√

x.

Lemma 2.5. Let 1 6 m 6= n 6 M . Then

∫ M+∆

M

x1/2w(x)e

(
±2

√
m(x +

√
x)

k
∓ 2

√
nx

k

)
dx

¿ ∆1−P
∣∣√m−√n

∣∣−P
kP MP/2+1/2.

Proof. When m > n, the proof is similar to Lemma 2.4. Therefore, it is sufficient
to concentrate on the case n > m. We may also assume the first sign to be plus,
and the second one to be minus, as the other case can be treated similarly. Write

B(x) = 2

√
m(x +

√
x)

k
− 2

√
nx

k
.
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Now

B′(x) =
√

m

k
√

(x +
√

x)

(
1 +

1
2
x−1/2

)
−
√

n

k
√

x

=
√

m

k

(
1 + x−1/2 + 1

4x−1

x +
√

x

)1/2

−
√

n

k
√

x

=
√

m

k
√

x

(
1 +

1
4(x +

√
x)

)1/2

−
√

n

k
√

x

=
√

m

k
√

x

(
1 +

1
8(x +

√
x)

+ O

(
1
x2

))
−
√

n

k
√

x

=
√

m−√n

k
√

x
+

√
m

8k
√

x(x +
√

x)
+ O

( √
m

kx5/2

)
.

Let us now estimate the second term and the error term. When x is sufficiently
large, we have

√
m

8k
√

x(x +
√

x)
+ O

( √
m

kx5/2

)
6 1

4kx
6

∣∣∣∣
√

m−√n

4k
√

x

∣∣∣∣ .

Therefore,

|B′(x)| =
∣∣∣∣∣

√
m

k
√

(x +
√

x)

(
1 +

1
2
x−1/2

)
−
√

n

k
√

x

∣∣∣∣∣ >
∣∣∣∣3

(
√

m−√n)
4k
√

x

∣∣∣∣ .

Using Lemma 2.1 we obtain the estimate

∫ M+∆

M

x1/2w(x)e

(
±

(
2

√
m(x +

√
x)

k
− 2

√
nx

k

))
dx

¿ ∆1−P
∣∣√m−√n

∣∣−P
kP MP/2+1/2,

as desired. ¥

The estimates above are very useful if |√m−√n| is large enough. When it is
not large enough, we have to use absolute values to estimate the integral.

3. Proof of the main theorem

Let us first use a modification of Theorem 1.1 [8] (proof is similar than that of the
original theorem, just the Fourier coefficients have been normalized):

∑

16n6x

a(n)e
(

hn

k

)
=

(
π
√

2
)−1

k1/2x1/4
∑

n6N

a(n)ek(−nh̄)n−3/4 cos
(

4π
√

nx

k
− π

4

)

+ O
(
kx1/2+εN−1/2

)
.



102 Anne-Maria Ernvall-Hytönen

Choose N ³ x ³ M . Now
∑

x6n6x+
√

x

a(n)e
(

hn

k

)

=
(
π
√

2
)−1

k1/2
∑

n6M

a(n)ek(−nh̄)n−3/4

×
(

cos

(
4π

√
n(x +

√
x)

k
− π

4

)
(
x +

√
x
)1/4

− cos
(

4π
√

nx

k
− π

4

)
x1/4

)
+ O (kxε)

=
k1/2

π
√

2

∑

n6M

a(n)ek(−nh̄)n−3/4x1/4

×
(

cos

(
4π

√
n(x +

√
x)

k
− π

4

)
− cos

(
4π
√

nx

k
− π

4

))
+ O (kMε) .

Now
∫ M+∆

M

∣∣∣∣∣∣
∑

x6n6x+
√

x

a(n)e
(

hn

k

)∣∣∣∣∣∣

2

w(x)dx

= O

(
k

2π2

∫ M+∆

M

∣∣∣∣∣∣
∑

n6M

a(n)ek(−nh̄)n−3/4x1/4

×
(

cos

(
4π

√
n(x +

√
x)

k
− π

4

)
− cos

(
4π
√

nx

k
− π

4

))∣∣∣∣∣

2

w(x)dx

)

+ O
(
k2∆Mε

)

= O

(
k

2π2

∑

m 6=n

a(n)a(m)
(nm)3/4

ek

(−nh̄ + mh̄
) ∫ M+∆

M

x1/2w(x)

×
(

cos

(
4π

√
n(x +

√
x)

k
− π

4

)
− cos

(
4π
√

nx

k
− π

4

))

×
(

cos

(
4π

√
m(x +

√
x)

k
− π

4

)
− cos

(
4π
√

mx

k
− π

4

))
dx

+
k

2π2

∑

n6M

|a(n)|2
n3/2

∫ M+∆

M

w(x)x1/2

×
(

cos

(
4π

√
n(x +

√
x)

k
− π

4

)
− cos

(
4π

√
nx

k
− π

4

))2

dx

)
+ O

(
k2∆Mε

)
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The second sum (containing the diagonal terms) has been treated in Lemma 2.2.
The cosines in the integral in the first sum can be written as exponential terms.

We have to separate the treatment of the remaining terms in two cases. The
first case is the one where |√m−√n| is large, ie.

|m− n| > √
m

kM1/2+ε

∆
,

because now ∣∣√m−√n
∣∣ =

|m− n|√
m +

√
n
À kM1/2+ε

∆
,

and therefore, Lemmas 2.3, 2.4 and 2.5 give a non-trivial result. It is sufficient to
estimate the sum over the terms estimated in Lemma 2.5 as all the other sums go
similarly.

k

2π2

∑

16m 6=n6M,|m−n|À√m kM1/2+ε

∆

|a(n)a(m)|
(nm)3/4

∣∣√m−√n
∣∣−P

×∆1−P M1/2+P/2k1+P = O(1),

when P is large enough. Finally, we need to treat the terms with

|m− n| < √
m

kM1/2+ε

∆
.

Here we will benefit from the shortness of the interval on which the possible values
of n have to lie. First of all, if

√
m jkM1/2+ε

∆ < 1, there are no n 6= m on the
interval. Therefore, we may limit ourselves on the case m > ∆2

k2M1+ε . We use the
trivial estimate for the integral: it is at most ¿ M1/2∆:

k

2π2

∑

∆2

k2M1+ε <m6M,|m−n|<√m kM1/2+ε

∆

∣∣∣∣
a(n)a(m)
(nm)3/4

∣∣∣∣ M1/2∆

¿ k
∑

16m6M

|a(m)|mε−1k2M1+ε ¿ k2M1+ε ¿ M1/2+ε∆

as desired. This proves the theorem.
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