ON ARITHMETICAL NATURE OF TICHY-UITZ'S FUNCTION

Elena Zhabitskaya

Abstract: In [10] R.F. Tichy and J. Uitz introduced a one parameter family $g_{\lambda}, \lambda \in(0,1)$ of singular functions. When $\lambda=1 / 2$ function g_{λ} coincides with the famous Minkowski's question mark function. In this paper we describe the arithmetical nature of function g_{λ} when $\lambda=\frac{3-\sqrt{5}}{2}$. Keywords: Continued fractions, Minkowski's function.

1. Stern-Brocot sequences

Let us remind the definition of Stern-Brocot sequences $\mathcal{F}_{n}, n=0,1,2, \ldots$.
Consider two-point set $\mathcal{F}_{0}=\left\{\frac{0}{1}, \frac{1}{1}\right\}$. Let $n \geqslant 0$ and

$$
\mathcal{F}_{n}=\left\{0=x_{0, n}<x_{1, n}<\ldots<x_{N(n), n}=1\right\},
$$

where $x_{j, n}=p_{j, n} / q_{j, n},\left(p_{j, n}, q_{j, n}\right)=1, j=0, \ldots, N(n)$ and $N(n)=2^{n}+1$. Then

$$
\mathcal{F}_{n+1}=\mathcal{F}_{n} \cup Q_{n+1}
$$

with

$$
Q_{n+1}=\left\{x_{j-1, n} \oplus x_{j, n}, \quad j=1, \ldots, N(n)\right\} .
$$

Here

$$
\frac{a}{b} \oplus \frac{c}{d}=\frac{a+b}{c+d}
$$

is the mediant of fractions $\frac{a}{b}$ and $\frac{c}{d}$.
Elements of Q_{n} can be characterized in the following way. Rational number $\xi \in[0,1]$ belongs to Q_{n} if and only if in continued fraction expansion of ξ

$$
\begin{equation*}
\xi=\left[0 ; a_{1}, a_{2}, \ldots, a_{m}\right]=0+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots+\frac{1}{a_{m}}}}, \quad a_{j} \in \mathbb{N}, a_{m} \geqslant 2 . \tag{1}
\end{equation*}
$$

sum of partial quotients is exactly $n+1$:

$$
S(\xi):=a_{1}+\ldots+a_{m}=n+1
$$

So \mathcal{F}_{n} consists of all rational $\xi \in[0,1]$ such that $S(\xi) \leqslant n+1$.

2. Tichy-Uitz's singular functions

In [10] R.F. Tichy and J. Uitz considered a one parameter family $g_{\lambda}, \lambda \in(0,1)$, of singular functions. In this section we describe the construction of g_{λ} from [10]. This construction is an inductive one.

Given $\lambda \in(0,1)$ put

$$
g_{\lambda}(0)=g_{\lambda}(0 / 1)=0, \quad g_{\lambda}(1)=g_{\lambda}(1 / 1)=1
$$

Suppose that $g_{\lambda}(x)$ is defined for all elements $x \in \mathcal{F}_{n}$. Then we define $g_{\lambda}(x)$ for $x \in Q_{n+1}$. Each $x \in Q_{n+1}$ is of the form $x=x_{j-1, n} \oplus x_{j, n}$ where $x_{j-1, n}$ and $x_{j, n}$ are consecutive elements from \mathcal{F}_{n}. Then

$$
g_{\lambda}\left(x_{j-1, n} \oplus x_{j, n}\right)=g_{\lambda}\left(x_{j-1, n}\right)+\left(g_{\lambda}\left(x_{j, n}\right)-g_{\lambda}\left(x_{j-1, n}\right)\right) \lambda .
$$

So we have defined g_{λ} for all rational numbers from $[0,1]$. One can see that the function $g_{\lambda}(x)$ is a continuous function from $\mathbb{Q} \cap[0,1]$ to $[0,1]$. So it can be extended to a continuous function from the whole segment $[0,1]$ to $[0,1]$.

Similar functions $\kappa(x, \alpha), x \in[0, \infty), \alpha \in(0,1)$ were introduced in [2] by A. Denjoy. Definition of $\kappa(x, \alpha)$ is the following:

$$
\kappa(0 / 1, \alpha)=1, \quad \kappa(1 / 0, \alpha)=0
$$

and for $p / q, p^{\prime} / q^{\prime}$ such that $p q^{\prime}-q p^{\prime}=1$

$$
\kappa\left(p / q \oplus p^{\prime} / q^{\prime}, \alpha\right)=\alpha \kappa\left(p^{\prime} / q^{\prime}, \alpha\right)+(1-\alpha) \kappa(p / q, \alpha) .
$$

For $x \in[0,1]$ functions $\kappa(x, \alpha)$ and $g_{\lambda}(x)$ are related in the following way:

$$
\kappa(x, \alpha)=1-(1-\alpha) g_{1-\alpha}(x)
$$

For every λ function $g_{\lambda}(x)$ increases in $x \in[0,1]$. By Lebesgue's theorem $g_{\lambda}(x)$ is a differentiable function almost everywhere. Moreover, it is easy to see that $g_{\lambda}^{\prime}(x)=0$ almost everywhere (in the sense of Lebesgue measure). Certain properties of functions $g_{\lambda}(x)$ were investigated in [10]. Some related topics can be found in [1] and [5]. Here we should note that in case $\lambda=1 / 2$ function $g_{1 / 2}(x)$ coincides with the famous Minkowski's question mark function ? (x). This function may be considered as the limit distribution function for Stern-Brocot sequences \mathcal{F}_{n}. The purpose of the present paper is to explain the arithmetical nature of function $g_{\lambda}(x)$ when $\lambda=\frac{3-\sqrt{5}}{2}$.

3. Minkowski's function ? (x)

Let's consider function $g_{1 / 2}(x)=?(x)$. This function was introduced by Minkowski. As it follows from the definition of g_{λ} for $\lambda=1 / 2$:

$$
?(0)=?(0 / 1)=0, \quad ?(1)=?(1 / 1)=1 .
$$

and for $x_{j-1, n}, x_{j, n} \in \mathcal{F}_{n}$

$$
?\left(x_{j-1, n} \oplus x_{j, n}\right)=\frac{?\left(x_{j-1, n}\right)+?\left(x_{j, n}\right)}{2} .
$$

The definition of ?(x) for irrational x follows by continuity.
R. Salem in [9] found a new presentation for ? (x). If $x \in(0,1)$ is represented in the form of regular continued fraction

$$
\begin{equation*}
x=\left[0 ; a_{1}, a_{2}, \ldots, a_{m}, \ldots\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots+\frac{1}{a_{m}+\frac{1}{\ldots}}}}, \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
?(x)=\frac{1}{2^{a_{1}-1}}-\frac{1}{2^{a_{1}+a_{2}-1}}+\frac{1}{2^{a_{1}+a_{2}+a_{3}-1}}-\ldots \tag{3}
\end{equation*}
$$

For rational x representation (2) and consequently (3) is finite.
Minkowski's question mark function may be treated as limit distribution function for Stern-Brocot sequences in the following sense:

$$
\begin{equation*}
?(x)=\lim _{n \rightarrow \infty} \frac{\sharp\left\{\xi \in \mathcal{F}_{n}: \xi \leqslant x\right\}}{\sharp \mathcal{F}_{n}}=\lim _{n \rightarrow \infty} \frac{\sharp\left\{\xi \in \mathcal{F}_{n}: \xi \leqslant x\right\}}{2^{n}+1} . \tag{4}
\end{equation*}
$$

A finite formula for the right side of (4) was given by T. Rivoal in the preprint [8]. Various properties of Minkowski's question mark function were investigated in papers [2] by A. Denjoy, [11] by P. Viader, J. Paradis, L. Bibiloni and in [3] by A. A. Dushistova, I. D. Kan and N. G. Moshchevitin.

4. General form of formula (3)

Formula (3) can be generalized on the whole family of functions g_{λ} in the following way.

Proposition. Let $x, \lambda \in(0,1)$ and $x=\left[0 ; a_{1}, \ldots, a_{m}, \ldots\right]$ be regular continued fraction expansion of x, then

$$
\begin{align*}
g_{\lambda}(x)= & \lambda^{a_{1}-1}-\lambda^{a_{1}-1}(1-\lambda)^{a_{2}}+\lambda^{a_{1}-1}(1-\lambda)^{a_{2}} \lambda^{a_{3}}-\ldots \\
& +(-1)^{m+1} \lambda^{(1 \leqslant i \leqslant m, i=1(\bmod 2))} \sum_{i}^{a_{i}-1}(1-\lambda)^{(1 \leqslant i \leqslant m, i \equiv 0(\bmod 2))}{ }^{a_{i}}+\ldots . \tag{5}
\end{align*}
$$

Proof. By definition of g_{λ}

$$
g_{\lambda}(0)=0, \quad g_{\lambda}(1)=1
$$

and

$$
\begin{equation*}
g_{\lambda}\left(x_{j-1, n} \oplus x_{j, n}\right)=g_{\lambda}\left(x_{j-1, n}\right)+\left(g_{\lambda}\left(x_{j, n}\right)-g_{\lambda}\left(x_{j-1, n}\right)\right) \lambda, \tag{6}
\end{equation*}
$$

where $x_{j-1, n}$ and $x_{j, n}$ are consecutive elements from \mathcal{F}_{n}. We can also rewrite formula (6) in the following form

$$
\begin{equation*}
g_{\lambda}\left(x_{j-1, n} \oplus x_{j, n}\right)=g_{\lambda}\left(x_{j, n}\right)-\left(g_{\lambda}\left(x_{j, n}\right)-g_{\lambda}\left(x_{j-1, n}\right)\right)(1-\lambda) . \tag{7}
\end{equation*}
$$

We prove the proposition by induction on $S(x)$. The equality

$$
g_{\lambda}\left(1 / a_{1}\right)=\lambda^{a_{1}-1}
$$

follows from formula (6) immediately since $1 / a_{1}=\underbrace{0 \oplus \ldots \oplus 0 \oplus}_{\left(a_{1}-1\right) \text { times }}$. Suppose that formula (5) is proved for $x=\left[0 ; a_{1}, \ldots, a_{m}\right]$, then it is enough to prove it for $y=\left[0 ; a_{1}, \ldots, a_{m}+1\right]$ and for $z=\left[0 ; a_{1}, \ldots, a_{m}-1,2\right]$.

Let m be odd, then by applying formula (6) we get

$$
\begin{align*}
& g_{\lambda}(y)=g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m-1}\right] \oplus\left[0 ; a_{1}, \ldots, a_{m}\right]\right) \\
&=g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m-1}\right]\right)+\lambda\left(g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m}\right]\right)-g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m-1}\right]\right)\right) \tag{8}\\
&=g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m-1}\right]\right)+\lambda^{(1 \leqslant i \leqslant m, i=1(\bmod 2))} a_{i}-1 \\
&\left.a_{i}-\lambda\right)^{(1 \leqslant i \leqslant m, i \leqslant 0(\bmod 2))}{ }^{a_{i}} \lambda,
\end{align*}
$$

and by applying formula (7) we get

$$
\begin{align*}
g_{\lambda}(z)= & g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m}\right] \oplus\left[0 ; a_{1}, \ldots, a_{m}-1\right]\right) \\
= & g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m}-1\right]\right)-(1-\lambda)\left(g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m}-1\right]\right)\right. \\
& -g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m}\right]\right) \tag{9}\\
= & g_{\lambda}\left(\left[0 ; a_{1}, \ldots, a_{m}-1\right]\right)-\lambda^{(1 \leqslant i \leqslant m-1,, i \equiv 1(\bmod 2))} a_{i}+\left(a_{m}-1\right)-1 \\
& \times(1-\lambda)^{\left(1 \leqslant i \leqslant m, \sum_{i \equiv 0(\bmod 2))} a_{i}\right.}(1-\lambda)^{2} .
\end{align*}
$$

For even m the proof is similar.
Similar formula for $\kappa(x, \alpha)$ was proved by A. Denjoy in [2].

5. Regular reduced continued fractions and the main result

Any real number x can be expressed uniquely in the form

$$
\begin{equation*}
x=\left[\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{l}, \ldots\right]\right]=b_{0}-\frac{1}{b_{1}-\frac{1}{b_{2}-\ldots-\frac{1}{b_{l}-\frac{1}{\ldots}}}}, \quad b_{i} \geqslant 2, \tag{10}
\end{equation*}
$$

which is known as regular reduced continued fraction (ein reduziert-regalmaessiger Kettenbruch [4], [7]).

For a rational number $x \in(0,1)$ representation (10) takes the form:

$$
\begin{equation*}
x=\left[\left[1 ; b_{1}, \ldots, b_{l}\right]\right] . \tag{11}
\end{equation*}
$$

For such x we denote $L(x)=b_{1}+\ldots+b_{l}$.
Similarly to the sequence \mathcal{F}_{n} we define the sequence Ξ_{n} :

$$
\Xi_{n}:=\{0,1\} \cup\left(\bigcup_{1 \leqslant k \leqslant n} \Theta_{k}\right)
$$

where $\Theta_{k}=\{x \in Q: L(x)=k+1\}, k \geqslant 1$.
We arrange elements of Ξ_{n} in the increasing order:

$$
\Xi_{k}=\left\{0=\xi_{1, n}<\xi_{2, n}<\ldots<\xi_{\sharp \Xi_{n}, n}=1\right\} .
$$

The Theorem 1 stated below is the main result of present paper. It generalizes formula (4) on regular reduced continued fractions.

Theorem 1. Function g_{λ}, where $\lambda=\tau^{2}=\frac{3-\sqrt{5}}{2}, \tau=\frac{\sqrt{5}-1}{2}$ coincides with the distributional function of the sequence Ξ_{n}, that is

$$
g_{\tau^{2}}(x)=\lim _{n \rightarrow \infty} \frac{\sharp\left\{\xi \in \Xi_{n}: \xi \leqslant x\right\}}{\sharp \Xi_{n}}, \quad x \in(0,1) .
$$

Now we consider the function

$$
\mathcal{M}(x):=\lim _{n \rightarrow \infty} \frac{\sharp\left\{\xi \in \Xi_{n}: \xi \leqslant x\right\}}{\sharp \Xi_{n}}, \quad x \in(0,1) .
$$

Our purpose is to prove that $\mathcal{M}(x)=g_{\tau^{2}}$. Function $\mathcal{M}(x)$ is increasing as a distribution function, so it is enough to prove that $\mathcal{M}(x)$ coincides with $g_{\tau^{2}}(x)$ for rational x, that is

$$
\begin{equation*}
\mathcal{M}(x \oplus y)=\mathcal{M}(x)+(\mathcal{M}(y)-\mathcal{M}(x)) \tau^{2} . \tag{12}
\end{equation*}
$$

for any two consecutive elements of Ξ_{n} for any n.
We would like to note that in special case $\lambda=\tau^{2}$ formula (5) gives:

$$
\begin{align*}
g_{\tau^{2}}(x)= & \tau^{2 a_{1}-2}-\tau^{2 a_{1}+a_{2}-2}+\tau^{2 a_{1}+a_{2}+2 a_{3}-2}-\ldots \\
& +(-1)^{m+1} \tau^{\sum_{i=1}^{m} \alpha_{i} a_{i}-2}+\ldots, \tag{13}
\end{align*}
$$

where

$$
\alpha_{m}= \begin{cases}1, & \text { if } m \text { is even } \\ 2, & \text { if } m \text { is odd }\end{cases}
$$

For rational x representation (13) is finite.

6. Auxiliary results

Lemma 1. Let x be represented in the form (1) and in the form (11). To get the set $\left(b_{1}, \ldots, b_{l}\right)$ from (a_{1}, \ldots, a_{m}) we should replace a_{i} by

1. $\underbrace{2 \ldots 2}_{a_{i}-1}$ if i is odd (empty string if $a_{i}=1$).
2. $a_{i}+2$ if i is even and $i \neq m$.
3. $a_{i}+1$ if i is even and $i=m$.

Lemma 1 can be found in [7].
Lemma 2. For a number of elements in Θ_{n} one has

$$
\sharp \Theta_{1}=1, \quad \sharp \Theta_{2}=1, \quad \sharp \Theta_{n+1}=\sharp \Theta_{n}+\sharp \Theta_{n-1} .
$$

It follows immediately from Lemma 2 that $\sharp \Theta_{n}$ is the nth Fibonacci number F_{n}, that is the nth member of the sequence

$$
\left\{F_{n}\right\}_{n=1}^{\infty}=\{1,1,2,3,5,8, \ldots\}
$$

in which the first two terms are equal 1, and each following term is the sum of the two preceding ones. The Fibonacci numbers have a closed-form solution

$$
F_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
$$

Proof of this fact can be found in [6].
Proof. We prove the lemma by induction. Since $\Theta_{1}=\{1 / 2\}, \Theta_{2}=\{2 / 3\}$, then the base of induction is true. Let us suppose that the lemma is true for $k \leqslant n$ and $x=\left[\left[1 ; b_{1}, \ldots, b_{l}\right]\right] \in \Theta_{n+1}$, then $b_{1}+\ldots+b_{l}=n+2$. There are two cases: either $b_{l}=2$ or $b_{l} \geqslant 2$. In the first case $b_{1}+\ldots+b_{l-1}=n$, so $\left[\left[1 ; b_{1}, \ldots, b_{l-1}\right]\right] \in \Theta_{n-1}$, in the second case $b_{1}+\ldots+b_{l}-1=n+1$, so $\left[\left[1 ; b_{1}, \ldots, b_{l}-1\right]\right] \in \Theta_{n}$. Thus we have one-to-one correspondence between $\Theta_{n-1} \cup \Theta_{n}$ and Θ_{n+1}, and so $\sharp \Theta_{n+1}=$ $\sharp \Theta_{n}+\sharp \Theta_{n-1}$.

Definition 1. Let x, y, z be consecutive elements of $\Xi_{n}, y \in \Theta_{n}$. We denote the mediant $x \oplus y$ by y^{l} and the mediant $y \oplus z$ by y^{r}.

Lemma 3. Let x, y, z be consecutive elements of $\Xi_{n}, y \in \Theta_{n}$, then $y^{l} \in \Theta_{n+2}$, $y^{r} \in \Theta_{n+1}$.

Proof. Let $y=\left[\left[1 ; b_{1}, \ldots, b_{s}\right]\right]$. Then $y^{l}=\left[\left[1 ; b_{1}, \ldots, b_{s}, 2\right]\right], y^{r}=\left[\left[1 ; b_{1}, \ldots\right.\right.$, $\left.b_{s}+1\right]$.

Now let us construct an infinite tree D whose nodes are labeled by rationals from $(0,1)$. We identify nodes with rationals they are labeled by. The root is labeled by $1 / 2$. From the node x come two arrows: left arrow goes to x^{l} and right

Figure 1.
arrow goes to x^{r}. Nodes of the tree D are partitioned into levels. $1 / 2$ belongs to the level 1. If x belongs to the level n, then x^{r} belongs to the level $n+1$, and x^{l} belongs to the level $n+2$ (figure 1).

It follows from the construction of the tree that nodes from level n of D are marked by numbers from Θ_{n}. So x belongs to the level n if and only if $x \in \Theta_{n}$.

We denote the subtree of D with root in the node x by $D^{(x)}$ and the set of nodes of D from level 1 to level n by D_{n}. Moreover, we denote the set of nodes of $D^{(x)} \cap D_{n}$ by $D_{n}^{(x)}$. Note that there exist levels preserving isomorphism between D and $D^{(x)}$. If x belongs to the level n, then

$$
\sharp D_{m}^{(x)}=\sharp D_{m-n+1} .
$$

Besides

$$
\sharp D_{n}=\sharp \Theta_{1}+\sharp \Theta_{2}+\ldots+\sharp \Theta_{n}=F_{1}+F_{2}+\ldots+F_{n}=F_{n+2}-1 .
$$

7. Proof of Theorem 1

We remind that it is enough to prove (12) for any consecutive elements of $\Xi_{n} x$ and y.

To prove the equality (12) we consider the subtree $D^{(x \oplus y)}$ of D. Note that

$$
\left\{\xi \in D^{(x \oplus y)}\right\} \cup\{y\}=\{\xi \in Q: x<\xi \leqslant y\}
$$

Consequently

$$
\mathcal{M}(y)-\mathcal{M}(x)=\lim _{m \rightarrow \infty} \frac{\sharp\left\{\xi \in \Xi_{m}: x<\xi \leqslant y\right\}}{\sharp \Xi_{m}}=\lim _{m \rightarrow \infty} \frac{\sharp D_{m}^{(x \oplus y)}}{\sharp D_{m}} .
$$

On the other hand

$$
\mathcal{M}(x \oplus y)-\mathcal{M}(x)=\lim _{m \rightarrow \infty} \frac{\sharp\left\{\xi \in \Xi_{m}: x<\xi \leqslant x \oplus y\right\}}{\sharp \Xi_{m}}=\lim _{m \rightarrow \infty} \frac{\sharp D_{m}^{(x \oplus y)^{l}}}{\sharp D_{m}} .
$$

Let $x \oplus y \in \Theta_{k}$, then $(x \oplus y)^{l} \in \Theta_{k+2}$. Therefore

$$
\frac{\mathcal{M}(x \oplus y)-\mathcal{M}(x)}{\mathcal{M}(y)-\mathcal{M}(x)}=\lim _{m \rightarrow \infty} \frac{\sharp D_{m}^{(x \oplus y)^{l}}}{\sharp D_{m}^{(x \oplus y)}}=\lim _{m \rightarrow \infty} \frac{\sharp D_{m-k-1}}{\sharp D_{m-k+1}}=\lim _{m \rightarrow \infty} \frac{F_{m-k+1}}{F_{m-k+3}}=\tau^{2} .
$$

References

[1] J.C. Alexander and D.B. Zagier, The entropy of a certain infinitely convolved Bernoulli measures, J. London Math. Soc. 44 (1991), 121-134.
[2] A. Denjoy, Sur une fonction reele de Minkowski, J. Math. Pures Appl. 17 (1938), 105-151.
[3] A.A. Dushistova, I.D. Kan and N.G. Moshchevitin, Differentiability of the Minkowski question mark function, Preprint available at arXiv:0903.5537v1.pdf (2009)
[4] Yu. Yu Finkel'shtein, Klein polygons and reduced regular continued fractions, Russian Mathematical Surveys 48(3) (1993), 198.
[5] J.P. Graber, P. Kirschenhofer and R.F. Tichy, Combinatorial and arithmetical properties of linear numeration systems, Combinatorica 22(2) (2002), 245267.
[6] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1980.
[7] O. Perron, Die Lehre von den Kettenbruchen, Bd.I.Teuber, 1954.
[8] T. Rivoal, Suites de Stern-Brocot et fonction de Minkowski, Preprint available at http ://www-fourier.ujf-grenoble.fr/ rivoal
[9] R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427-439.
[10] R.F. Tichy and J. Uitz, An extension of Minkowski's singular function, Appl. Math. Lett. 8 (1995), 39-46.
[11] P. Viader, J. Paradis and L. Bibiloni, A new light of Minkowski's ?(x) function, J. Number Theory. 73 (1998), 212-227.

Address: Department of Number Theory, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Vorobiovy Gory, Moscow 119991, Russia.
E-mail: elena.jabitskaya@gmail.com
Received: 14 September 2009; revised: 31 October 2009

