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A UNIFORM VERSION OF STIRLING’S FORMULA

JERZY KACZOROWSKI, ALBERTO PERELLI

Abstract: A uniform version of Stirling’s formula, suitable for future applications, is obtained.
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With applications in mind, in this paper we prove the following uniform version
of Stirling’s formula for the Euler T' function. Let B,(z) and B, be the n-th
Bernoulli polynomial and the n-th Bernoulli number, respectively.

Theorem. Let N > 1 be an integer, B > 1 and let z,s € C satisfy

R(z+s) =0, s < §|z|, N < 2B|z|.
Then
logT(z + s) (z—|—s—>logz—z+ log 2w
N
LSS DB (s) 1
= jG+1) 27
EIRNS N
+o(| b (N+ s + BN N
Remarks.

1. Taking s = 0 we get a uniform version of the classical Stirling formula for
logT'(z) in the range Rz > 0 and |z| > with remainder term
O(BNN!/|z|N+1).

2. Using I'(2)I'(1 — z) = 7/ sin z we can replace Rz > 0 by |argz| < 7 — J with

N
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a positive §. In this case the remainder term has the form

0 BNN' 1- Sgn%z —27|z|sind
|Z‘N+1 B € .

We start the proof of the Theorem with the following formula, see (5) on p. 21
of Bateman’s project [1]. Let z, s be as in the Theorem and fix §, A such that

0<d<m/4, 0< A< 2m, Acosd = 5. (1)

Moreover, choose || < 7/2 — § such that |arg(z + s) + ] < 6. Then

i3

1 ocoe
logl'(z+s) = (Z +s— > log(z+s8)—z—s+ = log 27r+/ /\(w)eﬂl)(zﬂ)dw’
0
1 1 1 1
A == — 4.
(w) w <ew -1 w + 2)

logT(z + s) = (ers - ;) logz — z + %log27r+A(z,s) + B(z,s) + C(z,s) (2)

where

Hence

with
Az, 8) = (z +s— 2) log(1 + )

Aet?

B(z,s) :/ Mw)e ™ EF) dw
0
ooe”j

C(z,s) :/ Mw)e EE) du.,
Aeth

We need several lemmas.

Lemma 1. Under the assumptions of the Theorem we have

N
W;(s) 1 [s]) sV
Alzms)=) —5= +0 (N <1+N EhiaiA
j=1
where .
Wi(s) = (—1)y L2
’ iG+1)
Proof. Clearly
J-‘rl SJ

A(z,8) = <z+s—)§: - :iWJ

Jj=1 Jj=1
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Writing 6y = |s|/|z| we have 0 < 6y < 6 < 3/5, hence
9(1)\74-1

ZOO [W;(s)] Zoo % ZOO 0% 8] N1

— K — + s — < + —0
S EE | sl = (i +1) N ' N270
j=N+1 j=N+1 j=N+1

[s] pv1 (N 1 [s] [s[*H
[ = +1 —(1+=
swo \H ) sy Ut N) pE

and the lemma follows. [ |

Lemma 2. For B>1 and AB > k > 0 we have

/ 2Fe™dx < (k+ 1)(AB)Fe 4.
A

Proof. We argue by induction. For k& = 0 both sides are equal to e~4. For k > 0
we integrate by parts and use the inductive hypothesis (recalling the condition
on A) thus obtaining

/ eFlem®dy = AR e 4 (b + 1)/ zFe%dx
A A

< AMHeA 4 (B +1)2(AB)fe™ < (k +2)(AB)Fle 4,
and the lemma follows. |

Lemma 3. For |w| < 27 we have

= Biy2
AMw) = Zakwk7 ap = ¢ _:2)'.
k=0 ’

Proof. This follows from the power series expansion of ewl—l and from the values

of By and By, see (1), (3) and (4) on p. 35-36 of Bateman’s project [1]. |

Lemma 4. For k > 0 we have

1

< .
ol < o

Proof. By Lemma 3 we have that a; = 0 for odd k’s, see (17) on p. 38 of
Bateman’s project [1]. If k = 2m then by (22) on p. 38 of Bateman’s project [1]

m+1 2¢(2m +2)

azm = (1) (2m)2m+2

where ((s) is the Riemann zeta function. Hence

(2 _ 1

(2m)*la| <

272 12’
and the result follows. | |
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Lemma 5. Under the assumptions of the Theorem we have

N-—1
akk:! N!
B(z,s) = Z (z + s)FH1 +0 <2N|ZN+1) :
k=0

Proof. Since 0 < A < 27, by Lemmas 3 and 4 for |w| < A we have
N-1
wl* . Jw|™
E Qpw —|—O<E (o) = E: apw” + O 2~ )

Hence, writing ¢ = z + s and recalling (1) and the definition of the I' function,
using Cauchy’s theorem we obtain

Aet? Aet? |w| N
B(Z,S) _ Z O‘k/o w¥e %dw + O (/0 (271.> eCHwCosédw)

k=0
N-1 i
I'k+1 ooe
= g (k+1 ) O / wke dw
k=0 C + AeiB

+0 </A (;)NQIICC085dI>
0 m
N-—
_ Z (G +1l0) + Ra(0)

say. Concerning r(¢) we have

1 oo
Q) € ey [ aterrda,
(‘C'COSé)k+l Al¢] cos &

and recalling (1) and the assumptions of the Theorem we get
2
BA|(|cosd > Bg/\|z| cosd = 2B|z| = N > k.

Hence we can apply Lemma 2 thus obtaining

(k+ 1)(AB[¢| cos §)FeMeleosd (k + 1)AB)F ) ¢jcoss
rk(C) ([C] cos 0] 7T = eoss € :

Therefore, recalling the power series expansion of e*, the assumptions of the The-
orem and (1)

e—/\\qcosé BNe—)\|C\cosé

= NZlaBV*
kZ:()aka(<) <<Ak§::0 (27T> (k+1) NCleoss < AT

BV N! BN N! BN N!
(Al¢lcos g)NF1 = (2[z) N+ = 2NN+

3)

<
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Concerning Ry (¢) we have

1 1 Al¢| cos § N g
Bv(0) < <2w>N<|<|cos6>N+1/o rhetdr

1 o N!
< —/ 2Ne e € .
(Al¢] cos )N+ J (A[¢] cos §)N+1

Hence arguing as above we get

N!
Ry(() < 72N|Z|N+1’

and the lemma follows. | |

Lemma 6. For |w| <1 and integers m > 1, k > 0 we have

Sm’k(w):z<k+l> i<k+m>%

l=m =0
Proof. We have

= (kD) (14 1) ol ! ¥ [ & 1 db fwktm
St (W) = k! = K dwk Z T Rdwk \ 1

—w
k ! k—1
(R 0
k! prd 1) dw! dwk-t \ 1 —w

k
1 E\ (k+m)! kbl 1
= — —_— m g -
k!;([)(/@—&-m—l)!w ( ) (1 — w)k—i+1
1< (k+m whtm—l
k! Z l (1 — w)k—1+1
1=0
and the result follows. [ |

Lemma 7. ForléNé%x—l and x > 0 we have

m T N
NOEDPEE (2N)! '

m=1

Proof. By induction on N. For N = 1 the inequality is trivial. For N > 1 we
have

xN+1 (2x)N xNJrl
o - <
(@) = en (@) e S T T T v

@)Vt N+ 1 1 (2z)N+1
(N +1)! ( 2z 2N+1)<(N+1)!

since &L < 3/4 and o5 < 1/4. |
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Lemma 8. Under the assumptions of the Theorem we have

N-1
B(z,5) =) U)o <N|8|N hs BNN!)

pors 2k+1 |Z|N+1

for certain polynomials Uy € Cl[s].

Proof. From the expansion for |w| < 1

= ()

=0

k-1 KD\,
- 1
)= ew
by Lemma 5 we obtain (using the notation of Lemma 6)
N-1 N—k—1
B apk! —k—-1 s\!
Bw$§jﬁﬂ(§:< )
k=0 1=0
ak! BV N!

CF () o (p20)

2N|Z‘N+1

and the identity

s NN
:ZZ:L)—FRN(,Z,S)—FO( BN )

N [N+1
k=0

say, with Uy € C[s]. Observing that (7)) = w < N

< 9y, using the notation
of Lemma 7 and writing 6y = |s|/|z|, by Lemma 6 with w = 90 we get

N—-1 00
1 vy |K! E+1
Ry(z,8) < o > L > ;e
k=0 I=N—-k
LN K i(N) 0y~
2] 2 @alF 2\ 1) (1= 6o+
9y N1 —6)\'
<1 Z @2( 1—00 @r]2(1—00))F Zu %
k=0
= k!

ahﬂwmm—%w<%(N%?m>+Q'

But &+ 1 < $2U=%) since g < 3/5 and k <

— 1, hence by Lemma 7 we have

Pk (W) +1< % (2]\[(160_90)>k
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and therefore we obtain

N N-1

02 k! 1 /2N(1—00)\" oY K
iz, <Z%MMMM« %O)f;@w

Now we consider two cases. If N/(rw|s]) <1+ 1/N then

s

oy
Ry (z, )<<ﬁN N| N

while if N/(7|s|) > 14 1/N then

N
N
oy <ﬂ |) -1 gy /s N\Y N NV N!
Bz < AU oy (M NN
I2| (7> —1 el A\l || N N [z N
and the lemma follows. [ |

Lemma 9. Under the assumptions of the Theorem we have

N!

C(Z, S) < W

Proof. Since A(w) is bounded on the path of integration, writing { = z + s we
have

—|¢| X cos § < 1 e—|<|)\cosé’

> —|¢|z cos _
Clz5) <</>\ ¢ dz €] cos & [¢]Acos

and the lemma follows arguing as in (3). |

Now we are ready for the proof of the Theorem. From (2) and Lemmas 1, 8
and 9 we have

N
1
logT(z +s) = <z+s—2>logz—z+210g27r z_: ( + En(z,8) (4)

where P;(s) = W;(s) + U,_1(s) are polynomials and, considering separately the
cases |s| < N and |s| > N, En(z, s) satisfies

(). o

Comparing (4) and (5) with the classical Stirling formula, see (12) on p.48 of
Bateman’s project [1], by the uniqueness of the asymptotic expansion we have

(=17 Bj41(s)
3G +1)

En(z,8) <

Pj(s) =

and the Theorem is proved.
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