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GROWTH ENVELOPES IN MUCKENHOUPT WEIGHTED
FUNCTION SPACES: THE GENERAL CASE

Dorothee D. Haroske

Abstract: We study growth envelopes of function spaces Bs
p,q(R, w) and F s

p,q(R, w) where the
weight belongs to some Muckenhoupt class w ∈ A∞. This essentially extends partial forerunners
in [13–16]. We also indicate some applications of these results.
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Introduction

The purpose of this paper is to use the recently introduced concept of growth
envelopes in function spaces in order to characterize weighted spaces of type
Lp(Rn, w), Bs

p,q(Rn, w) and F s
p,q(Rn, w) where w belongs to some Muckenhoupt

class Ap. The idea to consider growth envelopes in (unweighted) function spaces
originates from such classical results as the famous Sobolev embedding theorem
[31]. Basically, the unboundedness of functions that belong to Sobolev and more
general spaces is characterized as follows. Let X be a space of functions or reg-
ular distributions, X ⊂ Lloc

1 , then its growth envelope EG(X) = (EX
G (t), uX

G ) is
introduced, where

EX
G (t) ∼ sup {f∗(t) : ‖f |X‖ 6 1} , t > 0,

is the growth envelope function of X and uX
G ∈ (0,∞] is some additional index

providing a finer description. Here f∗ denotes the non-increasing rearrangement
of f , as usual. These concepts were introduced in [38], [13], where the latter book
also contains a recent survey (concerning extensions and more general approaches)
as well as applications and further references.

Dealing with weighted spaces of type Bs
p,q(Rn, w) and F s

p,q(Rn, w) first (special)
results were obtained in [14, 13, 16, 15], essentially concentrating on weights from
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the Muckenhoupt A∞ class. In particular, we studied the model weights

wα,β(x) =

{
|x|α, |x| < 1,

|x|β , |x| > 1,
(0.1)

and

wlog(x) =

{
|x|α(1− log |x|)γ , |x| < 1,

|x|β(1 + log |x|)δ, |x| > 1,
(0.2)

where α, β > −n, and γ, δ ∈ R. Moreover, in [15] some first more general results
for Lp(Rn, w), w ∈ A∞, can be found.

Our main intention now is to extend this idea, that is, to study the interplay
between the weight w ∈ A∞ and the singularity behavior of spaces Bs

p,q(Rn, w)
and F s

p,q(Rn, w) characterized by their growth envelopes. It turns out that for the
smallest weight class in this context, i.e. A1, we have a complete result which
essentially coincides with the unweighted situation if we assume, in addition, that

inf
m∈Zn

w(Q0,m) > cw > 0, (0.3)

where Q0,m are unit cubes in Rn centered at m ∈ Zn, and w(Ω) =
∫
Ω

w(x) dx.
Our main result in Theorem 3.6 below establishes that for 0 < p < ∞, 0 < q 6 ∞,
s > n max( 1

p − 1, 0), and w ∈ A1,

EG(Bs
p,q(Rn, w)) =





(
t−

1
p + s

n , q
)

, s < n
p ,

(
| log t| 1

q′ , q
)

, s = n
p and 1 < q 6 ∞,

(0.4)

EG(F s
p,q(Rn, w)) =





(
t−

1
p + s

n , p
)

, s < n
p ,

(
| log t| 1

p′ , p
)

, s = n
p and 1 < p < ∞,

(0.5)

and

EG(Lp(Rn, w)) =
(
t−

1
p , p

)
. (0.6)

We also investigate the behavior of the envelope function for t →∞ in dependence
on the weight. In case of w ∈ A∞ our results are less complete so far. For instance,
with the notation rw = inf{r > 1 : w ∈ Ar}, w ∈ A∞, we obtain in general that
for any small ε > 0 there is some cε > 0 such that

EBs
p,q(Rn,w)

G (t) 6 cε t−
rw
p + s

n−ε, t → 0, (0.7)

whereas the lower estimate reads as

EBs
p,q(Rn,w)

G (t) > c sup
x0∈Rn



b 1

n | log t|c∑

j=1

2−j(s−n
p )q′

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

)− q′
p




1/q′

, (0.8)

where t → 0.



Growth envelopes in Muckenhoupt weighted function spaces: the general case 171

Here B(x0, r) is a ball with radius r > 0 centered at x0 ∈ Rn, |B(x0, r)| ∼ rn

its Lebesgue measure. It is known, that the upper estimate with ε = 0 cannot be
true in general, and for some other reason it is more likely that the lower estimate
may be sharp. But this is not yet proved in full generality.

All this will be explicated by our model weights (0.1) and (0.2) (and another
one). Moreover, we briefly indicate some applications of our results.

The main tools to prove such results are unweighted counterparts, sharp em-
beddings and atomic decompositions of corresponding spaces. We also benefit
from related observations on embeddings and local singularities Ssing(w) of the
weight w ∈ A∞ contained in [18, 19, 20].

The paper is organized as follows. In Section 1 we collect all the material
on Muckenhoupt weights, weighted spaces of type Bs

p,q(Rn, w), F s
p,q(Rn, w), and

embeddings that will be needed below. This is followed by a short introduction to
the concept of growth envelopes in Section 2, before we deal exclusively with w ∈
A1 in Section 3 and determine the corresponding growth envelopes of Bs

p,q(Rn, w),
F s

p,q(Rn, w). Finally, in the last Section 4 we devote our attention to weights
w ∈ A∞ \ A1.

1. Weighted function spaces

We fix some notation. By N we mean the set of natural numbers, by N0 the set
N ∪ {0}, and by Zn the set of all lattice points in Rn having integer components.
The positive part of a real function f is denoted by f+(x) = max(f(x), 0), the
integer part of a ∈ R by bac = max{k ∈ Z : k 6 a}. If 0 < u 6 ∞, the number u′

is given by 1
u′ = (1− 1

u )+. For two positive real sequences {αk}k∈N and {βk}k∈N we
mean by αk ∼ βk that there exist constants c1, c2 > 0 such that c1 αk 6 βk 6 c2 αk

for all k ∈ N; similarly for positive functions. Given two (quasi-) Banach spaces
X and Y , we write X ↪→ Y if X ⊂ Y and the natural embedding of X in Y is
continuous.

All unimportant positive constants will be denoted by c, occasionally with
subscripts. For convenience, let both dx and | · | stand for the (n-dimensional)
Lebesgue measure in the sequel. If not otherwise indicated, log is always taken
with respect to base 2.

As we shall always deal with function spaces on Rn, we may often omit the
‘Rn’ from their notation for convenience.

1.1. Muckenhoupt weights

We briefly recall some fundamentals on Muckenhoupt classes Ap. By a weight w
we shall always mean a locally integrable function w ∈ Lloc

1 (Rn), positive a.e. in
the sequel. Let M stand for the Hardy-Littlewood maximal operator given by

Mf(x) = sup
B(x,r)∈B

1
|B(x, r)|

∫

B(x,r)

|f(y)| dy, x ∈ Rn, (1.1)
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where B is the collection of all open balls

B(x, r) =
{

y ∈ Rn : |y − x| < r
}

, r > 0.

Definition 1.1. Let w be a weight on Rn.
(i) Then w belongs to the Muckenhoupt class Ap, 1 < p < ∞, if there exists a

constant 0 < A < ∞ such that for all balls B the following inequality holds
(

1
|B|

∫

B

w(x) dx

)1/p

·
(

1
|B|

∫

B

w(x)−p′/p dx

)1/p′

6 A. (1.2)

(ii) Then w belongs to the Muckenhoupt class A1 if there exists a constant 0 <
A < ∞ such that the inequality

Mw(x) 6 Aw(x) (1.3)

holds for almost all x ∈ Rn.
(iii) The Muckenhoupt class A∞ is given by

A∞ =
⋃
p>1

Ap. (1.4)

Since the pioneering work of Muckenhoupt [23, 24, 25], these classes of weight
functions have been studied in great detail, we refer, in particular, to the mono-
graphs [11], [32, Ch. V], [33], and [34, Ch. IX] for a complete account on the theory
of Muckenhoupt weights. As usual, we use the abbreviation

w(Ω) =
∫

Ω

w(x) dx, (1.5)

where Ω ⊂ Rn is some bounded, measurable set. Then a weight w on Rn belongs
to Ap, 1 6 p < ∞, if and only if

1
|B|

∫

B

f(y) dy 6
(

c

w(B)

∫

B

fp(x)w(x) dx

)1/p

holds for all nonnegative f and all balls B. In particular, with E ⊂ B and f = χE ,
this implies that

|E|
|B| 6 c′

(
w(E)
w(B)

)1/r

, E ⊂ B, w ∈ Ar, r > 1. (1.6)

Another property of Muckenhoupt weights that will be used in the sequel is that
w ∈ Ap, p > 1, implies the existence of some number r < p such that w ∈
Ar. This is closely connected with the so-called ‘reverse Hölder inequality’, see
[32, Ch. V, Prop. 3, Cor.]. In our case this fact will re-emerge in the number

rw = inf{r > 1 : w ∈ Ar}, w ∈ A∞, (1.7)

that plays an essential rôle later on. Obviously, 1 6 rw < ∞, and w ∈ Arw implies
rw = 1.



Growth envelopes in Muckenhoupt weighted function spaces: the general case 173

Examples 1.2.

(i) One of the most prominent examples of a Muckenhoupt weight w ∈ Ap,
1 6 p < ∞, is given by w(x) = |x|%, where w ∈ Ap if and only if −n < % <
n(p − 1) for 1 < p < ∞, and −n < % 6 0 for p = 1. Thus rw = 1 + %+

n and
w ∈ Arw if % 6 0, whereas w 6∈ Arw for % > 0.

(ii) We modified this example in [18, 20] by

wα,β(x) =

{
|x|α, |x| < 1,

|x|β , |x| > 1,
(1.8)

and

wlog(x) =

{
|x|α(1− log |x|)γ , |x| < 1,

|x|β(1 + log |x|)δ, |x| > 1,
(1.9)

where α, β > −n, and γ, δ ∈ R. Plainly, wα,β = wlog when γ = δ = 0.
Straightforward calculation shows that for 1 < r < ∞,

wlog ∈ Ar if and only if − n < α, β < n(r − 1), γ, δ ∈ R,

such that rwα,β
= rwlog = 1 + max(α,β,0)

n independent of γ, δ ∈ R. Moreover,
wlog ∈ A1 when

max(α, β) 6 0 and

{
γ > 0 if α = 0,

δ 6 0 if β = 0.
(1.10)

(iii) Finally we recall a ‘fractal’ example studied in [17]. Let Γ ⊂ Rn be a d-set,
0 < d < n, in the sense of [37, Def. 3.1], [21] (which is different from [8]),
i.e., there exists a Borel measure µ in Rn such that supp µ = Γ compact, and
there are constants c1, c2 > 0 such that for arbitrary γ ∈ Γ and all 0 < r < 1
holds

c1r
d 6 µ(B(γ, r) ∩ Γ) 6 c2r

d.

We proved in [17] that the weight wκ,Γ, given by

wκ,Γ(x) =

{
dist (x, Γ)κ, if dist (x, Γ) 6 1,

1, if dist (x, Γ) > 1,
(1.11)

satisfies

wκ,Γ ∈ Ap if and only if −(n−d) < κ < (n−d)(p−1), 1 < p < ∞,

and wκ,Γ ∈ A1 if −(n− d) < κ 6 0. Consequently, rwκ,Γ = 1 + max(κ,0)
n−d .

For further examples we refer to [9, 18, 19].
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We need some refined study of the singularity behavior of Muckenhoupt A∞
weights. Let for m ∈ Zn and ν ∈ N0, Qν,m denote the n-dimensional cube with
sides parallel to the axes of coordinates, centered at 2−νm and with side length
2−ν . In [19] we introduced the following notion of their set of singularities Ssing(w).

Definition 1.3. For w ∈ A∞ we define the set of singularities Ssing(w) by

Ssing(w) = S0(w) ∪ S∞(w),

where

S0(w) =
{

x0 ∈ Rn : inf
Qν,m3x0

w(Qν,m)
|Qν,m| = 0

}
,

S∞(w) =

{
x0 ∈ Rn : sup

Qν,m3x0

w(Qν,m)
|Qν,m| = ∞

}
.

Remark 1.4. This is a special case of Ssing(w1, w2) defined in [19] with w2 ≡ 1,
w1 ≡ w.

Examples 1.5. Let wlog be given by (1.9) such that

wlog(Qν,m)
|Qν,m| ∼





2−να(1 + ν)γ if m = 0,

|2−νm|α (1− log |2−νm|)γ if 1 6 |m| < 2ν ,

|2−νm|β (1 + log |2−νm|)δ if |m| > 2ν .

(1.12)

Hence

S0(wlog) =

{
{0}, if α > 0 or α = 0, γ < 0,

∅, otherwise,

S∞(wlog) =

{
{0}, if α < 0 or α = 0, γ > 0,

∅, otherwise,

such that

Ssing(wlog) =

{
{0}, if α 6= 0 or α = 0, γ 6= 0,

∅, otherwise;

in particular,

Ssing(wα,β) =

{
{0}, if α 6= 0,

∅, otherwise.
(1.13)
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In case of the weight wκ,Γ introduced in (1.11) where Γ is a d-set in Rn with
0 < d < n and κ > −(n − d), one can prove similar to our above considerations
that

Ssing(wκ,Γ) =





Γ = S0(wκ,Γ), S∞(wκ,Γ) = ∅, if κ > 0,

∅ = S0(wκ,Γ) = S∞(wκ,Γ), if κ = 0,

Γ = S∞(wκ,Γ), S0(wκ,Γ) = ∅, if κ < 0,

based on the estimate

wκ,Γ(Qν,m)
|Qν,m| ∼

{
1, if 2Qν,m ∩ Γ = ∅,
2−νκ, otherwise,

(1.14)

see [17].

Remark 1.6. Note that we always have |Ssing(w)| = 0 for w ∈ A∞, cf. [19].

1.2. Function spaces of type Bs
p,q(R

n, w) and F s
p,q(R

n,w) with w ∈ A∞

Let w ∈ A∞ be a Muckenhoupt weight and 0 < p < ∞. Then the weighted
Lebesgue space Lp(Rn, w) contains all measurable functions such that

‖f |Lp(Rn, w)‖ =
(∫

Rn

|f(x)|pw(x) dx

)1/p

(1.15)

is finite. For p = ∞ one obtains the classical (unweighted) Lebesgue space,

L∞(Rn, w) = L∞(Rn), w ∈ A∞; (1.16)

we thus mainly restrict ourselves to p < ∞ in what follows.
The Schwartz space S(Rn) and its dual S ′(Rn) of all complex-valued tem-

pered distributions have their usual meaning here. Let ϕ0 = ϕ ∈ S(Rn) be such
that

supp ϕ ⊂ {y ∈ Rn : |y| < 2} and ϕ(x) = 1 if |x| 6 1 ,

and for each j ∈ N let ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x). Then {ϕj}∞j=0 forms a
smooth dyadic resolution of unity. Given any f ∈ S ′(Rn), we denote by Ff and
F−1f its Fourier transform and its inverse Fourier transform, respectively. Let
f ∈ S ′(Rn), then the Paley-Wiener-Schwartz theorem implies that F−1(ϕjFf) is
an entire analytic function on Rn.

Definition 1.7. Let w ∈ A∞, 0 < q 6 ∞, 0 < p < ∞, s ∈ R and {ϕj}j∈N0
a

smooth dyadic resolution of unity.
(i) The weighted Besov space Bs

p,q(Rn, w) is the set of all distributions f ∈
S ′(Rn) such that

∥∥f |Bs
p,q(Rn, w)

∥∥ =
∥∥∥
{
2js

∥∥F−1(ϕjFf)|Lp(Rn, w)
∥∥}

j∈N0
|`q

∥∥∥ (1.17)

is finite.
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(ii) The weighted Triebel-Lizorkin space F s
p,q(Rn, w) is the set of all distributions

f ∈ S ′(Rn) such that
∥∥f |F s

p,q(Rn, w)
∥∥ =

∥∥∥
∥∥ {

2js|F−1(ϕjFf)(·)|}
j∈N0

|`q

∥∥
∣∣∣Lp(Rn, w)

∥∥∥ (1.18)

is finite.

Remark 1.8. The spaces Bs
p,q(Rn, w) and F s

p,q(Rn, w) are independent of the
particular choice of the smooth dyadic resolution of unity {ϕj}j appearing in
their definitions. They are quasi-Banach spaces (Banach spaces for p, q > 1), and
S(Rn) ↪→ Bs

p,q(Rn, w) ↪→ S ′(Rn), where the first embedding is dense if q < ∞,
similarly for the F -case; cf. [4]. Moreover, for w0 ≡ 1 ∈ A∞ these are the
usual (unweighted) Besov and Triebel-Lizorkin spaces; we refer, in particular, to
the series of monographs [35, 36, 37, 38, 39] for a comprehensive treatment of the
unweighted spaces.

The above spaces with weights of type w ∈ A∞ have been studied system-
atically in [4, 5], with subsequent papers [6, 7]. It turned out that many of the
results from the unweighted situation have weighted counterparts: e.g., we have
F 0

p,2(Rn, w) = hp(Rn, w), 0 < p < ∞, where the latter are Hardy spaces, see [4,
Thm. 1.4], and, in particular, hp(Rn, w) = Lp(Rn, w) = F 0

p,2(Rn, w), 1 < p < ∞,
w ∈ Ap, see [33, Ch. VI, Thm. 1]. Concerning (classical) Sobolev spaces W k

p (Rn, w)
(built upon Lp(Rn, w) in the usual way) it holds

W k
p (Rn, w) = F k

p,2(Rn, w), k ∈ N0, 1 < p < ∞, w ∈ Ap, (1.19)

cf. [4, Thm. 2.8]. Further details can be found in [4, 5, 11, 26, 27, 10, 2, 3]. In
[28] the above class of weights was extended in order to incorporate locally regular
weights, too, creating in that way the class A`oc

p . We partly rely on our approaches
in [17, 18, 19, 20].

Remark 1.9. In [4, Thm. 2.8] it is proved that for w ∈ A∞ the operator Jσ, given
by FJσ(x) = (1 + 4π2|x|2)−σ/2, σ ∈ R, is an isomorphism of Bs

p,q(Rn, w) onto
Bs+σ

p,q (Rn, w) and from F s
p,q(Rn, w) onto F s+σ

p,q (Rn, w), parallel to the unweighted
case.

We briefly recall the definition of atoms.

Definition 1.10. Let K ∈ N0 and b > 1.
(i) The complex-valued function a ∈ CK(Rn) is said to be an 1K-atom if supp a ⊂

bQ0,m for some m ∈ Zn, and |Dαa(x)| 6 1 for |α| 6 K, x ∈ Rn.
(ii) Let s ∈ R, 0 < p 6 ∞, and L + 1 ∈ N0. The complex-valued function

a ∈ CK(Rn) is said to be an (s, p)K,L-atom if for some ν ∈ N0,

supp a ⊂ bQν,m for some m ∈ Zn,

|Dαa(x)| 6 2−ν(s−n
p )+|α|ν for |α| 6 K, x ∈ Rn,∫

Rn

xβa(x) dx = 0 for |β| 6 L.
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We shall denote an atom a(x) supported in some Qν,m by aν,m in the sequel.
Choosing L = −1 in (ii) means that no moment conditions are required. For
0 < p < ∞, 0 < q 6 ∞, w ∈ A∞, we introduce suitable sequence spaces bpq(w) by

bpq(w) =

{
λ = {λν,m}ν,m : λν,m ∈ C,

∥∥λ|bpq(w)
∥∥ ∼

∥∥∥∥
{( ∑

m∈Zn

|λνm|p2νnw(Qν,m)
) 1

p
}

ν∈N0

|`q

∥∥∥∥ < ∞
}

.

For convenience we adopt the usual notation

σp = n

(
1
p
− 1

)

+

, 0 < p 6 ∞. (1.20)

Then the atomic decomposition result used below reads as follows.

Proposition 1.11. Let 0 < p < ∞, 0 < q 6 ∞, s ∈ R, and w ∈ A∞ be a weight
with rw given by (1.7). Let K, L + 1 ∈ N0 with

K > (1 + bsc)+ and L > max
(−1, bσp/rw

− sc) . (1.21)

Then f ∈ S(Rn) belongs to Bs
p,q(Rn, w) if and only if it can be written as a series

f =
∞∑

ν=0

∑

m∈Zn

λνmaν,m(x), converging in S ′(Rn), (1.22)

where aν,m(x) are 1K-atoms (ν = 0) or (s, p)K,L-atoms (ν ∈ N) and λ ∈ bpq(w).
Furthermore,

inf ‖λ|bpq(w)‖ (1.23)

is an equivalent quasi-norm in Bs
pq(Rn, w), where the infimum ranges over all

admissible representations (1.22).

Remark 1.12. The above result coincides with [17, Thm. 3.10], cf. also
[2, Thm. 5.10]. There are parallel F -results, too.

Notational agreement. We adopt the nowadays usual custom to write As
p,q in-

stead of Bs
p,q or F s

p,q, respectively, when both scales of spaces are meant simulta-
neously in some context.

1.3. Continuous Embeddings

We collect some embedding results for weighted spaces that will be used later.
First we formulate the most general criterion obtained in [18], which is afterwards
specified for one-weight situations and finally explicated for our model weights.
Recall that we deal with function spaces on Rn exclusively, and will thus omit the
‘Rn’ from their notation.
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Proposition 1.13. Let w1 and w2 be two A∞ weights and let −∞ < s2 6 s1 < ∞,
0 < p1, p2 6 ∞, 0 < q1, q2 6 ∞. We put

1
p∗

=
(

1
p2
− 1

p1

)

+

and
1
q∗

=
(

1
q2
− 1

q1

)

+

. (1.24)

Then
id : Bs1

p1,q1
(w1) ↪→ Bs2

p2,q2
(w2) (1.25)

is continuous if and only if
{

2−ν(s1−s2)

∥∥∥∥∥
{

w2(Qν,m)1/p2

w1(Qν,m)1/p1

}

m∈Zn

|`p∗

∥∥∥∥∥

}

ν∈N0

∈ `q∗ . (1.26)

Remark 1.14. For the proof and further details, also concerning questions of
compactness, we refer to [18]. In view of (1.16) it is clear that we obtain unweighted
Besov spaces if p1 = p2 = ∞. Then by (1.5), w1(Qν,m) = w2(Qν,m) = 2−νn for all
ν ∈ N0 and m ∈ Zn, such that (1.26) leads to p∗ = ∞, i.e., p1 6 p2, and

δ∗ = s1 − n

p1
− s2 +

n

p2
> 0, (1.27)

with the extension to δ∗ = 0 if q1 6 q2, i.e., q∗ = ∞.

In [18, 19] we concentrated on the interplay between smoothness parameters
and properties of the weight in the following sense.

Corollary 1.15. Let w ∈ A∞ with rw given by (1.7), and

−∞ < s2 6 s1 < ∞, 0 < p1 < ∞, 0 < p2 6 ∞, 0 < q1, q2 6 ∞. (1.28)

(i) Let
δ∗ >

n

p∗
+

n

p1
(rw − 1). (1.29)

Then
idw : Bs1

p1,q1
(w) ↪→ Bs2

p2,q2
(1.30)

is continuous if and only if
∥∥∥∥
{

w(Q0,m)−1/p1

}
m∈Zn

|`p∗

∥∥∥∥ 6 c < ∞. (1.31)

In particular, if µ > n
p (rw − 1), then

Bs
p,q(w) ↪→ Bs−µ

p,q if and only if inf
m

w(Q0,m) > c > 0. (1.32)

(ii) Let δ∗ < n
p∗ or δ∗ = n

p∗ and q∗ < ∞, then Bs1
p1,q1

(w) is not embedded in
Bs2

p2,q2
.
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(iii) Assume that w ∈ A1 such that rw = 1. Then idw in (1.30) is continuous if
and only if 




infm w(Q0,m) > c > 0, and{
2−jδ∗

}
j∈N0

∈ `q∗ , and
p1 6 p2,

(1.33)

in particular,

Bs
p,q(w) ↪→ Bs

p,q if and only if inf
m

w(Q0,m) > c > 0. (1.34)

Finally we give the complete description in case of our special weights wlog,
cf. [20], and wκ,Γ.

Corollary 1.16. Let the parameters be given by (1.28), and wlog by (1.9) with
α, β > −n, γ, δ ∈ R. The embedding

idlog : Bs1
p1,q1

(wlog) ↪→ Bs2
p2,q2

(1.35)

is continuous if and only if




either β
p1

> n
p∗ , δ ∈ R,

or β
p1

= n
p∗ ,

δ
p1

> 1
p∗ if p∗ < ∞,

β = 0, δ > 0 if p∗ = ∞,

(1.36)

and one of the following conditions is satisfied,




{
2−ν(δ∗− α

p1
)(1 + ν)−

γ
p1

}
ν
∈ `q∗ if α

p1
> n

p∗ , γ ∈ R,{
2−ν(δ∗− n

p∗ )
}

ν
∈ `q∗ if α

p1
< n

p∗ , γ ∈ R, or α
p1

= n
p∗ ,

γ
p1

> 1
p∗ ,{

2−ν(δ∗− n
p∗ )(1 + ν)

1
p∗− γ

p1

}
ν
∈ `q∗ if α

p1
= n

p∗ ,
γ
p1

< 1
p∗ ,{

2−ν(δ∗− n
p∗ ) log

1
p∗ (1 + ν)

}
ν
∈ `q∗ if α

p1
= n

p∗ ,
γ
p1

= 1
p∗ .

In particular,

Bs
p,q(wlog) ↪→ Bs

p,q if and only if





β > 0, δ ∈ R with δ > 0 if β = 0,

and
α 6 0, γ ∈ R with γ > 0 if α = 0.

(1.37)

Remark 1.17. Plainly, wα,β = wlog for γ = δ = 0, such that (1.37) reads in this
special case as

Bs
p,q(wα,β) ↪→ Bs

p,q if and only if α 6 0 6 β, (1.38)

and

Bs
p,q(wα,β) ↪→ B

s−max(α,0)
p

p,q if and only if β > 0. (1.39)
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Corollary 1.18. Let Γ ⊂ Rn be a d-set, 0 < d < n, and wκ,Γ be given by (1.11)
with κ > −(n− d). Let the parameters satisfy (1.28). The embedding

idκ,Γ : Bs1
p1,q1

(wκ,Γ) ↪→ Bs2
p2,q2

(1.40)

is continuous if and only if

p1 6 p2 and
{

2−ν(δ∗−max(κ,0)
p1

)
}

ν∈N0

∈ `q∗ . (1.41)

In particular,

Bs
p,q(wκ,Γ) ↪→ Bs

p,q if and only if κ 6 0, (1.42)

and

Bs
p,q(wκ,Γ) ↪→ B

s−max(κ,0)
p

p,q . (1.43)

In [18, 19] we also considered situations where both source and target space
are weighted with the same w ∈ A∞. Here we shall only need the following basic
observation.

Proposition 1.19. Let 0 < q 6 ∞, 0 < p < ∞, s ∈ R and w ∈ A∞.

(i) Let −∞ < s1 6 s0 < ∞ and 0 < q0 6 q1 6 ∞, then

As0
p,q(w) ↪→ As1

p,q(w) and As
p,q0

(w) ↪→ As
p,q1

(w).

(ii) We have
Bs

p,min(p,q)(w) ↪→ F s
p,q(w) ↪→ Bs

p,max(p,q)(w). (1.44)

(iii) Assume that there are numbers c > 0, d > 0 such that for all cubes,

w (Qν,m) > c2−νd, ν ∈ N0, m ∈ Zn. (1.45)

Let 0 < p0 < p < p1 < ∞, −∞ < s1 < s < s0 < ∞ satisfy

s0 − d

p0
= s− d

p
= s1 − d

p1
. (1.46)

Then

Bs0
p0,q(w) ↪→ Bs1

p1,q(w), (1.47)

and
Bs0

p0,p(w) ↪→ F s
p,q(w) ↪→ Bs1

p1,p(w). (1.48)

Remark 1.20. These embeddings are natural extensions from the unweighted
case w ≡ 1, see [35, Prop. 2.3.2/2, Thm. 2.7.1] and [30, Thm. 3.2.1]. The above
result essentially coincides with [4, Thm. 2.6] and can be found in [18, Prop. 1.8].
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Assume that infm∈Zn w(Q0,m) > c > 0, then (1.6) implies d > nrw in (1.45).
In particular, for our model weights wα,β , wlog and wκ,Γ the embeddings (1.47)
and (1.48) can be exemplified as follows, recall also (1.12) and (1.14).

Example 1.21. Let 0 < p0 < p < p1 < ∞, −∞ < s1 < s < s0 < ∞, 0 < q 6 ∞.
(i) Let wα,β and wlog be given by (1.8) and (1.9), respectively, with α > −n,

β > 0, γ, δ ∈ R, and δ > 0 if β = 0, and γ > 0 if α > 0. Assume that

s0 − max(α, 0) + n

p0
= s− max(α, 0) + n

p
= s1 − max(α, 0) + n

p1
. (1.49)

Then (1.47) and (1.48) hold for w = wα,β or w = wlog, respectively.
(ii) Let Γ ⊂ Rn be a d-set, 0 < d < n, and wκ,Γ be given by (1.11) with

κ > −(n− d). Assume that

s0 − max(κ, 0) + n

p0
= s− max(κ, 0) + n

p
= s1 − max(κ, 0) + n

p1
. (1.50)

Then (1.47) and (1.48) hold for w = wκ,Γ.

2. Envelopes

2.1. Definition and basic properties

Let for some measurable function f : Rn → C, finite a.e., its decreasing rearrange-
ment f∗ be defined as usual,

f∗(t) = inf {s > 0 : |{x ∈ Rn : |f(x)| > s}| 6 t} , t > 0 .

Definition 2.1. Let X be some quasi-normed function space on Rn.
(i) The growth envelope function EX

G : (0,∞) → [0,∞] of X is defined by

EX
G (t) = sup

‖f |X‖61

f∗(t) , t > 0. (2.1)

(ii) Assume X 6↪→ L∞(Rn). Let ε ∈ (0, 1), H(t) = − log EX
G (t), t ∈ (0, ε], and

let µH be the associated Borel measure. The number uX
G , 0 < uX

G 6 ∞, is
defined as the infimum of all numbers v, 0 < v 6 ∞, such that

( ε∫

0

( f∗(t)

EX
G (t)

)v

µH( dt)
)1/v

6 c ‖f |X‖ (2.2)

(with the usual modification if v = ∞) holds for some c > 0 and all f ∈ X.
The couple

EG(X) =
(
EX
G (·), uX

G

)

is called (local) growth envelope for the function space X.
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This concept was introduced and first studied in [38, Ch. 2], [12], see also [13].
For convenience we recall some properties. In view of (i) we obtain – strictly
speaking – equivalence classes of growth envelope functions when working with
equivalent quasi-norms in X as we shall usually do. But we do not want to
distinguish between representative and equivalence class in what follows and thus
stick at the notation introduced in (i). Concerning (ii) we shall assume that we can
choose a continuous representative in the equivalence class [EX

G ], for convenience
(but in a slight abuse of notation) denoted by EX

G again. It is obvious that (2.2)
holds for v = ∞ and any X. Moreover, one verifies that

sup
0<t6ε

g(t)

EX
G (t)

6 c1

( ε∫

0

( g(t)

EX
G (t)

)v1

µH( dt)
) 1

v1

6 c2

( ε∫

0

( g(t)

EX
G (t)

)v0

µH( dt)
) 1

v0

for 0 < v0 < v1 < ∞ and all non-negative monotonically decreasing functions g
on (0, ε]; cf. [38, Prop. 12.2]. So with g = f∗ we observe that the left-hand sides
in (2.2) are monotonically ordered in v and it is natural to look for the smallest
possible one.

Proposition 2.2.
(i) Let Xi ↪→ L∞, i = 1, 2, be some function spaces on Rn. Then X1 ↪→ X2

implies that there is some positive constant c such that for all t > 0,

EX1
G (t) 6 cEX2

G (t). (2.3)

(ii) We have X ↪→ L∞ if and only if EX
G is bounded.

(iii) Let Xi, i = 1, 2, be some function spaces on Rn with X1 ↪→ X2. Assume for
their growth envelope functions

EX1
G (t) ∼ EX2

G (t), t ∈ (0, ε),

for some ε > 0. Then we get for the corresponding indices uXi

G , i = 1, 2, that

uX1
G 6 uX2

G . (2.4)

This result coincides with [13, Props. 3.4, 4.5].

Remark 2.3. For rearrangement-invariant Banach function spaces X with fun-
damental function ϕX we proved in [13, Sect. 2.3] that

EX
G (t) ∼ 1

ϕX(t)
=

∥∥χAt

∣∣X
∥∥−1

, t > 0, (2.5)

where At ⊂ Rn with |At| = t.

In contrast to the local characterisation in Definition 2.1(ii) it turned out, that
sometimes also the global behavior of the envelope function,

EX
G (t) for t →∞

is of interest, in particular in weighted spaces.
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2.2. Growth envelopes in unweighted spaces

We briefly summarize some results for unweighted spaces, in particular, for Besov
and Triebel-Lizorkin spaces and Lorentz-Zygmund spaces Lp,q(log L)a; for defini-
tions and further details of the latter we refer to [1, Ch. 4, Defs. 4.1, 6.13].

Proposition 2.4.
(i) Let 0 < p 6 ∞ (with p < ∞ in F -case), 0 < q 6 ∞, s > σp. Then

EG(Bs
p,q) =





(
t−

1
p + s

n , q
)

, if σp < s < n
p , 0 < q 6 ∞,

(
| log t| 1

q′ , q
)

, if s = n
p , 1 < q 6 ∞,

(
t−

1
p +

σp
n , p

)
, if s = σp, 1 6 p < ∞, 0 < q 6 min(p, 2),

(
t−

1
p +

σp
n , q

)
, if s = σp, 0 < p < 1, 0 < q 6 1,

(2.6)

and

EG(F s
p,q) =





(
t−

1
p + s

n , p
)

, if σp < s < n
p , 0 < q 6 ∞,

(
| log t| 1

p′ , p
)

, if s = n
p , 1 < p < ∞,

(
t−

1
p +

σp
n , p

)
, if s = σp, 1 6 p < ∞, 0 < q 6 2,

(
t−

1
p +

σp
n , p

)
, if s = σp, 0 < p < 1, 0 < q 6 ∞.

(2.7)

For the global behavior we obtain for s > σp that

EAs
p,q

G (t) ∼ t−
1
p , t →∞. (2.8)

(ii) Let 0 < p < ∞, 0 < q 6 ∞, a ∈ R. Then

EG (Lp,q(log L)a) =
(
t−

1
p | log t|−a, q

)
, (2.9)

in particular,

EG (Lp) =
(
t−

1
p , p

)
, (2.10)

with

ELp,q(log L)a

G (t) ∼ t−
1
p | log t|−a, t →∞. (2.11)

Remark 2.5. For proofs and further discussion in (i) we refer to [13, Thms. 8.1,
8.16, Props. 8.12, 8.14], [38, Sects. 13, 15], [40]; partial results for the case s = 0,
p = ∞, 1 < q 6 2 are contained in [13, Prop. 8.24] and [29]. Situation (ii) is
studied in [13, Thm. 4.7].
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Remark 2.6. There is a number of partial results in the weighted setting: in
[16] we dealt with growth envelopes of Sobolev spaces EG

(
W k

p (wα,β)
)
; there are

forerunners in [14, 13, 15], which also cover the situation of As
p,q(wα,β) in some

cases, e.g.,

EBs
p,q(wα,β)

G (t) ∼ EF s
p,q(wα,β)

G (t) ∼ t−
1
p−max(α,0)

np + s
n , 0 < t < 1, (2.12)

if s > 0, β > 0, −n+ max(α,0)
p < s− n

p < max(α,0)
p , see [15, Thm. 3.9]. In [16] first

results for EG (Lp(wlog)) were obtained. The so far only approach to the general
situation w ∈ A∞ can be found in [15], where we proved

c1 sup
|E|=t

( ∫

E

w(x) dx

)−1/p

6 ELp(w)
G (t) 6 c2 sup

E⊂Rn,|E|=t

1
|E|

( ∫

E

w(x)−p′/p dx

)1/p′

,

(2.13)
and conjectured that

ELp(w)
G (t) ∼ sup

|B|=t

(∫

B

w(x) dx

)−1/p

, w ∈ Ap.

3. Growth envelope for w ∈ A1

In this section we characterize the singularity behavior of As
p,q(Rn, w) = As

p,q(w)
where w ∈ A1. As a preparation we characterize the parameters such that
As

p,q(w) ↪→ L∞, i.e., where no singularity behavior in the sense of growth en-
velopes appears, and give a sufficient condition such that As

p,q(w) ⊂ Lloc
1 , i.e.,

where the concept of growth envelopes makes sense. Borderline situations s = σp

are out of the scope of the present approach.

Lemma 3.1. Let 0 < p < ∞, 0 < q 6 ∞, w ∈ A1 with

inf
m

w(Q0,m) > cw > 0. (3.1)

(i) Let s > σp. Then As
p,q(w) ⊂ Lloc

1 .
(ii) Let s > n

p or s = n
p and 0 < q 6 1. Then

Bs
p,q(w) ↪→ L∞. (3.2)

(iii) Let 0 < p0 < p < p1 < ∞, s1 < s < s0 satisfy

s0 − n

p0
= s− n

p
= s1 − n

p1
. (3.3)

Then
Bs0

p0,p(w) ↪→ F s
p,q(w) ↪→ Bs1

p1,p(w). (3.4)
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Proof. We use embedding (1.34) with (3.1), thus Bs
p,q ⊂ Lloc

1 for s > σp implies
Bs

p,q(w) ⊂ Lloc
1 ; similarly for (3.2) in view of the unweighted result. The extension

to F -spaces in (i) is covered by (1.44). Concerning (iii) we apply (1.6) with E =
Qν,m and B = Q0,m′ for appropriate m′ ∈ Zn such that Qν,m ⊂ Q0,m′ ; thus (3.1)
implies that

w(Qν,m) > c
w(Qν,m)
w(Q0,m′)

> c′
|Qν,m|
|Q0,m′ | > c′′ 2−νn, ν ∈ N0, m ∈ Zn, (3.5)

with a constant independent of ν and m. We apply (1.48) with (1.46) and d = n
and obtain (3.4) with (3.3). ¥

Remark 3.2. In Corollary 3.5 below we shall prove that for w ∈ A1 we have (3.2)
if and only if s > n

p or s = n
p and 0 < q 6 1 (as in the unweighted case), and

a counterpart for F -spaces. For the moment we conclude from the above result
(and general facts about growth envelopes) that it makes sense to study growth
envelopes in spaces Bs

p,q(w), w ∈ A1, in case of σp < s 6 n
p . We do not consider

the borderline situation s = σp here.

3.1. Growth envelope function

We show that whenever s > σp and w ∈ A1 satisfies (3.1), then

EAs
p,q(w)

G (t) ∼ EAs
p,q

G (t) for t → 0 and t →∞,

and similarly for Lp-spaces.

Proposition 3.3. Let 0 < p < ∞, 0 < q 6 ∞, s > σp, w ∈ A1 with (3.1).

(i) Let s < n
p . Then

EAs
p,q(w)

G (t) ∼ t−
1
p + s

n , t → 0. (3.6)

(ii) Let s = n
p . Then

EAn/p
p,q (w)

G (t) ∼
{
| log t|1/q′ , if A

n/p
p,q = B

n/p
p,q and 1 < q 6 ∞,

| log t|1/p′ , if A
n/p
p,q = F

n/p
p,q and 1 < p < ∞,

t → 0.

(3.7)
(iii) We obtain

EAs
p,q(w)

G (t) ∼ t−
1
p , t →∞. (3.8)

(iv) We have
ELp(w)
G (t) ∼ t−

1
p , t > 0. (3.9)

Proof. Step 1. Note first that it is sufficient to deal with B-spaces only: Assume
that we have already proved (i), (ii) and (iii) with As

p,q = Bs
p,q; then (1.44) to-

gether with (2.3) complete the argument in case of As
p,q = F s

p,q in (i) and (iii);
concerning (ii) we apply Lemma 3.1(iii).
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The estimates from above immediately follow from (1.34) together with (2.3),
(2.6), (2.8), (2.10) and (2.11).

Step 2. As for the estimates from below we adapt the unweighted arguments ap-
propriately and construct special functions fj,x0 ∈Bs

p,q(w) with ‖fj,x0 |Bs
p,q(w)‖ ∼ 1

such that
EBs

p,q(w)

G (2−jn) > c sup
x0

f∗j,x0
(2−jn), j ∈ N.

We begin with (i). Let for x0 ∈ Rn, j ∈ N,

fj,x0(x) = 2−jsψ
(
2j(x− x0)

)
w

(
B(x0, 2−j)

)− 1
p , (3.10)

where ψ ∈ C∞0 (Rn) is given by

ψ(x) =

{
e
− 1

1−|x|2 , if |x| < 1,

0, if |x| > 1;
(3.11)

thus, for j ∈ N, t ∼ 2−jn, we have

f∗j,x0
(t) ∼ 2−jsψ∗(2jnt)w

(
B(x0, 2−j)

)− 1
p ∼ 2−jsw

(
B(x0, 2−j)

)− 1
p . (3.12)

We put
aj(x) = 2−j(s−n

p )ψ
(
2j(x− x0)

)

and observe that these are special atoms according to Definition 1.10, since supp aj ⊂
supp ψ

(
2j(· − x0)

) ⊂ B(x0, 2−j),

|Dαaj(x)| 6 cα,ψ2−j(s−n
p )+j|α|, |α| 6 K, (3.13)

and our assumption on s implies that we do not need to impose moment conditions,
see (1.21). Now let λj = 2−j n

p w
(
B(x0, 2−j)

)− 1
p , then

fj,x0(x) = λjaj(x)

is a special atomic decomposition (1.22) and we obtain
∥∥fj,x0 |Bs

p,q(w)
∥∥ 6 ‖λ|bpq(w)‖ ∼ λj2j n

p w
(
B(x0, 2−j)

) 1
p = 1.

This leads to

EBs
p,q(w)

G (2−kn) > c sup
j,x0

f∗j,x0
(2−kn)

> c sup
x0

f∗k,x0
(2−kn)

> c′ sup
x0

2−ksw
(
B(x0, 2−k)

)− 1
p

> c′′ 2−k(s−n
p ) sup

x0

( |B(x0, 2−k)|
w (B(x0, 2−k))

) 1
p

. (3.14)
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In view of (3.6) it is sufficient to prove that there exists some x0 ∈ Rn such that

w
(
B(x0, 2−k)

)

|B(x0, 2−k)| 6 c (3.15)

independent of k ∈ N0; but since |S∞(w)| 6 |Ssing(w)| = 0, recall Remark 1.6, we
can always find some x0 ∈ Rn \ S∞(w) and this completes the argument for (i).

Step 3. We modify the above approach in order to prove (ii). Let again
x0 ∈ Rn \ S∞(w) and put

fm(x) = m− 1
q

m∑

j=1

ψ
(
2j(x− x0)

)
, m ∈ N. (3.16)

Similarly as above, see also [13, Thm. 8.16], we obtain

f∗m(t) ∼ m− 1
q

{
m, t 6 2−mn,

| log t|, 2−mn 6 t < 1.

Regarding (3.16) as an atomic decomposition of fm (with aj(x) = ψ
(
2j(x− x0)

)
,

λj = m− 1
q , j = 1, . . . , m), we conclude that

∥∥∥fm|Bn/p
p,q (w)

∥∥∥ 6 ‖λ|bpq(w)‖ ∼ m− 1
q




m∑

j=1

2j n
p qw

(
B(x0, 2−j)

) q
p




1/q

6 c, (3.17)

where we applied (3.15) with j = k and x0 ∈ Rn \ S∞(w). The rest is similar to
Step 2,

EBn/p
p,q (w)

G (2−kn) > c sup
m

f∗m(2−kn) > c′ f∗k (2−kn) > c′′ k−
1
q +1 ∼ k

1
q′ , k ∈ N.

Step 4. We show that

EBs
p,q(w)

G (t) > c t−
1
p , t →∞.

We adapt the corresponding proof in [13, Prop. 10.21] appropriately. Let ϕ ∈
C∞0 (Rn) be such that supp ϕ ⊂ {y ∈ Rn : |y| < 2} with ϕ(x) = 1 if |x| 6 1, and
% = ϕ(2−1·)−ϕ. Then supp % ⊂ {x ∈ Rn : 1 < |x| < 4}, and %∗(t) > c, t 6 1. We
consider functions

gj(x) = 2−j n
p %

(
2−jx

)
, j ∈ N, (3.18)

such that g∗j (t) = 2−j n
p %∗(2−jnt) > 2−j n

p for t ∼ 2jn, j ∈ N. This leads to

EAs
p,q(w)

G (t) > sup
j∈N

g∗j (t) > ct−
1
p , t →∞,
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if we can show that ‖gj |As
p,q(w)‖ 6 c, j ∈ N. Let k be a compactly supported C∞

function on Rn with
∑

m∈Zn

k(x−m) = 1, x ∈ Rn.

Then we have for all x ∈ Rn,

gj(x) = 2−j n
p

∑

m∈Zn

k(x−m)%
(
2−jx

) ∼ 2−j n
p

∑

|m|∼2j

k(x−m)%
(
2−jx

)
, j ∈ N.

(3.19)
On the other hand, a0,m(x) = k(x − m)%

(
2−jx

)
can be regarded as 1K-atom

located near Q0,m, m ∈ Zn, such that (3.19) represents a special atomic represen-
tation of gj with λ0m = 2−j n

p , |m| ∼ 2j (and λνm = 0 otherwise). Consequently,
∥∥gj |As

p,q(w)
∥∥p 6 c1 2−j n

p p
∑

|m|∼2j

w(Q0,m) 6 c2 2−jn
∑

|m|∼2j

1 6 c3 2−jn+jn = c3,

with a constant independent of j ∈ N. Here we used that w(Q0,m) 6 c, m ∈ Zn,
since w is bounded a.e. in Rn and Mw(x) 6 cw(x) for a.e. x ∈ Rn.

Step 5. It remains to deal with (iv). The counterpart of (1.34) for Lp-spaces,

Lp(w) ↪→ Lp,

follows by the definition of w ∈ A1 and (3.1), since

‖f |Lp‖p ∼
∑

m∈Zn

∫

Q0,m

w(x)|f(x)|pw−1(x) dx

6
∑

m∈Zn

‖w−1|L∞(Q0,m)‖
∫

Q0,m

w(x)|f(x)|p dx,

and, by definition of A1 and (3.1), w(x) > c′w for a.e. x ∈ Q0,m, such that we can
proceed by

‖f |Lp‖p 6 c′′w
∑

m∈Zn

∫

Q0,m

w(x)|f(x)|p dx ∼
∫

Rn

w(x)|f(x)|p dx = ‖f |Lp(w)‖p
.

In view of (2.10) and (2.11) this yields ELp(w)
G (t) 6 ct−

1
p , t > 0. Conversely, we

may use the same extremal functions (3.10) as in Step 2 (with s = 0), that is

gj,x0(x) = ψ
(
2j(x− x0)

)
w

(
B(x0, 2−j)

)− 1
p ,

and choose x0 ∈ Rn \ S∞(w) such that

g∗j,x0
(t) ∼ w

(
B(x0, 2−j)

)− 1
p > c2j n

p ∼ t−
1
p , j ∈ N, t ∼ 2−jn.
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On the other hand,

‖gj,x0 |Lp(w)‖p ∼ w
(
B(x0, 2−j)

)−1
∫

B(x0,2−j)

ψ
(
2j(x− x0)

)p
w(x) dx

6 cw
(
B(x0, 2−j)

)−1
∫

B(x0,2−j)

w(x) dx = c,

such that, finally,

ELp(w)
G (t) > c sup

j, t∼2−jn

g∗j,x0
(t) ∼ t−

1
p , 0 < t < 1.

Otherwise, for t →∞, we adapt the approach from Step 4. Thus it is sufficient to
verify that ‖gj |Lp(w)‖ 6 c uniformly in j ∈ N, where gj are given by (3.18). As
above, we use that w(Q0,m) 6 c, m ∈ Zn, and obtain

‖gj |Lp(w)‖p 6 c2−jn
∑

|m|∼2j

w(Q0,m) 6 c′2−jn
∑

|m|∼2j

1 6 c′′.

This concludes the proof. ¥

Remark 3.4. Note that we did not use the assumptions w ∈ A1 and (3.1) in
Step 2 of the above proof. Hence we always obtain

EBs
p,q(w)

G (2−kn) > c2−k(s−n
p ) sup

x0∈Rn

( |B(x0, 2−k)|
w (B(x0, 2−k))

) 1
p

, (3.20)

leading to
EAs

p,q(w)

G (t) > ct−
1
p + s

n for t → 0, (3.21)

where w ∈ A∞ and σp < s < n
p .

Corollary 3.5. Let 0 < p < ∞, 0 < q 6 ∞, s > σp, w ∈ A1 with (3.1). Then

Bs
p,q(w) ↪→ L∞ if and only if

{
s > n

p , or
s = n

p and 0 < q 6 1.

Similarly,

F s
p,q(w) ↪→ L∞ if and only if

{
s > n

p , or
s = n

p and 0 < p 6 1.

Proof. Again the F -result follows from the B-assertion, embeddings (1.44) and
Lemma 3.1(iii). The sufficiency is covered by Lemma 3.1(ii), so it remains to
disprove Bs

p,q(w) ↪→ L∞ when s < n
p or s = n

p and 1 < q 6 ∞. How-

ever, in these situations we have the unboundedness of EBs
p,q(w)

G (t) when t → 0
in view of Proposition 3.3(i),(ii) which is by Proposition 2.2(ii) equivalent to
Bs

p,q(w) 6↪→ L∞. ¥
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3.2. Growth envelopes

We complete the characterization of As
p,q(w), w ∈ A1, in terms of their growth

envelopes.

Theorem 3.6. Let 0 < p < ∞, 0 < q 6 ∞, s > σp, w ∈ A1 with (3.1).

(i) Then

EG(Bs
p,q(w)) =





(
t−

1
p + s

n , q
)

, s < n
p ,

(
| log t| 1

q′ , q
)

, s = n
p and 1 < q 6 ∞.

(3.22)

(ii) Then

EG(F s
p,q(w)) =





(
t−

1
p + s

n , p
)

, s < n
p ,

(
| log t| 1

p′ , p
)

, s = n
p and 1 < p < ∞,

(3.23)

and

EG(Lp(w)) =
(
t−

1
p , p

)
. (3.24)

Proof. In view of Proposition 3.3, (2.4), (2.6), (2.7) and (2.10) it remains to prove
that u

Bs
p,q(w)

G > q, u
F s

p,q(w)

G > p and u
Lp(w)
G > p. By Lemma 3.1(iii) and another

application of (2.4) we may restrict ourselves to the B- and the Lp-case. Let first
s < n

p and ε > 0. We have to verify that




ε∫

0

[
t

1
p− s

n f∗(t)
]v dt

t




1/v

6 c
∥∥f |Bs

p,q(w)
∥∥ (3.25)

for all f ∈ Bs
p,q(w) implies v > q. We consider a refined construction of the above

extremal functions fj,x0 given by (3.10). We choose {xj}j ∈ Rn \ S∞(w) with,
say, |xj −xr| > 4, j 6= r, such that supp ψ

(
2j(· − xj)

) ∩ supp ψ (2r(· − xr)) = ∅
for j 6= r, j, r ∈ N0, and ψ is given by (3.11). Let {bj}j∈N be a sequence of non-
negative numbers where we may assume, in addition, that b1 = · · · = bJ−1 = 0,
and J is suitably chosen such that 2−J ∼ ε. Let

fb(x) =
∞∑

j=1

2−jsbjψ
(
2j(x− xj)

)
w

(
B(xj , 2−j)

)− 1
p . (3.26)

Seen as atomic decomposition of fb (with aj = 2−j(s−n
p )ψ

(
2j(· − xj)

)
and λj =
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2−j n
p bj w

(
B(xj , 2−j)

)− 1
p ), this implies

∥∥fb|Bs
p,q(w)

∥∥ 6 ‖λ|bpq(w)‖

6 c




∞∑

j=J

2−j n
p qw

(
B(xj , 2−j)

)− q
p bq

j 2j n
p qw

(
B(xj , 2−j)

) q
p




1
q

∼ ‖b|`q‖. (3.27)

Since

f∗b (t) > cbj 2−jsw
(
B(xj , 2−j)

)− 1
p > c′bj 2−j(s−n

p ), j ∈ N, t ∼ 2−jn, (3.28)

inequality (3.25) can be extended on both sides to




∞∑

j=J

bv
j




1
v

6 c1




ε∫

0

[
t

1
p− s

n f∗b (t)
]v dt

t




1
v

6 c2

∥∥fb|Bs
p,q(w)

∥∥ 6 c3‖b|`q‖

for arbitrary sequences of non-negative numbers. This obviously requires v > q.
As for the Lp-situation we adapt the above argument and use the functions

fb given by (3.26) with s = 0. All what is left to show in this case is that
‖fb|Lp(w)‖ 6 c‖b|`p‖, but by the disjointness of the supports in construction
(3.26) and the choice of xj ∈ Rn \ S∞(w) this is straightforward.

Assume now s = n
p , 1 < q 6 ∞. The counterpart of (3.25) reads as




ε∫

0

[
f∗(t)

| log t|1/q′+1/v

]v dt

t




1/v

6 c
∥∥∥f |Bn/p

p,q (w)
∥∥∥ (3.29)

for all f ∈ B
n/p
p,q (w). We want to prove v > q and proceed by contradiction; that

is, we assume v < q. We refine the approach presented in Step 3 of the proof of
Proposition 3.3. Let x0 ∈ Rn \ S∞(w), m ∈ N, and

fm,b(x) =
m∑

j=1

bjψ
(
2j(x− x0)

)
, x ∈ Rn, (3.30)

where
bj = j−

1
q (1 + log j)−

1
v , j = 1, . . . , m,

in (3.26). Then similar to (3.17),

∥∥∥fm,b|Bn/p
p,q (w)

∥∥∥ 6 c ‖b|`q‖ = c




m∑

j=1

1
j (1 + log j)q/v




1/q

6 c2
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since v < q, where c2 does not depend on m ∈ N. On the other hand, by our
choice of {bj}j ,

f∗m,b(2
−kn) > c

k∑

j=1

bj > c k bk ∼ k
1
q′ (1 + log k)−

1
v , k = 1, . . . ,m,

hence for m > J ,




ε∫

0

[
f∗m,b(t)

| log t|1/q′+1/v

]v
dt

t




1
v

> c1

(
m∑

k=1

[
f∗m,b(2

−kn)
k1/q′+1/v

]v) 1
v

> c2

(
m∑

k=1

1
k(1 + log k)

) 1
v

.

Obviously the expression on the right-hand side diverges for m → ∞, such that
there are functions fm,b ∈ B

n/p
p,q (w), not satisfying (3.29). This completes the

proof. ¥

Remark 3.7. Let w ∈ A1 with (3.1). Then Proposition 3.3, Corollary 3.5 and
Theorem 3.6 describe exactly the counterparts of the unweighted situations with
w ≡ 1, see Proposition 2.4 (apart from borderline cases). In other words, though
we only have the embedding (1.34) in this setting, the spaces are so close to-
gether that their singularity behavior (measured in growth envelopes) cannot be
distinguished. This phenomenon is already known from similar studies concerning
questions of compactness, cf. [19].

We separately formulate Theorem 3.6 for our example weights wα,β , wlog and
wκ,Γ. Note that (3.1) requires β > 0 and δ > 0 if β = 0. Hence we can apply
Theorem 3.6 to wlog and wα,β in case of β = δ = 0 in view of (1.10), thus only the
local behavior can differ from the unweighted setting (as seems reasonable when
characterizing local singularity behavior).

Corollary 3.8. Let 0 < p < ∞, 0 < q 6 ∞, s > σp.

(i) Let wα,β be given by (1.8) and wlog by (1.9) with −n < α 6 0, γ ∈ R, with
γ > 0 if α = 0, and β = δ = 0. Then

EG(Bs
p,q(wα,0)) = EG(Bs

p,q(wlog)) =





(
t−

1
p + s

n , q
)

, s < n
p ,(

| log t| 1
q′ , q

)
, s = n

p and 1 < q 6 ∞,

(3.31)

EG(F s
p,q(wα,0)) = EG(F s

p,q(wlog)) =





(
t−

1
p + s

n , p
)

, s < n
p ,(

| log t| 1
p′ , p

)
, s = n

p and 1 < p < ∞,

(3.32)
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and

EG(Lp(wα,0)) = EG(Lp(wlog)) =
(
t−

1
p , p

)
. (3.33)

(ii) Let Γ ⊂ Rn be a d-set, 0 < d < n, and wκ,Γ given by (1.11) with −(n− d) <
κ 6 0. Then

EG(Bs
p,q(wκ,Γ)) =





(
t−

1
p + s

n , q
)

, s < n
p ,

(
| log t| 1

q′ , q
)

, s = n
p and 1 < q 6 ∞,

(3.34)

EG(F s
p,q(wκ,Γ)) =





(
t−

1
p + s

n , p
)

, s < n
p ,

(
| log t| 1

p′ , p
)

, s = n
p and 1 < p < ∞,

(3.35)

and

EG(Lp(wκ,Γ)) =
(
t−

1
p , p

)
. (3.36)

Remark 3.9. Plainly, the case −n < β < 0 in the above example, referring to
weights w ∈ A1 which do not satisfy (3.1) is of some interest, too, but not yet
covered by our above techniques, apart from lower estimates, see Remark 3.4.

3.3. Applications

We briefly present two typical applications of the preceding envelope results: Hardy
type inequalities and sharp embedding criteria.

Corollary 3.10. Let 0 < p < ∞, 0 < q 6 ∞, s > σp, w ∈ A1 with (3.1), and
ε > 0 be small.
(i) Let s < n

p , 0 < u 6 ∞ and let κ be a positive monotonically decreasing
function on (0, ε]. Then

( ε∫

0

[
κ(t) t

1
p− s

n f∗(t)
]u dt

t

)1/u

6 c ‖f |As
p,q(w)‖ (3.37)

for some c > 0 and all f ∈ As
p,q(w) if and only if κ is bounded and

{
q 6 u 6 ∞, if As

p,q = Bs
p,q,

p 6 u 6 ∞, if As
p,q = F s

p,q,

with the modification

sup
t∈(0,ε)

κ(t) t
1
p− s

n f∗(t) 6 c ‖f |As
p,q(w)‖ (3.38)

if u = ∞. In particular, if κ is an arbitrary non-negative function on (0, ε],
then (3.38) holds if and only if κ is bounded.
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(ii) Let s = n
p , 1 < q 6 ∞, 0 < u 6 ∞ and let κ be a positive monotonically

decreasing function on (0, ε]. Then




ε∫

0

[
κ(t) (1 + | log t|) 1

q′ f∗(t)
]u dt

t | log t|




1/u

6 c
∥∥∥f |Bn/p

p,q (w)
∥∥∥ (3.39)

for some c > 0 and all f ∈ B
n/p
p,q (w) if and only if κ is bounded and q 6 u 6

∞, with the modification

sup
t∈(0,ε)

κ(t) (1 + | log t|) 1
q′ f∗(t) 6 c

∥∥∥f |Bn/p
p,q (w)

∥∥∥ (3.40)

if u = ∞. In particular, if κ is an arbitrary non-negative function on (0, ε],
then (3.40) holds if and only if κ is bounded.

(iii) Let s = n
p , 1 < p < ∞, 0 < u 6 ∞ and let κ be a positive monotonically

decreasing function on (0, ε]. Then




ε∫

0

[
κ(t) (1 + | log t|) 1

p′ f∗(t)
]u dt

t | log t|




1/u

6 c
∥∥∥f |Fn/p

p,q (w)
∥∥∥ (3.41)

for some c > 0 and all f ∈ F
n/p
p,q (w) if and only if κ is bounded and p 6 u 6

∞, with the modification

sup
t∈(0,ε)

κ(t) (1 + | log t|) 1
p′ f∗(t) 6 c

∥∥∥f |Fn/p
p,q (w)

∥∥∥ (3.42)

if u = ∞. In particular, if κ is an arbitrary non-negative function on (0, ε],
then (3.42) holds if and only if κ is bounded.

(iv) Let 0 < u 6 ∞ and let κ be a positive monotonically decreasing function on
(0, ε]. Then




ε∫

0

[
κ(t) t

1
p f∗(t)

]u dt

t




1/u

6 c ‖f |Lp(w)‖ (3.43)

for some c > 0 and all f ∈ Lp(w) if and only if κ is bounded and p 6 u 6 ∞,
with the modification

sup
t∈(0,ε)

κ(t) t
1
p f∗(t) 6 c ‖f |Lp(w)‖ (3.44)

if u = ∞. In particular, if κ is an arbitrary non-negative function on (0, ε],
then (3.44) holds if and only if κ is bounded.
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This follows immediately from Definition 2.1 and Theorem 3.6. Of course, the
above Hardy-type inequalities can be explicated for the particular weights wlog,
wα,β and wκ,Γ considered in Corollary 3.8.

Another type of application concerns sharp (or limiting) embeddings which
naturally can be understood as sharp inequalities, too. In addition to Corollary 3.5
we now restrict ourselves to a few model cases only to demonstrate the method.

Corollary 3.11. Let 0 < p < ∞, 0 < q 6 ∞, w ∈ A1 with (3.1).
(i) Let 0 < p0 < p < p1 < ∞, s1 < s < s0 satisfy

s0 − n

p0
= s− n

p
= s1 − n

p1
. (3.45)

Then for 0 < u, v 6 ∞,

Bs0
p0,u(w) ↪→ F s

p,q(w) ↪→ Bs1
p1,v(w) if and only if u 6 p 6 v. (3.46)

(ii) Let 1 < r < ∞, 0 < u 6 ∞, σp < s < n
p , with

s− n

p
= −n

r
.

Then

As
p,q(w) ↪→ Lr,u if and only if

{
q 6 u 6 ∞, if As

p,q = Bs
p,q,

p 6 u 6 ∞, if As
p,q = F s

p,q.

(3.47)

Proof. The sufficiency parts of (i) and (ii) are covered by Lemma 3.1(iii) together
with (1.34) and the well-known unweighted counterpart of (ii), cf. [13, p. 120].
It remains to show that the embeddings imply the corresponding parameter esti-
mates, but (ii) is an immediate consequence of Corollary 3.10(i) with κ ≡ 1.

We complete the proof of (i). Let Bs0
p0,u(w) ↪→ F s

p,q(w) ↪→ Bs1
p1,v(w) with

(3.45). Assume first that s1 > σp1 (which implies s0 > σp0 and s > σp) and
si − n

pi
= s − n

p < 0, i = 0, 1, such that we can apply Theorem 3.6 to all spaces
involved and obtain by (3.45)

EBs0
p0,u(w)

G (t) ∼ EF s
p,q(w)

G (t) ∼ EBs1
p1,v(w)

G (t) ∼ t−
1
p + s

n , t → 0.

Now Proposition 2.2(iii) implies that u
Bs0

p0,u(w)

G 6 u
F s

p,q(w)

G 6 u
Bs1

p1,v(w)

G which is by
Theorem 3.6 equivalent to the desired result u 6 p 6 v. It remains to consider
situations s1 6 σp1 or si − n

pi
= s − n

p > 0, i = 0, 1. This is done by the
lifting argument mentioned in Remark 1.9: we can always choose some number
µ ∈ R in such a way that s̃i = si − µ, i = 0, 1, s̃ = s − µ satisfy s̃1 > σp1

and s̃i − n
pi

= s̃ − n
p < 0, i = 0, 1. Since Bs0

p0,u(w) ↪→ F s
p,q(w) ↪→ Bs1

p1,v(w)
implies Bs̃0

p0,u(w) ↪→ F s̃
p,q(w) ↪→ Bs̃1

p1,v(w), the preceding observation concludes the
argument. ¥

Remark 3.12. It is obvious that also parts (ii) and (iii) of Corollary 3.10(i) can be
reformulated in the sense of Corollary 3.11(ii), dealing with spaces of exponential
type accordingly. We shall return to Corollary 3.10(iv) in Remark 4.8 below.
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4. Growth envelope functions for w ∈ A∞

We turn to the general situation now where the results are less complete so far.

Lemma 4.1. Let 0 < p < ∞, 0 < q 6 ∞, w ∈ A∞ with (3.1).

(i) Let s > n
(

rw

p − 1
max(p,1)

)
. Then As

p,q(w) ⊂ Lloc
1 .

(ii) Assume that
{

2−ν(s−n
p ) sup

m∈Zn

(
w(Qν,m)
|Qν,m|

)− 1
p

}

ν∈N0

∈ `q′ . (4.1)

Then
Bs

p,q(w) ↪→ L∞, (4.2)

in particular, if s > n
p rw, then

As
p,q(w) ↪→ L∞. (4.3)

(iii) Let d > nrw, and assume that 0 < p0 < p < p1 < ∞, s1 < s < s0 satisfy

s0 − d

p0
= s− d

p
= s1 − d

p1
. (4.4)

Then
Bs0

p0,p(w) ↪→ F s
p,q(w) ↪→ Bs1

p1,p(w). (4.5)

Proof. Note that the extension to F -spaces in (i) is a direct consequence of (1.44),
so it is sufficient to consider B-spaces. In view of our assumptions we can choose
ε > 0 sufficiently small such that

s− n

p
(rw − 1)− εn > σp. (4.6)

Now we use embedding (1.32) with µ = n
p (rw − 1) + εn, hence (3.1) implies

Bs
p,q(w) ↪→ B

s−n
p (rw−1)−εn

p,q (4.7)

and the unweighted result gives (i). We come to (ii). Since (4.1) implies Bs
p,q(w) ↪→

B0
∞,1 in view of (1.26), the classical result B0

∞,1 ↪→ L∞ leads to (4.2). In particular,
if s > n

p rw one may choose ε > 0 sufficiently small such that s−µ > n
p and (4.7) can

be extended by the unweighted embedding B
s−n

p (rw−1)−εn
p,q ↪→ L∞. Alternatively,

using (1.6) for some number r such that s > n r
p > n rw

p one obtains convergence
in (4.1) for any q, since

2−ν(s−n
p ) sup

m∈Zn

(
w(Qν,m)
|Qν,m|

)− 1
p

6 c′w 2−ν(s−n r
p );

hence (4.2) with Proposition 1.19(i), (ii) imply (4.3).
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Finally, concerning (iii) we apply (1.6) with d
n > rw, such that w ∈ Ad/n.

Together with (3.1) this gives for ν ∈ N0, m ∈ Zn and appropriate m′ ∈ Zn with
Qν,m ⊂ Q0,m′ , that

w(Qν,m) > cw
w(Qν,m)
w(Q0,m′)

> c′w
|Qν,m|d/n

|Q0,m′ |d/n
> c2−νd, ν ∈ N0, m ∈ Zn, (4.8)

with a constant independent of ν ∈ N0 and m ∈ Zn. Application of (1.48) with
(1.46) gives (iii). ¥

Remark 4.2. In contrast to Lemma 3.1(ii) and Remark 3.2 we only obtain a
sufficient condition for Bs

p,q(w) ↪→ L∞ here when w ∈ A∞; borderline situations
corresponding to (i) are out of the frame of the present approach again. Moreover,
inspired by Lemma 3.1(iii) one might be tempted to take the limiting case d = nrw

in (iii), but sharp embedding criteria for wα,β and wlog studied in [18, 20] disprove
this assumption. On the other hand, condition (4.1) may be sharp in certain cases,
also for w 6∈ A1: take wα,β with (3.1) (thus β > 0), then we have by Corollary 1.16
for any p < r < ∞ the continuous embedding

Bs
p,q(wα,β) ↪→ Bσ

r,q, s− n

p
= σ − n

r
+

max(α, 0)
p

, (4.9)

in particular, with σ = n
r ,

Bs
p,q(wα,β) ↪→ Bn/r

r,q , s− n

p
=

max(α, 0)
p

, (4.10)

such that B
n/r
r,q ↪→ L∞ for 0 < q 6 1 implies

Bs
p,q(wα,β) ↪→ L∞, s =

n

p
+

max(α, 0)
p

, 0 < q 6 1, (4.11)

in accordance with (4.1), recall (1.12). As it turns out in Corollary 4.20 below,
this is indeed sharp.

In view of Lemma 4.1(i), (ii) and general facts about growth envelopes we
mainly restrict ourselves to w ∈ A∞ and parameters

0 < p < ∞, 0 < q 6 ∞, n

(
rw

p
− 1

max(p, 1)

)
< s 6 n

p
rw (4.12)

in the sequel. Plainly, (4.12) implies s > σp/rw
which is needed to avoid moment

conditions for the atoms in the corresponding Besov spaces, see (1.21). If rw =
1, e.g. for w ∈ A1, then (4.12) reduces to σp < s 6 n

p , corresponding to the
unweighted setting and Remark 3.2.
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4.1. Estimates from above

Here we mainly apply (sharp) embeddings together with results from the un-
weighted setting.

Proposition 4.3. Let w ∈ A∞ with (3.1) and let (4.12) be satisfied.
(i) Assume that for µ with 0 6 µ < s− σp there exists some c > 0 such that

inf
ν∈N0

2νµ inf
m∈Zn

(
w(Qν,m)
|Qν,m|

) 1
p

> c. (4.13)

Then

EAs
p,q(w)

G (t) 6 c′





t−
1
p + s

n− µ
n , if µ > s− n

p ,

| log t| 1
q′ , if µ = s− n

p , 1 < q 6 ∞ and As
p,q = Bs

p,q,

| log t| 1
p′ , if µ = s− n

p , 1 < p < ∞ and As
p,q = F s

p,q,

(4.14)

for t → 0. In particular, for any small ε > 0 there is some cε > 0 such that

EAs
p,q(w)

G (t) 6 cε t−
rw
p + s

n−ε, t → 0. (4.15)

(ii) Assume that for some u with 0 < u 6 ∞ and s > n
(

1
p + 1

u − 1
)

+
there is

some c > 0 such that

sup
ν∈N0

2−νn( 1
p + 1

u )
∥∥∥w(Qν,m)−

1
p |`u

∥∥∥ 6 c < ∞. (4.16)

Then
EAs

p,q(w)

G (t) 6 ct−
1
p− 1

u , t →∞. (4.17)

In any case we have

EAs
p,q(w)

G (t) 6 ct−
1
p , t →∞. (4.18)

Proof. Let for ε > 0 the number rε = rw +ε > rw, hence w ∈ Arε . Then by (3.1)
and (1.6),

inf
m∈Zn

(
w(Qν,m)
|Qν,m|

) 1
p

> c2−ν n
p (rε−1),

such that (4.13) is always satisfied with µε = n
p (rε − 1). Moreover, assumption

(4.12) guarantees that µε < s− σp for sufficiently small ε > 0. Thus

Bs
p,q(w) ↪→ Bs−µε

p,q

is always true for small ε which immediately leads to (4.15) and (4.18) in view of
the unweighted results (2.6), (2.8) together with (2.3). Moreover, in case of (4.13)
we have

Bs
p,q(w) ↪→ Bs−µ

p,q
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and in case of (4.16),

Bs
p,q(w) ↪→ Bs

r,q with
1
r

=
1
p

+
1
u

.

Thus (4.14) and (4.17) are again consequences of (2.3), (2.6), and (2.8), at least
in case of B-spaces. The F -case in the first line of (4.14) and (4.17) can be easily
obtained in view of (1.44), only the last line in (4.14) needs some more care.
Assume that µ = s− n

p , let d = sp, then (4.13) reads as

inf
ν∈N0

2νd inf
m∈Zn

w(Qν,m) > c′. (4.19)

Since s > n
p we may choose s1 < s and p1 > p such that s1p1 = d = sp and

µ1 = s1 − n
p1

> 0. On the other hand, (4.19) together with the second line of
(4.14) yield

EBs1
p1,p(w)

G (t) 6 c| log t| 1
p′ , t → 0,

such that Proposition 1.19(iii), that is F s
p,q(w) ↪→ Bs1

p1,p(w), and (2.3) conclude the
argument. ¥

Remark 4.4. Clearly, one is interested in the smallest numbers µ in (i) and u
in (ii) to obtain sharp upper estimates for t → 0 and t → ∞, respectively. Note
that ε > 0 in (4.15) cannot be omitted in general, though in special cases ε = 0 is
possible: Let wα,β be given by (1.8) with β = 0 such that (3.1) is satisfied. Then
by (2.12) for 0 < p < ∞, 0 < q 6 ∞, s− n

p < max(α,0)
p ,

EBs
p,q(wα,β)

G (t) ∼ t−
1
p + s

n−max(α,0)
np , for t → 0. (4.20)

Since rwα,β
= 1 + max(α,0)

n , this corresponds to (4.15) with ε = 0. We discuss this
point in further detail below.

We collect consequences of Proposition 4.3 for our example weights wα,β , wlog

and wκ,Γ.

Corollary 4.5. Let 0 < p < ∞ and 0 < q 6 ∞.

(i) Let wα,β be given by (1.8) with β > 0 and assume σp < s − max(α,0)
p 6 n

p .
Then

EAs
p,q(wα,β)

G (t) 6 c





t−
1
p + s

n−max(α,0)
np , if s < n

p + max(α,0)
p ,

| log t| 1
q′ , if s = n

p + max(α,0)
p , 1 < q 6 ∞

and As
p,q = Bs

p,q,

| log t| 1
p′ , if s = n

p + max(α,0)
p , 1 < p < ∞

and As
p,q = F s

p,q,

(4.21)
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for t → 0. Moreover, let α < β, then for any small ε > 0 there is some
cε > 0 such that

EAs
p,q(wα,β)

G (t) 6 cε t−min( 1
p + β

np , s
n +1)+ε, t →∞. (4.22)

If 1 < p < ∞, 0 < β < n(p− 1), α 6 β, then (4.22) can be improved by

EAs
p,q(wα,β)

G (t) 6 ct−
1
p− β

np , t →∞. (4.23)

(ii) Let wlog be given by (1.9) with β > 0 and δ > 0 if β = 0. Assume σp <

s− max(α,0)
p 6 n

p , and γ > 0 if α > 0. Then EAs
p,q(wlog)

G (t) can be estimated by
the right-hand side of (4.21) for t → 0, and by the right-hand side of (4.22)
for t → ∞. In case of s > n( 1

p + β
np − 1)+ and δ > β

n we have the sharper
estimate (4.23).

(iii) Let wκ,Γ be given by (1.11), and σp < s− max(κ,0)
p 6 n

p . Then

EAs
p,q(wκ,Γ)

G (t) 6 c





t−
1
p + s

n−max(κ,0)
np , if s < n

p + max(κ,0)
p ,

| log t| 1
q′ , if s = n

p + max(κ,0)
p , 1 < q 6 ∞

and As
p,q = Bs

p,q,

| log t| 1
p′ , if s = n

p + max(κ,0)
p , 1 < p < ∞

and As
p,q = F s

p,q,

(4.24)
for t → 0. Moreover, we have for s− max(κ,0)

p > σp that

EAs
p,q(wκ,Γ)

G (t) 6 c t−
1
p , t →∞. (4.25)

Proof. Part (i) follows from Proposition 4.3(i) with µ = max(α
p , 0) in the local

case, recall β > 0 and (1.12), whereas u in Proposition 4.3(ii) can be chosen such
that α

np < 1
u < β

np . This leads to (4.22) if s > (β
p + n

p − n)+. In case of wlog and
δ > β

n we may even take 1
u = β

np and arrive at (4.23).
Concerning (4.22) in case of s 6 (β

p + n
p − n)+ note first that our general

assumption s > σp + max(α
p , 0) then implies α < β and β

p + n
p > n. The idea is to

find the smallest number r such that for suitable µ > 0,

Bs
p,q(wα,β) ↪→ Bs−µ

r,q with s− µ > n

(
1
r
− 1

)

+

. (4.26)

By Corollary 1.16 this requires 1
r < β

np + 1
p (or 1

r = β
np + 1

p with δ > β
n in case

of wlog), and µ > (α
p − n

r + n
p )+. But if s 6 (β

p + n
p − n)+ = β

p + n
p − n, we may

always choose r such that

max
(

1,
α

np
+

1
p

)
<

1
r

< min
(

β

np
+

1
p
,
s

n
+ 1

)
=

s

n
+ 1.
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Thus for any (sufficiently small) ε > 0 we take µε < ε
n , and

1
rε

= s
n + 1− ε, such

that (4.26) becomes
Bs

p,q(wα,β) ↪→ Bs−µε
rε,q .

Finally, (2.3) and (2.8) lead to (4.22). The argument for wκ,Γ is parallel, where
(4.24) corresponds to (4.14) with µ = max(κp , 0), and (4.25) follows from (4.18).

¥

Remark 4.6. We already obtained the non-limiting case in (4.21) and (4.23) in
[15]. It seems natural to assume that (4.23) describes the correct upper bound in
all cases of s, but this is not yet verified.

In case of Lp(w) we generalize the interpolation idea used in [16, Lemma 3.3].

Lemma 4.7. Let 0 < p < ∞ and w ∈ A∞.

(i) If w−
1
p ∈ Lq,∞(log L)κ for some 0 < q < ∞ and κ ∈ R, then

Lp(w) ↪→ Lr,p(log L)κ for
1
r

=
1
p

+
1
q
, (4.27)

and, consequently,

ELp(w)
G (t) 6 ct−

1
p− 1

q (1 + | log t|)−κ , t > 0. (4.28)

(ii) If w−1 ∈ L∞, then
Lp(w) ↪→ Lp, (4.29)

and, consequently,
ELp(w)
G (t) 6 ct−

1
p , t > 0. (4.30)

Proof. Similar to [13, Lemma 3.33] and [16, Lemma 3.3] we use interpolation
arguments and the result of Merucci [22, Ex. 3] to extend Hölder’s inequality to

Lp,u(log L)a · Lq,v(log L)b ↪→ Lr,u(log L)a+b,

0 < u, v 6 ∞, a, b ∈ R,
1
r

=
1
p

+
1
q
, (4.31)

in the sense that f ∈ Lp,u(log L)a and g ∈ Lq,v(log L)b implies fg ∈ Lr,u(log L)a+b

with
‖fg|Lr,u(log L)a+b‖ 6 c ‖f |Lp,u(log L)a‖ ‖g|Lq,v(log L)b‖ . (4.32)

We apply (4.32) with u = p, v = ∞, a = 0, b = κ, g = w−
1
p and f = hw

1
p which

yields
‖h|Lr,p(log L)κ‖ 6 c ‖h|Lp(w)‖

∥∥∥w−
1
p |Lq,∞(log L)κ

∥∥∥ ,

that is, (4.27). Embedding (4.29) is obvious. The estimates (4.28) and (4.30) are
consequences of these embeddings together with (2.3) and Proposition 2.4(ii). ¥
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Remark 4.8. If w ∈ A1 with (3.1), then Lemma 4.7(ii) corresponds to Propo-
sition 3.3(iv). Moreover, Corollary 3.10(iv) with κ ≡ 1 confirms that the target
space Lp is optimal within the scale of Lorentz spaces.

We explicate Lemma 4.7 for w = wlog.

Corollary 4.9. Let 0 < p < ∞, κ ∈ R, and wlog given by (1.9) with −n < α 6 β,
β > 0, γ, δ ∈ R. Then

Lp

(
wlog

)
↪→ Lr,p(log L)κ (4.33)

if (at least) one of the following conditions is satisfied:

(a) 1
p + max(α,0)

np < 1
r < 1

p + β
np , or

(b) 1
r = 1

p + β
np and κ 6 δ

p , or

(c) 1
r = 1

p + max(α,0)
np and κ 6

{
γ
p , if α > 0 or α = 0 > γ,

0, if α < 0 or α = 0 6 γ.

Consequently we obtain for any t > 0 and 1
p + max(α,0)

np < 1
r < 1

p + β
np , κ ∈ R,

ELp(wlog)
G (t) 6 ct−

1
r (1 + | log t|)−κ, (4.34)

and, in the limiting cases, for α < β,

ELp(wlog)
G (t) 6 ct−

1
p− β

np (1 + | log t|)− δ
p , (4.35)

ELp(wlog)
G (t) 6 c

{
t−

1
p−max(α,0)

np (1 + | log t|)− γ
p , α > 0 or α = 0 > γ,

t−
1
p , α < 0 or α = 0 6 γ,

(4.36)

whereas α = β leads to

ELp(wlog)
G (t) 6 c

{
t−

1
p− α

np (1 + | log t|)−min(γ,δ)
p , α = β > 0,

t−
1
p , α = β = 0 6 min(γ, δ).

(4.37)

Proof. The embedding result can be found in [20] (with a forerunner for α > 0
in [16, Lemma 3.3]), it is based on Lemma 4.7(i). Plainly, (4.34)-(4.37) are conse-
quences of (a)-(c) together with (2.3) and Proposition 2.4(ii). ¥

Remark 4.10. Note that for α < 0 or α = 0 6 γ embedding (4.33) remains valid
for β = 0 and δ > 0, that is, Lp(wlog) ↪→ Lp ↪→ Lp(log L)κ , κ 6 0, leading again
to

ELp(wlog)
G (t) 6 ct−

1
p , t > 0. (4.38)

Of course, wlog = wα,β if γ = δ = 0, such that Corollary 4.9 contains sharp
embeddings and upper estimates for the growth envelope function of Lp(wα,β) as
special case.



Growth envelopes in Muckenhoupt weighted function spaces: the general case 203

We use Corollary 4.9 to improve our results in Corollary 4.5 partially.

Corollary 4.11. Let wlog be given by (1.9) with α > −n, β > 0, γ, δ ∈ R, and
δ > 0 if β = 0. Assume that 0 < p < ∞, 0 < q 6 ∞, and s > σp + max(α,0)

p .

(i) If 0 < α 6 β, γ > 0, δ > γ if α = β, and

n

(
1
p
− n + α

n + β

)

+

< s− α

p
<

n

p
, (4.39)

then (4.21) can be refined by

EAs
p,q(wlog)

G (t) 6 ct
s
n− 1

p− α
np (1 + | log t|)− γ

p + γs
n+α , t → 0, (4.40)

where in case of A = B we have, in addition, to assume that 1
q > 1

p − s
n+α .

(ii) For the global behavior we obtain that if 1 < p < ∞, 0 < β < n(p − 1),
α 6 β, and δ 6 γ if α = β, then (4.23) can be improved by

EAs
p,q(wlog)

G (t) 6 ct−
1
p− β

np (1 + | log t|)− δ
p , t →∞. (4.41)

Proof. Plainly, the results in case of F -spaces result from their B-counterparts
in view of the embeddings (1.44) and Example 1.21 together with (2.3).

Concerning (4.40) we apply (4.36), (4.37) together with Example 1.21 and
Lr(w) = F 0

r,2(w), 1 < r < ∞, w ∈ Ar, cf. (1.19). Note that (4.39) implies
s− α

p > σp such that As
p,q(wlog) ⊂ Lloc

1 , as desired. Beginning with the F -case we
have

F s
p,q(wlog) ↪→ F 0

r,2(wlog), s− n + α

p
= −n + α

r
, (4.42)

since γ > 0, recall Example 1.21. Moreover, our assumptions (4.39) ensure that
1 < r < ∞ and wlog ∈ Ar such that (4.42) can be continued by

F s
p,q(wlog) ↪→ Lr(wlog). (4.43)

Thus (4.36), (4.37) and (2.3) lead to (4.40). In case of A = B and q 6 p the result
is a consequence of the F -case and (1.44), whereas for 1

p > 1
q > 1

r = 1
p − s

n+α

(4.42) has to be replaced by

Bs
p,q(wlog) ↪→ Bs

p,r(wlog) ↪→ F 0
r,2(wlog), s− n + α

p
= −n + α

r
. (4.44)

We come to (ii). If 1 < p < ∞ and wlog ∈ Ap, then similar to (4.42) we use

As
p,q(wlog) ↪→ F 0

p,2(wlog) = Lp(wlog),

since s > 0. Thus (4.35) and (4.37) yield (4.41) in view of (2.3). ¥
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4.2. Estimates from below

We refine previous arguments and constructions of (atomic) extremal functions
to obtain lower bounds for EAs

p,q(w)

G (t) and ELp(w)
G (t). First we study the general

situation before we list consequences for our model weights afterwards.

Proposition 4.12. Let w ∈ A∞.

(i) Let 0 < p < ∞, 0 < q 6 ∞, and s > n
(

rw

p − 1
max(p,1)

)
. Then, if t → 0,

EBs
p,q(w)

G (t) > c sup
x0∈Rn



b 1

n | log t|c∑

j=1

2−j(s−n
p )q′

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

)− q′
p




1/q′

,

(4.45)

(usual modification if q′ = ∞), and

EAs
p,q(w)

G (t) > c
( ∑

|m|∼t1/n

w(Q0,m)
)− 1

p

, t →∞. (4.46)

(ii) Let 0 < p < ∞. Then we obtain

ELp(w)
G (t) > ct−

1
p sup

Qν,m

t ∼ 2−νn

(
w(Qν,m)
|Qν,m|

)− 1
p

, t → 0, (4.47)

and

ELp(w)
G (t) > c

( ∑

|m|∼t1/n

w(Q0,m)
)− 1

p

, t →∞. (4.48)

Proof. We refine the approach from Step 3 in the proof of Proposition 3.3. Let
for x0 ∈ Rn,

fm(x) = cm

m∑

j=1

bj ψ
(
2j(x− x0)

)
, m ∈ N, (4.49)

where bj > 0 and cm will be suitably chosen later. Similarly as above, see also
[13, Thm. 8.16], we obtain

f∗m(t) > ccm

m∑

j=1

bj , t ∼ 2−mn.
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Regarding (4.49) as an atomic decomposition of fm with λj = cm bj 2j(s−n
p ),

aj(x) = 2−j(s−n
p )ψ

(
2j(x− x0)

)
, j = 1, . . . , m, we conclude that

∥∥fm|Bs
p,q(w)

∥∥ 6 ‖λ|bpq(w)‖ ∼ cm




m∑

j=1

bq
j 2j(s−n

p )q

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

) q
p




1/q

(4.50)
(modification if q = ∞). Thus, if we choose

cm ∼



m∑

j=1

bq
j 2j(s−n

p )q

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

) q
p



−1/q

, (4.51)

we obtain ∥∥fm|Bs
p,q(w)

∥∥ 6 c,

and

f∗m(t) > c




m∑

j=1

bq
j 2j(s−n

p )q

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

) q
p



−1/q 


m∑

j=1

bj


 , t ∼ 2−mn.

(4.52)
We choose now

bj ∼ 2−j(s−n
p )q′

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

)− q′
p

, j = 1, . . . , m,

thus

f∗m(t) > c




m∑

j=1

2−j(s−n
p )q′

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

)− q′
p




1/q′

, t ∼ 2−mn. (4.53)

The modifications in case of q′ = ∞ (i.e., 0 < q 6 1) are obvious. Thus
(4.50) and (4.53) imply (4.45). As for (4.47) it is sufficient to consider fm(x) =
ψ (2m(x− x0)) w (B(x0, 2−m))−1/p which yields

‖fm|Lp(w)‖ 6 c and f∗m(t) > c2m n
p

(
w (B(x0, 2−m))
|B(x0, 2−m)|

)− 1
p

, t ∼ 2−mn.

Concerning (4.46) we adapt the argument used in Step 4 of the proof of Propo-
sition 3.3. Note that it is sufficient to deal with B-spaces now, since the extension
to F -spaces comes from (1.44) combined with (2.3). Using the same function % as
there we now consider functions

gj(x) =
( ∑

|m|∼2j

w(Q0,m)
)− 1

p

%
(
2−jx

)
, j ∈ N,
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such that

g∗j (t) =
( ∑

|m|∼2j

w(Q0,m)
)− 1

p

%∗(2−jnt) >
( ∑

|m|∼2j

w(Q0,m)
)− 1

p

, t ∼ 2jn, j ∈ N.

This implies (4.46) if ‖gj |Bs
p,q(w)‖ 6 c, j ∈ N. Let k ∈ C∞0 (Rn) be as above, then

for x ∈ Rn,

gj(x) ∼
( ∑

|l|∼2j

w(Q0,l)
)− 1

p
∑

|m|∼2j

k(x−m)%
(
2−jx

)
, j ∈ N. (4.54)

Regarding this as atomic decomposition again, we arrive at

∥∥gj |Bs
p,q(w)

∥∥ 6 c1

( ∑

|l|∼2j

w(Q0,l)
)− 1

p
( ∑

|m|∼2j

w(Q0,m)
) 1

p 6 c2,

with a constant independent of j ∈ N. The modifications of the above argument
in case of (4.47) are parallel to the proofs of Proposition 3.3 and Theorem 3.6. ¥

Remark 4.13. Plainly, if S0(w) 6= ∅, then (4.45) can be replaced by

EBs
p,q(w)

G (t) > c sup
x0∈S0(w)



b 1

n | log t|c∑

j=1

2−j(s−n
p )q′

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

)− q′
p




1/q′

,

t → 0,

(4.55)

and, if S0(w) ⊂ Zn (as is the case for our examples wα,β and wlog), then it looks
even more natural to replace (4.45) by

EBs
p,q(w)

G (t) > c sup
m∈Zn



b 1

n | log t|c∑
ν=1

2−ν(s−n
p )q′

(
w(Qν,m)
|Qν,m|

)− q′
p




1/q′

∼ sup
m∈Zn



b 1

n | log t|c∑
ν=1

2−νsq′ (w(Qν,m))−
q′
p




1/q′

, t → 0.

We briefly discuss the compatibility of (4.15) and (4.45) if s 6 n
p rw: we apply

(3.1) and (1.6) with r > rw,

w(B(x0, 2−j)) > cw 2−jnr,
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where c is independent of j ∈ N0 and x0 ∈ Rn. Thus

sup
x0∈Rn



b 1

n | log t|c∑

j=1

2−j(s−n
p )q′

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

)− q′
p




1/q′

6 c



b 1

n | log t|c∑

j=1

2−j(s−n
p r)q′




1/q′

∼ t−
r
p + s

n ,

since s < n
p r. Writing r = rw + εp, it is obvious that (4.15) and (4.45) do not

contradict each other. The compatibility of (4.18) and (4.46) is immediate in view
of (3.1). Since the sum on the right-hand side of (4.45) converges for s > n

p rw the
local estimate is only reasonable for s 6 n

p rw, recall also (4.3).

Remark 4.14. If one uses the extremal functions constructed in (3.10), then in
the same way as in Step 2 of Proposition 3.3 one obtains

EBs
p,q(w)

G (2−kn) > c2−k(s−n
p ) sup

x0∈Rn

( |B(x0, 2−k)|
w (B(x0, 2−k))

) 1
p

,

see Remark 3.4 and (3.21). For w ∈ A∞ and S0(w) 6= ∅ this can be strengthened
by taking the sup over all x0 ∈ S0(w), and leads to

EAs
p,q(w)

G (t) > ct−
1
p + s

n sup
x0∈S0(w)

sup
Qν,m 3 x0

t ∼ 2−νn

(
w(Qν,m)
|Qν,m|

)− 1
p

, t → 0, (4.56)

(the extension to F -spaces results from (1.44) and (2.3) again), whereas for
S0(w) = ∅,

EAs
p,q(w)

G (t) > ct−
1
p + s

n , t → 0.

In general, this estimate is for q′ < ∞ weaker than (4.45).

Next we return to our special examples (1.8) and (1.9) and conclude from
Proposition 4.12 that

ELp(wlog)
G (t) > ct−

1
p max

(
1, t−

α
np (1 + | log t|)− γ

p

)
, t → 0, (4.57)

and

ELp(wlog)
G (t) > c′ t−

1
p− β

np (1 + | log t|)− δ
p , t →∞, (4.58)

in view of Example 1.5. Combined with Corollary 4.9 this leads to the following.

Corollary 4.15. Let −n < α 6 β, β > 0, γ, δ ∈ R with γ > 0 if α = 0 and δ > 0
if β = 0, and 0 < p < ∞.
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(i) Assume that γ 6 δ if α = β. Then

ELp(wlog)
G (t) ∼ t−

1
p max

(
1, t−

α
np (1 + | log t|)− γ

p

)
, t → 0, (4.59)

in particular,

ELp(wα,β)
G (t) ∼ t−

1
p−max(α,0)

np , t → 0. (4.60)

(ii) Assume that γ > δ if α = β, and δ = 0 if β = 0. Then

ELp(wlog)
G (t) ∼ t−

1
p− β

np (1 + | log t|)− δ
p , t →∞, (4.61)

in particular,

ELp(wα,β)
G (t) ∼ t−

1
p− β

np , t →∞. (4.62)

The above estimates extend previous results in [15, 16].
We collect the consequences of Proposition 4.12 and Corollaries 4.5 and 4.11

for As
p,q(wlog); recall also Corollary 3.8 for wlog ∈ A1.

Corollary 4.16. Let wlog be given by (1.9) with α > −n, β > 0, γ, δ ∈ R. Assume
that 0 < p < ∞, 0 < q 6 ∞, and s > σp + max(α,0)

p .

(i) Then for s < n
p + max(α,0)

p ,

EAs
p,q(wlog)

G (t) > ct
s
n− 1

p max
(
1, t−

α
np | log t|− γ

p

)
, t → 0, (4.63)

in particular,

EAs
p,q(wα,β)

G (t) ∼ t
s
n− 1

p−max(α,0)
np , t → 0. (4.64)

(ii) If s = n
p + max(α,0)

p , and γ
p 6= 1

q′ for α > 0, then

EBs
p,q(wlog)

G (t) > ct
s
n− 1

p max
(
| log t| 1

q′ , t−
α

np | log t|( 1
q′−

γ
p )+

)
, t → 0,

(4.65)

whereas in case of α > 0 and γ
p = 1

q′ ,

EBs
p,q(wlog)

G (t) > c(log | log t|) 1
q′ , t → 0. (4.66)

In particular, we obtain for s = n
p + max(α,0)

p that

EAs
p,q(wα,β)

G (t) ∼
{
| log t| 1

q′ , if As
p,q = Bs

p,q and 1 < q 6 ∞,

| log t| 1
p′ , if As

p,q = F s
p,q and 1 < p < ∞,

t → 0.

(4.67)
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(iii) For the global estimates we get

EAs
p,q(wlog)

G (t) > ct−
β

np− 1
p (1 + | log t|)− δ

p , t →∞, (4.68)

that is, for 1 < p < ∞, 0 < β < n(p− 1), α 6 β and δ 6 γ if α = β,

EAs
p,q(wlog)

G (t) ∼ t−
β

np− 1
p (1 + | log t|)− δ

p , t →∞, (4.69)

and for 1 < p < ∞, 0 < β < n(p− 1), α 6 β,

EAs
p,q(wlog)

G (t) ∼ t−
β

np− 1
p , t →∞. (4.70)

Remark 4.17. Plainly, estimate (4.63) is first proved for B-spaces in view of
(4.45) and afterwards extended to F -spaces by (1.44). If we apply a similar ar-
gument to (4.65) and (4.66), we obtain parallel F -results where 1

q′ is replaced
by (1 − 1

min(p,q) )+. Alternatively, for γ > 0 one can use Example 1.21, but the
outcome is not sharp as well. We return to Remark 4.4. It is obvious that the
above corollary disproves the assumption that (4.15) with ε = 0 characterizes the
local behavior in general; similarly for the global behavior and (the counterpart
of) (4.23).

We give the counterpart for wκ,Γ.

Corollary 4.18. Let wκ,Γ be given by (1.11) with 0 < d < n, κ > −(n − d),
0 < p < ∞, 0 < q 6 ∞, and s > σp + max(κ,0)

p . Then

EAs
p,q(wκ,Γ)

G (t) ∼





t−
1
p + s

n−max(κ,0)
np , if s < n

p + max(κ,0)
p ,

| log t| 1
q′ , if s = n

p + max(κ,0)
p , 1 < q 6 ∞

and As
p,q = Bs

p,q,

| log t| 1
p′ , if s = n

p + max(κ,0)
p , 1 < p < ∞

and As
p,q = F s

p,q,

(4.71)

for t → 0, and

EAs
p,q(wκ,Γ)

G (t) ∼ t−
1
p , for t →∞. (4.72)

Some consequence of Proposition 4.12 is a necessary condition for the embed-
ding Bs

p,q(w) ↪→ L∞ which is by Proposition 2.2(ii) equivalent to the boundedness

of EBs
p,q(w)

G (t) when t → 0.

Corollary 4.19. Let w ∈ A∞ and let (4.12) be satisfied. Assume that for some
x0 ∈ Rn, 


2−j(s−n

p )

(
w

(
B(x0, 2−j)

)

|B(x0, 2−j)|

)− 1
p





j∈N

6∈ `q′ (4.73)
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(usual modification if q′ = ∞). Then

Bs
p,q(w) 6↪→ L∞. (4.74)

In case of our model weights Corollary 4.19 can be refined to criteria for
As

p,q(w) ↪→ L∞ in some cases.

Corollary 4.20. Let 0 < p < ∞, 0 < q 6 ∞, s ∈ R.
(i) Assume that α > −n, β > 0. Then

Bs
p,q(wα,β) ↪→ L∞ if and only if





either s > n
p + max(α,0)

p ,

or s = n
p + max(α,0)

p

and 0 < q 6 1,

(4.75)

and

F s
p,q(wα,β) ↪→ L∞ if and only if





either s > n
p + max(α,0)

p ,

or s = n
p + max(α,0)

p

and 0 < p 6 1.

(4.76)

(ii) Let α > −n, β > 0, γ, δ ∈ R with δ > 0 if β = 0. Then

Bs
p,q(wlog) ↪→ L∞ if and only if




s > n
p + max(α,0)

p , or
s = n

p + max(α,0)
p and 0 < q 6 1 if α < 0,

or 0 < q 6 1, γ > 0 if α > 0,

or γ
p > 1

q′ if α > 0.

(iii) Let Γ ⊂ Rn be a d-set, 0 < d < n, and wκ,Γ be given by (1.11) with κ >
−(n− d). Then

Bs
p,q(wκ,Γ) ↪→ L∞ if and only if





either s > n
p + max(κ,0)

p ,

or s = n
p + max(κ,0)

p

and 0 < q 6 1,

(4.77)

and

F s
p,q(wκ,Γ) ↪→ L∞ if and only if





either s > n
p + max(κ,0)

p ,

or s = n
p + max(κ,0)

p

and 0 < p 6 1.

(4.78)
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Proof. The sufficiency in (4.75) is covered by (4.11) and monotonicity, whereas
the necessity comes from Corollary 4.22(i): for assume that Bσ

p,u(wα,β) ↪→ L∞
for some σ < n

p + max(α,0)
p and 0 < u 6 ∞, then monotonicity implies this for

Bs
p,q(wα,β) with s = n

p + max(α,0)
p and 1 < q 6 ∞ which contradicts (4.80) in view

of the unboundedness of EBs
p,q(wα,β)

G (t) for t → 0 (which is by Proposition 2.2(ii)
equivalent to Bs

p,q(wα,β) 6↪→ L∞). The F -case (4.76) as well as (ii) and (iii) can be
treated in a parallel way. ¥

Remark 4.21. We do not yet have a precise characterization of As
p,q(w) ↪→ L∞

apart from the cases w ∈ A1 dealt with in Corollary 3.5 and those considered
above. However, the gap between (4.1) and (4.73) seems not too large.

4.3. Growth envelopes

Since we have no complete characterizations for EAs
p,q(w)

G (t), t → 0, w ∈ A∞ \ A1,
in general, it makes no sense to study the corresponding indices u

As
p,q(w)

G . However,
dealing with our examples wα,β and wκ,Γ, we may combine Corollaries 4.5 and
4.16 and extend it to the counterpart of Corollary 3.8.

Corollary 4.22. Let α > −n, β > 0, and wα,β given by (1.8). Let 0 < p < ∞,
0 < q 6 ∞, and s− max(α,0)

p > σp. Then

EG(Bs
p,q(wα,β)) =





(
t−

1
p + s

n−max(α,0)
np , q

)
, s < n

p + max(α,0)
p ,

(
| log t| 1

q′ , q
)

, s = n
p + max(α,0)

p and 1 < q 6 ∞,

(4.79)

and

EG(F s
p,q(wα,β)) =





(
t−

1
p + s

n−max(α,0)
np , p

)
, s < n

p + max(α,0)
p ,

(
| log t| 1

p′ , p
)

, s = n
p + max(α,0)

p and 1 < p < ∞,

(4.80)

and

EG(Lp(wα,β)) =
(
t−

1
p−max(α,0)

np , p
)

. (4.81)

Proof. All assertions concerning the growth envelope functions are covered by
our above considerations, that is, it remains to deal with the indices u

As
p,q(wα,β)

G .
Moreover, the F -case (ii) follows from the B-case (i) together with Example 1.21
and Proposition 2.2. The upper estimates for u

Bs
p,q(wα,β)

G follow from embeddings
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(4.9), (4.10) together with Proposition 2.2(iii) and the unweighted result (2.6). We
have to show that u

Bs
p,q(wα,β)

G > q if σp + max(α,0)
p < s 6 n

p + max(α,0)
p . We proceed

similar to the approach in the proof of Theorem 3.6 and consider the function

fb(x) =
∞∑

j=1

2−j(s−n
p−max(α,0)

p ) bj ψ(2j(x− x0)), (4.82)

where ψ is given by (3.11), {bj}j∈N a sequence of non-negative numbers, and
x0 ∈ Rn will be chosen later. Since 2−j(s−n

p ) ψ(2j(x − x0)) are atoms according
to Definition 1.10 (no moment conditions needed), we obtain by Proposition 1.11
that

∥∥fb|Bs
p,q(wα,β)

∥∥ 6 c




∞∑

j=1

2j
n+max(α,0)

p q bq
j w(B(x0, 2−j))

q
p




1
q

, (4.83)

(with obvious modification if q = ∞). If α > 0, we choose x0 = 0 such that
w(B(x0, 2−j)) ∼ 2−j(α+n), for α < 0 we take |x0| = 2 such that w(B(x0, 2−j)) ∼
2−jn. Thus (4.83) implies that

∥∥fb|Bs
p,q(wα,β)

∥∥ 6 c ‖b|`q‖ . (4.84)

We follow the same line of arguments as in the proof of Theorem 3.6. The coun-
terpart of (3.25) reads for s < n

p + max(α,0)
p as




ε∫

0

[
t

1
p− s

n +
max(α,0)

np f∗(t)
]v dt

t




1/v

6 c
∥∥f |Bs

p,q(wα,β)
∥∥ (4.85)

and can thus be extended on both sides to



∞∑

j=J

bv
j




1
v

6 c1




ε∫

0

[
t

1
p− s

n +
max(α,0)

np f∗b (t)
]v dt

t




1
v

6 c2

∥∥fb|Bs
p,q(wα,β)

∥∥ 6 c3‖b|`q‖
for arbitrary sequences of non-negative numbers with, say, b1 = · · · = bJ = 0 for
some J ∈ N with 2−J ∼ ε. This follows by (4.84), (4.85) and the counterpart of
(3.28),

f∗b (t) > cbj 2−j(s−n
p−max(α,0)

p ), t ∼ 2−jn,

and leads to v > q.
In case of s = n

p + max(α,0)
p we take bj = 0, j > m, such that fb obtains the

special form

fb(x) =
m∑

j=1

bjψ
(
2j(x− x0)

)
, m ∈ N.
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The rest is now completely parallel to the end of the proof of Theorem 3.6. As
for the Lp-part, the upper estimate for u

Lp(wα,β)
G = p is covered by (4.33) together

with (2.9). The lower estimate can be seen by the following simplified version of
(4.82). We have to disprove that




ε∫

0

[
t

1
p +

max(α,0)
np f∗(t)

]v dt

t




1/v

6 c ‖f |Lp(wα,β)‖ (4.86)

holds for v < p and all f ∈ Lp(wα,β). Consider

hη(x) = |x− x0|−
n
p−max(α,0)

p (1 + |log |x− x0||)−µ
χB(x0,η1/n)(x),

0 < η < ε < 1,
1
p

< µ <
1
v
.

Again we choose x0 = 0 if α > 0, and |x0| = 2 if α < 0, such that
‖hη|Lp(wα,β)‖ 6 c since µ > 1

p , but the left-hand side of (4.86) diverges since
µ < 1

v . ¥

Remark 4.23. The above corollary extends previous results in [15, 16]. Corollar-
ies 4.11 and 4.16 also provide two-sided estimates in case of wlog, but we restricted
ourselves to those cases with precise asymptotic results.

We come to wκ,Γ; note that the case κ 6 0 is already covered by Corol-
lary 3.8(ii).

Corollary 4.24. Let Γ ⊂ Rn be a d-set, 0 < d < n, and wκ,Γ be given by (1.11)
with κ > −(n− d). Let 0 < p < ∞, 0 < q 6 ∞, and s− max(κ,0)

p > σp. Then

EG(Bs
p,q(wκ,Γ)) =





(
t−

1
p + s

n−max(κ,0)
np , q

)
, s < n

p + max(κ,0)
p ,

(
| log t| 1

q′ , q
)

, s = n
p + max(κ,0)

p and 1 < q 6 ∞,

(4.87)

EG(F s
p,q(wκ,Γ)) =





(
t−

1
p + s

n−max(κ,0)
np , p

)
, s < n

p + max(κ,0)
p ,

(
| log t| 1

p′ , p
)

, s = n
p + max(κ,0)

p and 1 < p < ∞,

(4.88)

and

EG(Lp(wκ,Γ)) =
(
t−

1
p−max(κ,0)

np , p
)

. (4.89)

Proof. This works completely parallel to the proof of Corollary 4.22. Since we
now have Ssing(wκ,Γ) = Γ, κ 6= 0, instead of Ssing(wα,β) = {0}, α 6= 0, there, one
has to choose either x0 ∈ Γ or x0 ∈ Rn with dist (x0, Γ) > c accordingly. ¥
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Remark 4.25. Concerning applications, it is obvious that Corollaries 4.22 and
4.24 admit Hardy inequalities in the sense of Corollary 3.10. The same applies to
Corollary 3.11, but we shall not present it explicitly here; partial results can be
found in [16] already.
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