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SUMS OF TWO RELATIVELY PRIME k-TH POWERS
ROGER C. BAKER

Abstract: Let k be a natural number, k > 3. Let Vj(z) be the number of solutions (u,v) of
u* + o <z (w,0) =1

and let )
BU2(1/K) ok
E =V - .
(@) = Vi@) — pai e
Under the Riemann hypothesis, it is known that

Ei(z) = O(a%T¢)

for k = 3,4, where 03 = 238 and 04 = 197, The result for k = 3 is shown to require only
a zero-free strip Res > 0.5802. .. for ((s). For k = 4, the exponent is improved by about 0.0016.
Here the required zero-free strip is Res > 0.7058.... Along the way, new results are obtained

for the mean value on a vertical segment [0, o + iT] of the Hlawka zeta function defined by

Zi(s) =Y "’;(f) (Res > 1),
n=1

where 7, (n) = #{(z,vy) : |z|* + |y|¥ = n}. These mean value results improve those in the
literature for all k& > 3.

The mean value of Ejy(z) is also considered, and here an asymptotic formula is provided
under the assumption of a zero-free strip of width > 1/k. Previous writers required k > 5 and
the Riemann hypothesis.

Keywords: Riemann zeta function, zero-free strip, sums of two k-th powers, Hlawka zeta func-
tion, exponential sums.

1. Introduction

Let k be a natural number, k > 3. Let Vi(z) be the number of solutions (u,v)
in Z? of
|u|k+|v|k <, (u,v) =1
and let
Ei(z) = Vi(z) — cpa®/*,
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68 Roger C. Baker
where ¢, = %, be the error term in the asymptotic formula for Vi (x).
Recent progress in estimating Fj(z) has been conditional on the Riemann
hypothesis. The best currently known result for E3(z) under the Riemann hy-
pothesis is
Es(z) = O(2%%°) (1.1)

for every € > 0, where 63 = 9581/36864 = 0.2599. .. (Baker [2]).
Although T cannot improve (1.1) at present, I shall show that it can be proved
without the full strength of the Riemann hypothesis.

Theorem 1. Suppose that ((s) has no zero with real part greater than

12305 — 30
=2 T _0.5802....
P = 50p, —a0 0P
Then (1.1) holds.
For E4(x), we have the bound
107
Ey(z) =029,  p= =15 = 0-2089.. (1.2)

under the Riemann hypothesis. This result is given in Zhai [18]. (Earlier papers
on Ej(z) are listed in [18].) It is claimed by Zhai and Cao [20] that (1.2) holds
with ( replaced by 37/184 = 0.2010. . ., but the proof contains an error. On page
167 of [20], it is shown that

7
T Fy(x) < Z '
j=1

where the 7; are given explicitly and 7y = 37/184. However, 17 = 0.2096.. ., so
the result that ensues is weaker than (1.2).
In the present paper I shall obtain

Ey(z) = O(z%17°) (1.3)
under the Riemann hypothesis, where

7801

As above, I can reach the same result with a narrower zero-free strip.

Theorem 2. We have (1.3) for every e > 0, provided that ((s) has no zero with
real part greater than
3204, —5

=——=0.7058....
1604 — 1

P4
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It is of interest to examine the mean square of Ey(x). The objective here is to
prove a result of the form

X
/ Ek(x)de _ de1+2/k—2/k2 +O(X1+2/k—2/lc2—17) (1.4)
0

for a positive constant 7. Here

with
2

8T(1/k) [k \"* > oo
= (%) e P DO I
k= d|n

1

The asymptotic formula (1.4) was obtained by Zhai [19] for & > 6, and Zhai
and Cao [20] for k¥ = 5, under the Riemann hypothesis, with an explicitly given
n = n(k). In the present paper I fill in the missing cases k = 3,4, and as above,
assume only a narrower zero-free strip.

Theorem 3. Suppose that ((s) has no zero with real part greater than y, where
x < 1—1/k. Then the asymptotic formula (1.4) holds with a positive constant

n=n(x,k).

The proof permits the calculation of a value for n(x, k). I leave some of the
details of this calculation to the interested reader. The improvement over the
earlier results stems from a relatively simple tool (Lemma 7 below).

Let r;(n) denote the number of representations of the positive integer n in the
form

n = |ul® + |v|¥, (u,v) € Z*.
The Dirichlet series
— 7k(n)
Z =
k() n§:1 s

is known to have an extension to a function analytic in

Res > 1/k — 1/k?,
except for a simple pole at s = 2/k; see, for example, Zhai [19]. To obtain our
theorems, we need to study the mean value

2T

Mi(o,T) = / \Zi (o + it)|dt.
T

I shall show that
My(o,T) < T?T¢
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for o > 1/k — 1/k? + €. This is used in the proof of Theorem 3. The stronger
estimate

My (0, T) < T (1.5)
seems inaccessible without increasing ¢ substantially. For Theorems 1 and 2, we

need o as small as possible in (1.5) to narrow our zero-free strip. Zhai [19] obtains

(1.5) with 0 = 3 — 55.

Theorem 4. The bound (1.5) holds provided that
o>2/5 (k=23), o>3/2k—1/k* (k=4,5,...).

o0
We isolate as a theorem a result on the mean values of partial sums of > T’“n(” ),

n=1

Theorem 5. Let 0 >2/5 (k=3), 0 > (4k —4)/k(3k —2) (k > 4). Let
4
azmax(k—2o, 3—20k).

Suppose that X > 1 and X <T. Then
2

2T
Tk (n) 1+e
/ D | dt< T

T |pgx

This result is used in the proof of Theorem 4.

Most of the estimates for exponential sums and integrals used below can be
traced back to the ideas of van der Corput. However, the paper of Robert and
Sargos [12] not only plays an important role in a result from [2| re-used here,
but is used afresh. In particular, an exponential sum estimate based on counting
solutions of

(A + ) (hg +£5)"
ni n2

<A

)

in the proof of Theorem 1, depends on [12].

Constants implicit in the ‘O’ and ‘<’ notations may depend (unless otherwise
stated) on k and €; other dependencies are made explicit where they occur. Let
C(k) be a sufficiently large positive constant depending on k. We write A < B for
A < B <« A. The notation ‘n —a ~ N’ (where n is an integer variable and «a is
fixed) means N < n —a < 2N. We write e(z) for >,

I would like to acknowledge the friendly hospitality of the Department of Math-
ematics, University of Florida, where much of the work was accomplished.

2. Preliminary results

Let us write ¢(w) = w — [w] — 1/2, with [...] the integer part function. The nice
paper of Kiihleitner [11] is a helpful source for the present topic. We find there
the formula

Ti(z) = Apa®* + ¢ 0y (2%/F)2 /A= 1F 4 P (22/%) + By() (2.1)
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. _ _ 2I%(1/k)
for the summatory function Ty (z) = > 7r(n). Here Ay = NCTOR,

n<

O (u) = Z m ™Yk cos 2 <mu1/2 - % (1 + ;)) ,

m=1

Py(u) = =8 > (W2 —nf)H), (2.2)

2-1/kyl/2<nul/?
and By (z) = O(1).
Kuba [10] has shown that
Pp(u) = O(u?/73%¢), (2.3)

Presumably this could be sharpened by a careful application of the recent work
of Huxley [7] within the argument of [10]. Kiihleitner [11] gives an asymptotic
formula for the mean value of Py (u),

X
/ Po(u)2du = C X*/2 4 O(X3/2-5) (2.4)
0

where Cj and J; are positive numbers given explicitly.
For w in a range [U, 2U], U large and positive, Kiihleitner splits up the interval
of summation in (2.2) using subintervals [N,., N,.11], where
ul/2
(1 + zfrq)l/k ’
Here ¢ = k/(k — 1) and R is the least integer such that

Vu—Ng<1  for ue€l[U,2U].

N, = N,(u) = r=0,1,...,R.

It is easy to see that
Nyi1 — N, = O(UY/?27m9),

20f = y/2 R =0(logl), (2.5)
and that
R Nrp1
Py(u) = —SZ Z P ((uk/2 — nk)l/k) + O(logU). (2.6)
r=0 n=N,

There are two well-known approximations to ¥. The first is elementary (Jones

191):

2

v+ Y A0

0<|h|<H

dw < H™ (2.7)

The second, due to Vaaler [15], is likewise important in the present paper:

|¢<w> S anelhw)| < Blw), (2.8)

0<|hl<H
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where B(w) = E bhe(hw) is a non—negative trigonometric polynomial, and
|h|<H
< 1 by, < = (2.9)
a . .
h h ) h

(The ap and by, are given explicitly by Vaaler. See also the appendix to [3].) It is
worth noting that (2.8), (2.9) are valid even when H < 1, since |¢p(w)| < 1/2.
Thus for U < u < 2U,and H, 21 (0<r < R)

Nyj1 ‘

R
Pk(u)+8z Z ap Z e(h(uk/zfnk)l/k)

r=0 0<|h|<H, n=N,
Ny

R
<SS e(h(uk/Q—nk)l/k)—i—C(k)logU. (2.10)

r=0 |h|<H, n=N,

-

Moreover, the van der Corput B-process yields

Nyj1

—1
g e(h(uF/? — nk)t/ky = e(=1/8) hut/* E
=N k-1 m 1
n=N,. €[h27,h27+1]

X |(h,m)|[ = 2e(—u!/? |(h,m)|) + O(log(|A|U +2)).

"

(hm)~1+a/2 (2.11)

Here and subsequently,
[(hym)| = (|]* + [m]|")*/1,

and Y_" indicates that the first and last terms are weighted with a factor 1/2. See
Kiihleitner [11] for more details.

It is convenient to write Ay (z) = Ti(z) — Apz?/*.

For y > 1, let f(y,s) denote the meromorphic function

1 —s
f6.5)= 7~ > u(n)r

nxy

Lemma 1. Let X > 1. The function Zi(s) has a meromorphic continuation to

the region

1 1
R - — —
es > A
given by

_ re(n) | 2 ApX?kms /°° Ag(w)
Zi(s) =) Y X Ap(X) +s : duw.

Proof. See, for example, the proof of Lemma 3.1 of Zhai [19]. |
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Lemma 2. Lety > 1. For a suitable positive constant C = C(k), we have

T )\+iwc 5
=S s () 55 [ k2 S ds+0)

211 i C
dg'l/ —1T

whenever%—k%—l—eg)\g%—e.

Proof. This can easily be adapted from the proof of Lemma 19 of [2], for example.
|

Lemma 3. Let € > 0. Suppose that ((s) has no zero with Res > 0, where
3 <0 <1l—e Then((s) and ((s)~" are O(t°) fors=oc+it, t 22, 0 > 0 +e.

Proof. In view of results in Titchmarsh [14]|, Chapter 5, we suppose that o < 1.
Following Titchmarsh [14], §14.2, we apply the Borel-Carathéodory theorem
([13], §5.5) to the function log((z) and the circles with center 2 + it and radii
2—60— g, 2—60—0, where 0 < § < 1—e. On the larger circle, writing By, Bo, . ..
for absolute constants,

Re(log ((z)) = log |((z)| < Bjlogt.

Hence, on the smaller circle,

4—260—26 4—20—36/2 )
|k%<(@|<év231bgt+'5ﬂ2/bg<@-FnH
< By~ tlogt.
In particular, we find that
|log ¢(o +it)| < B26~'logt. (2.12)

Now let 01 = €2 and § = €*, and apply Hadamard’s three-circles theorem
([13], §5.3) to circles of center o4 + it and radii r; < re <rs,

rmn=o0,—1—0, ro=01—0, r3=01—60—9.
If the maxima of |log ((z)| on the respective circles are M, My, M5, we obtain
My < M{ Mg,
where
logra/r log (1 T 1+51 G&)
~ log 7"3/1"1 log (1 + 01_—1_6)

_1l—-0+0 1, 1—0+0(?)
=1 o) =T

The last two implied constants are absolute.



74 Roger C. Baker

By (2.12), M3 < By !logt, and it is easy to show (see [14], §14.2) that
M, < B36~!. Since o + it is on the middle circle,

l—a a
|log ¢(o +it)| < (1?53) (BQ}SOgt)

< C(e)(log t)(lfoJre/?)/(lf@)'

This is stronger than the required bound. |
Lemma 4. Suppose that ((s) has no zero with Res > 6, where % <f<1l-—e
Then

fly,s) = Oy’ =7 F<pt|) (2.13)

fory>1,s=c+it,0+e< o<k, |t| =2

Proof. It suffices to prove (2.13) when y is half an odd integer. In Lemma 3.12
of [14], take a,, = u(n), f(s) = c(ls)’ ¢ = 2. We obtain

1 244T w 2
pn) _ e wdwm(yT)

ns a Tm 24T C(S + w) w

n<y

for T > 0. Take T = y**+2, so that

2
vy _ 0—0
T = O(y"™7).

We have

/2+11T 1 g
— Z—dw
omir C(s+w) w

0+5—o-+iT 24T 24T 1 Yo
= / —/ +/ =Y qw. (214)
0+ 5 —o—iT 0+s—oir Joysopir) C(s+tw) w

We may now apply Lemma 3. The horizontal integrals on the right-hand side of
(2.14) are

2
0 <T1+f/0 y“du> = O(T~12) = 0(y ).

e
+§*U

The vertical integral is

T
0 <y6+§U/T(1 + t|)1+5/4kdt> — O(yefdJrE).

The lemma follows on combining these estimates. |
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Lemma 5. Let A >0, A< B<2A,C>2,C<D<2C. Let f be a bounded
measurable function on [A, B]. Then

I

Proof. We have

-

(by Fubini’s theorem)

ztdl,

dt<<AlogC/ x)|2dx.

x)z'dx

2 B B D oot

< 7 [ wsr + s
><m1n< |10gz1/:172|) dxry dxs
B B 1
— 2 - I
A A G B

In the inner integral, substitute v = x1/x9; then |logv| =< |v — 1], so that

B 1 2 1
[ (et Vi [ (e Y
A |log 1 /22| 1 v —1]

2

< AlogC.

The lemma follows at once. ]
Lemma 6. For 1/k—1/k>+e<o<1landT >2
My, (0,T) < T?logT.

Proof. By Lemma 1 with X =1, s=c+it, T <t < 27T,

Zy(s) = 5/100 de+0(l).

wa’+1t+1

Hence Cauchy’s inequality yields

2

o1 |
My (0, T) <<T+T2/ /2 w¢7+7t+1 dt

2T o

i 2
00 2J
Ap(w)
2 -—2 -2 k dw
<<T+T/ > D /QHW dt.
j=1 j=1

T
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Since
Ap(w) < Wl/k=1/K?

from (2.1), (2.3), we find that

27
/ |Ak(w)[? dw < 2-3(1+6)
2

i1 O.}20'—‘,-2

Applying Lemma 5,

27 2
Ak(w) —je
/2_]»_1 m dt L2 IOgT

2T
/;

and

o0
My(o,T) < T +T? [ > %279 | logT < T*logT. [
j=1

Lemma 7. Let D > C > 2, B > A > 1 and suppose that g(t) is a bounded
measurable function on [C,D]. Then

[f‘/Dgﬁﬁ“ﬁ

C
Proof. This is a slight variant of Harman [4], Lemma 9.1. |

2 D
M<BMD/|WWM
C

Lemma 8. Let F', G be real differentiable functions on [a,b] such that G/F’ is
monotonic and either F'/G > M >0, or F'/G < —M < 0. Then

4
< —.

b
/a G(z)e | < 7

Proof. This is Lemma 4.3 of [14]. [ |

Lemma 9. Let F be a real differentiable function in [a,b], such that F' is mono-
tonic and 0 < M < |F'| < 1—e€. Then

a<n<b

Proof. This result is known as the Kusmin-Landau theorem. It is a consequence
of Lemma 8 in conjunction with Lemma 4.8 of [14]; there is a different proof
in [3]. |
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For H>1, K>1, P >1, Q@ > 1 and a given quadruple of real numbers
a = (a1,a2,as,a4), let us write

N(a7 H7 K’ P’ Q7 A)

for the number of quadruples (mq,ma, ms3, my) with my ~ H, mg ~ PH, mg ~ K,
my ~ QKv
lazm? + aamd + agmi + aymi| < A(PH)A.

We write more succinctly
N(N,A)=N((1,1,-1—1),N,N,1,1,A).

Lemma 10. Suppose that 0 < ¢1 < |aj| < c2 (j=1,...,4) and c;PH < QK <
coPH. Then

N(a,H,K,P,Q,A) < (PH)*(PH? + AP3H")Y?(QK? + AQ*K*)'/2.
Here and in the proof, the implied constants depend on ¢; and cs.

Proof. Let My = H, My = PH, M3 = K, M, = QK, and

Si(u) = Z e(um?).

m~]\/[j
By a slight variant of Lemma 2.1 of [16],
1/2A(PH)? 4
Na H.K.P.Q.8) < *APH) [ TT 15 (a;u)l du.
0 i1
By Holder’s inequality

A(PH)?/2 4 4 1/2A(PH)® 1/4
/O T 155 oy < H( / Sj<aju>4du>

Jj=

4 a;/2A(PH)1 1/4
<11 ( / |Sj<u>|4du> ,

Jj=1

—

so that
4 cs/2A(PH) 1/4
N(a,H,K,P,Q,A) < H (A(PH)"/ Sj(u)|4du> . (2.15)
j=1 0

Again by Lemma 2.1 of [16],

ca/2A(PH)
A(PH)q/ |S](u)\4 du < N (Mj, W) . (216)
0
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We now apply the inequality
N(Mj,n;) < M7+ + M e,

which is Theorem 2 of Robert and Sargos [12]. We take

DM 4A(C]:H)‘1.

Thus, since PH =< QK,

N (M“ MDA?) < HPC 4 HIE(PIA),

N (Mg, Ag?) < (PH)* + (PH)**eA,

N (M37 AS?) < KT 4+ K*TE(Q7A)
and

N <M4, Aé;j?) < (QK)* ™ + (QK)**eA.
Moreover,

((PH)2 + (PH)4A)1/4(H2 + H4PqA)% < (P2H4 + P4H6A + P4+qH8A2)i
< (P*H"+ POHSA?)Y
< (PH2 4 P3H4A)1/2.
There is a similar bound
(QE)* + (QE)'A)VH K + K1QIA) Y < (QK* + Q°K'A)'2,
so that (2.16) gives the desired bound for the right-hand side of (2.15). |
Lemma 11. Let 1 < H < PH, N > 1. The number of solutions N of

[(h1,€1)|  |(ha,62)] APH
_ <
ny n9 /\/

(2.17)

with H < h; <2H, PH < {; <2PH, N < n; < 2N s
O((PH) (P*H*N?A + P*/2H°N)).

Proof. Let d be an integer in [1,2N). We count the number of solutions Ny of
(217) with (nl,ng) = d. Write n; = kjd, (kl,]{ig) = 1, k‘l § 2N/d, k’g S 2N/d
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First fix k1, k2. Then (2.17) implies
k
(1, 02)] = 3 |(h2, t2)| < APH (2.18)

and indeed

q
B 40— (g) (3 + £9) < A(PH)". (2.19)
2

By Lemma 10 the number of solutions hy, ha, £1, ¢3 of (2.19) is
< (PH)?>(PH? + AP3H*).

Hence

2 2 2p3 74
Nd<<(PH)€/2<N PH ANPH)

R
On the other hand, if we fix hy, £1, ha, 5, then (2.18) implies

| hi,€1)] k'l

< 2A.
h23£2

Since the numbers ki /k are spaced at least d? /4N? apart, the number of solutions
of the last inequality is

AN?

Hence AN2

Na < PH* ( 5+ 1)
and indeed

AN2P3H* . [ N?PH?

Nd < (])13')6 <d2 4+ min <d27P2H4>)
 (AN?p3Et  (N2PH2\'?
< (PH) ( z + ( z ) (P2HHY? ) |

The lemma follows on summing this bound over d. ]

Lemma 12. Let f be a complex-valued function on [D,D’), where 2 < D < D' <
2D. Suppose that 0 < U < DY3, B> 0, and

Z Gm Z f(mn) < B

m~ M n~N
D<mn<D’

whenever MN =< D, N > DU and |a,,| < 1. Suppose further that

Z Ay Z by, f(mn) < B

m~ M n~N
D<mn<D’
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whenever MN =< D, U < N < DY? and |a,,| <1, |by| < 1. Then

> wd)f(d) < BD".

D<Ld<D’

Proof. This is essentially Lemma 2(ii) of [2]. (The idea is much older; see [4] for
a broader discussion.) [ |

Lemma 13. Let (k,\) be an exponent pair. Let a, 8 be constants, o # 0, a <
1, 8<0. Let X >0, M > 1/2, N > 1/2, MN =< D, Ny = min(M, N),
L =log(D+2). Let |lam| <1, |by| <1, I, € (N,2N], and

B
5= 3 o 3 (S )
Sy = Zamane(m).

m~ M n~N
D<mn<D’

(i) We have
S, < L2{DN_1/2 + DX+ (D4+4HX1+2RN—(1+2N)Ng()‘_K))1/(64‘4&)}'
(ii) If N < M and X > D, we have
SQ < L7/4(DN—1/2 +DM_1/4 + (D11+10ﬁX1+2KN2()\—K))1/(14-‘,—125)).
The implied constants depend on o, 3, k and A.

Proof. See [2], Theorems 4 and 5. [ |

Lemma 14. Let o, 8 be real constants with af8(a—1)(8—1) #0. Let k, A, X,
M, N, L, Sy be as in Lemma 13. Then

S, < L3{(X2+4I{M8+1OI£N9+11K+)\)1/(12+16/{) 1 X L/6 ) r2/3 N3/4+A/ (12+12+)
+ (XM3N4)1/5 n (XM7N10)1/11 1 M2/3 N1/ 1242/ (12412k)
+MN1/2 4 (X71M14N23)1/22 +X71/2MN}
Proof. At the cost of a factor L, we can remove the condition D < mn < D’

from the sum Sp. See [4], pp. 49-50. Now the result follows at once from Theo-
rem 2 of [17]. |

We recall some facts about Riemann-Stieltjes integrals fab f(t)da(t), as pre-
sented in Apostol [1], Chapter 9. Sometimes these integrals do not receive enough
care in the number theory literature. The functions f and « are assumed to be
real-valued and bounded on [a, b]. We must be careful to avoid both o and f being

discontinuous from (e.g.) the left at any point, since then f: f@)da(t) may not
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exist (see [1], Theorem 9.28). If we begin with f a function of bounded varia-
tion continuous from the left, and « the sum of a continuous function and a step
function continuous from the right, then I = f; f(®)da(t) does exist. Moreover,

J= f; a(t)d f(t) exists and

I+ J = f(b)ad) — f(a)a(a)
([1], Theorems 9.2, 9.6, 9.11 and 9.21). Moreover, if it happens that f is continu-
ously differentiable on [a, b], then
b

b
/ a(t) d f(1) = / a(0)'(¢) di

a

([1], Theorem 9.8). We now derive some basic inequalities for the Riemann-Stieltjes
integrals f;X f(#)dAg(t) that we shall encounter. Here X > 1. From the defini-

tion, Ay (t) = Ty (t) — Axt?/* is the sum of a continuous function and a step function
continuous from the right.

Lemma 15. Let f(t), g(t) be real functions of bounded variation continuous from
the left on [X,2X], |f(t)] < g(t) (t € [X,2X]). Then

(i) We have
2X
F(8) dAK(E) < || flloo X"
b'e
(ii) We have
2X 2X 2X
F() dA(t) <</ g(t)tZ/k’ldtJr/ g(t) dAk(t)| .
X X X

(iii) If f is continuously differentiable on [X,2X], then

2X R 2X
F(8) dAR(E) < || ]| X/H1K 4 / £(t) Ax(t)dt].
X X
Here ||fle = sup |f()]-
X<t<2X
Proof. (i) We have
2X 2X 2X
FOaA) = — [ FdA) + / (T (1), (2.20)
X X X

and ([1], Theorem 9.23)

2X

F@YAAREF) | < || flloo AR ((2X)*F — X2/F),

X
2X

FR)A(Ti(t)]| < [[f oo (Th(2X) — Ti(X)).

X
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Now (i) follows from simple bounds for the expressions used to bound the two
integrals.

(ii) From (2.20), and [1], Theorem 9.22,

:X F)dAL(t)] < % :X Fe)t¥/*1at +/X2Xg(t)di(t)
X X
\% i g(t)tQ/k_ldt—i-/Z g(t)d Ty (t)
X X
4Ak 2X 2/]@71 2X
] d AAL(1).
= amer s [ gmani
(iii) We have
2X 2X 2X
f()dAL(t) = A(t) f(t)|  — Ag(t) f'(t)dt
X X X
2X 2X
‘/X F)dAL ()] < [[Aklloo [1flloo + A (t) f'(t)dt
X
< [l X AT / o . u
X

3. Proof of Theorem 5

By a splitting-up argument and Minkowski’s inequality, it suffices to show that

2|~ )|
/ S B dt < TR, (3.1)
T Tx nO' 7
The left-hand side of (3.1) is
X ) T
ne me T
n~X m~X
1
<4y r(n) ) [, — 1) 3
ne me logm/n
n~X n<m<X

The contribution to the last double sum in (2) from m = n is

2
<7y r’“gn) <T,

n (e
n~X

since ri(n) < n and Zx %@ < X2/k—20
e~
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By a further splitting-up argument, it suffices to show that the contribution to
the last double sum in (3.2) from n ~ X, m—n ~Y is O(T'</3) for L <Y < X.
Moreover, for m —n ~Y,

m—-n

~
-~

|

m
log — =
n n

Thus we must show that
X
—20 . 1+€/3
X% min <T, Y) E ri(n) E re(m) < T .
n~X m—n~Y

Now

> re(m) = Ag((n+2Y)** — (n+Y)¥*) + Ap(n +2Y) — Ag(n +Y),

m—n~Y

X 29 min (T7 ;{) T;{ re(n)((n + 2Y)2/1€ —(n+ Y)2/k)

< X—20+1y—1 . X2/k . YXQ/k_l < T7

since
X4/k}720’ < T.

Accordingly, it suffices to show that
€/3 yv20 Y
> )G +2Y) -~ Gn+Y)) < T/3X% (1+ ~ (3.3)
ne~X
where G(w) = c%wl/k_l/#@k(wwk) + By (w), and that
2/k 2/k €/3 y 20 Y
> k() (Pe((n +2Y)**) = Po(n+Y)*/%) < T3X27 (14 <) 69
n~X

Let L =Y 'X'"'/F Then in [X,3X],
G(w) = H(w) + O(X k1K [=1/k),

with

R 1 1 1
H(w) = cyo/FH % 1R cos 2 <€w1/k—4 (1+k)>.

<L

(Possibly H(w) =0.) For w € [X,2X],

H'(w) < X2/k=1/k =1 Zg—l/k < X2/k-1/R -1k

<L
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Gw+2Y)—Gw+Y) < X2/k=1/K=111-1/ky + X L/k=1/k* [ ~1/k
< YVE
Hence the left-hand side of (3.3) is
< X2/kY1/k.

IfY < X/T, then
X2/ky1/k < X3/k:T—1/k < )(20'7

since X372k L T. If Y > X/T, then
X —(1-1/k)
XQ/kyl/k < X2/k () Y = YXB/k—lTl—l/k < YTXQJ_l
T

for the same reason. This proves (3.3).
Let *(u) = ¢(u) for u & Z, ¢*(u) = 1/2 for uw € Z. Then ¢* is of bounded
variation and continuous from the left, as is
Byi(u) = =8 > P (W =)
2—1/ku1/2<n<u1/2
We observe that
P (WF) = Pw¥*) < X (we[X,2X])

since w — n* = m*, (m an integer) for O(X¢) values of n in [27Y/Fu1/F W1/k],
Since o > 1/k, it suffices to prove a variant of (3.4) with P, replaced by P;; that
is, to prove

/2X{PE((w +2Y)¥F) — P (w4 V) F)Vd Ty (w) < T2 X2 (1 + T;) .
X

Moreover,

2X{Pz§((w +2Y)?%) — Pi((w + Y)*/*)}d(Apw®*)

24 2X+2Y
= 2 /X R -2
+

2X+4Y
— / P (w?*)(w - Y)Wldw}

X+Y

X

2Ak 2X+2Y
= k{ /X . PP ){(w —2v)*/F ! — (w = ¥V)* o
—+

X+2Y
— / P ?) (w = Y)* " dw
X+Y

X+2Y
+ / P,:(wQ/k)(w - Y)Q/k_ldw}.
X+Y
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In the last expression, the first integral is estimated using (2.3) as
<<X2/3kYX2/k_1 <<X20—1TK

since

X4/k—2(7 < T.
The last two integrals are also
< X2/3kyx2/kfl < X2071TY

Thus it remains to prove

P (w+ Y1)dAR(w) < T/3X?% (1 + X) (3.5)
X
for Y1 =Y, 2Y. We may suppose that
Y < X174/3k, (3.6)

For in the contrary case, the left-hand side of (3.5) can be estimated by Lemma
15(i) as

< X8/3k < X2o‘—1+4/k—20‘y < X20'—1TY"

since X4/k=20 <

Write w; = w + Y; and H, = X3/k=292-74_ We observe that, for w € [X,2X],

P,;“(wf/k) + 82 Z ap Z e(h(wy —nF)Yk) (3.7

r=0 0<|h|<H, Nr(wf/k)gnéNr+1(wf/k)

<

T

R
by > e(h(wy — nF)YF) + O (k) (log 2T)?,
=0 |r[<Hr N, (w?*)<n<Nrp1 (w2'F)

with R = O(log 2T'). This follows from (2.10), (2.11) if wf/k is not an integer, and
by a limiting argument otherwise. Hence Lemma 15 (ii) yields
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2X
/ Pr (@) dAr(w) (3.)

r=07X 0B H, N, (w2 ) <n Ny (w2/F)
R 2X
+0 / > b e(h(wr —n")VF)dAy(w)
r=0"X |n|<H, N (w2 *) <nNpy1 (w2/F)
R 2X
+ Z/ > b ) e(h(wr = n*) ) 1 dw
r=0"% " |h|<H, N (@M <n< N (037%)
2X 2X
[ togmanue)| + [ og Ty ).
X X

The last two O-terms in (3.8) contribute
O(X?**(log 2T)*) = O(X?)

by Lemma 15 (i). The contributions from by in the sums over i are both

R 3/kg—r
/w2 -

from the choice of H,.
Fix a value of , 0 < r < R, and write P = 2". After a splitting-up argument,
we see that it suffices to prove

X k\1/k
H‘l/X S o 3 e(h(wi — nF)/F)dAK(w)

hoH o N (] %) <N (w2/)

TY
<L T/4X% (1 + > (3.9)

X
and
2X
H*l/ > en > e(h(wy — n®)Y*)d(w?*)
e H N () <N (w275
TY
< T4 x?0 (1 + ) (3.10)
X
whenever

—_

5 SH< X3/h=2opma. e < 1.
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Let a = (2k—1)/(2k—2). Using (2.11), we write the integrands in (3.9), (3.10)
as

ProH 2PN N b(hm)e(w |(h,m)]) + O(log 2T),
h~H me&[hP,2hP]

with b(h,m) < 1. We have already shown that the term O(log2T) gives rise to
an acceptable error. This reduces our task to showing that

2X
PUHTES ST b [ el (hm) ()
h~H me[hP,2hP] X

<L T/4X% (1 + T;) (3.11)

and

2X
PeHT2N" N b(h,m) / wiFe(wi®|(h,m)))w?Fdw
h~H me[hP,2hP) X

TY
<L T/4X?% (1 + X) . (3.12)

The bound (3.12) gives no trouble. The integrals are
O(XP/2=1((h,m) X5 ™) = O(X¥/2(PH) ™)
from Lemma 8. Thus the left-hand side of (3.12) is
< PYTeHY2X3/2R(PH) T « X312k « X2,

For the integrals in (3.11), we use Lemma 15 (iii):

2X
[ el mm et )

2X
< XB3/2-1/KE /X w§1/2k)7le(wi/k|(h, m)|)Ag(w)dw

2X
+ /X W21 () e () ) A () oo

The contribution of the first two terms in this bound to the left-hand side of
(3.11) is

< PlfaH1/2X3/2k71/k2 < X3/2kfa+3/2k71/k2 < X2
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Recalling (2.1) once more, it remains to show that

PlfaHfl/Q Z Z

2X
/ w£3/2k)—le(w%/k|(h7m)‘)wl/k—l/k2©k(w2/k)dw
h~H me[hP,2hP] | VX

TY
<« T/*X? (1 + X> (3.13)

and

pl-apg- 1/22 Z

h~H me[hP,2hP]

2X
/X W27 R) () ) Py (w2 oo

TY
<L T/AX?% (1 + > . (3.14)
X
For (3.13), we have the bound
2 3/2k)—1 2 1/k 2
/X WP GUE=AI (LR ()| e /¥ deo < X326V 0 |G, )]

unless

1= | (hym)]| <C(k)§PH+1. (3.15)

> eV = [(hym)|| T < (PH) T
el m) 120(k) % PHA1

For the contribution from ¢ —|(h,m)| > PH and ¢ < M is clearly O((PH)™1).
The remaining ¢ contribute

o S (pH)TVE)T| =o((PH)).
1<0<PH

We also observe that

Y
Z é_l—l/k < (PH)—l—l/k (X PH_|_ 1) .
[e—](h,m)||<C(k) % PH+1

Combining these estimates, we see that the integral in (3.13) is

Y

< (PH)—].X?)/Q]C—I/k;Z + (PH)—I—I/k) (X PH+ 1) X5/2k_1/k2.

The left-hand side of (3.13) is thus

< H1/2X3/2k71/k2 + (PH)3/271/kX5/2k71/k271Y_|_Hl/Qfl/kXE)/Zkfl/kQ'
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Now ) )
Y/2X3/2k=1/k o y3/2k—0+3/2k-1/k> _ x20

since o > 1/k;
H1/271/kX5/2k71/k2 < X(1/271/k)(3/k720)+5/2k71/k2 < X%
since o > (4k — 4)/(3k? — 2k). Finally,
(PH)B/Q—l/kX5/2k—1/k2—1Y < X(3/2—1/k)(3/k—2¢7)+5/2k—1/k2—IY < X201y

because

X (3/2-1/k)(3/k=20)+5/2k=1/k =20 _ yT/k=4/K~o(5-2/k) < x4/h=20 <

(This is a consequence of the obvious inequality

L2\ .3 2
k) TR R
This establishes (3.13).
Turning to (3.14), another application of (2.10) gives

2X
/X WP (W FYe(wr | (hy m)|)dew (3.16)

_ SXR: Z X 3/2k—1 (3 17)
= - ap, « w1 .

5=0 0<|hi|<K,
Nop1(w?/%)
xS e(ha(w—n*)YE 4wl ¥ (hm)|)dw
n=N;(w2/*)
R ,ox Ney1(w®")
PO [ Wl Y Y el )
s=0YX |R1|<SKs  n=N,(w?/k)
+ O(X3/%*(log 2T)%).
Here
Ks — Pl—a2—qu3/2x5/2k—20,
so that

2X Nota 5/2kg—s

_ X5/2kg=sq

/ w2, ldw < < PvtHT32 X%
X

K
n=Ng

Thus the terms arising from by in (3.16) contribute to the left-hand side of (3.14)
an amount
< PlfaHB/QPalef.?)/QXQU < X20‘.
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The contribution arising from the term O(X?/?*(log2T)?) in (3.16) is

O(PH3/2X3/%k (1og 2T)3) = O(X3/2(B/k=20)+3/2k (150 2T')3) (3.18)
= O(X*?(log 2T)°),
since s — 4 6 5
> > (k>4), > (k=3).
oz K24 ozp (k=3

For the remaining terms on the right-hand side of (3.16), select a particular s,
write @ = 2°, and apply (2.11) to the sum over n, with s in place of r. Since the
term O(log(|h| U + 2)) leads to a further error O(X3/2¢(log2T)?), our task now
reduces to showing that

Pl—aH—l/QQ—CLK—3/2 Z Z Z Z |I5(h,m, h17m1)|

h~H Ph§m<2Ph h1~KQh1§7TL1<2Qh1

TY
<L T/5X?% (1 + X) . (3.19)

Here 1 < K < K,

2X
Ié(h,m7 h17m1) = /

WG (| )| 0V 4 5 ()] ) deo,
X

and § may be 0, 1 or —1.
We first consider (3.19) when either § = 0 or 1, or QK > C(k)PH. In this

case
d
—(|(h,m)|* 46 |(hom) ") > QERXME,

L(hym, hyyma) < XPETHQEX VTN = XVHQK) ™!
from Lemma 8. The left-hand side of (3.19) is

< P2—aH3/2Q1—aK1/2X1/k(QK)—I
< P7YV2(PH?(QK)V2 XY « PHXYF « X%

as we saw in (3.18). Similarly, when PH > C(k)QK we have
I—l(hv m, h17 ml) < Xl/k(PH)717
and the left-hand side of (3.19) is

< P2—aH3/2Ql—aKl/2Xl/k(PH)—I
< (PH)l/Q(QK)l/QXl/k <<PHX1/k < )(2(:"7

as we saw in (3.18).
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For the case 6 = —1, QK =< PH, we observe that

d
(hm)l et = [(hy,ma) !5

|0 = 1m0 () 20

Consider the contribution to (3.19) from quadruples with

(A - C()'?Y> PH < ||(hym)| — |(hy,m1)|| < 2APH. (3.21)

where A runs over the O(log 2T") values

kY
A:th() , t=0,1,..., A<1.
X
It suffices to show that for each A, these quadruples contribute
O (T¢/X? (14 LX) to the left-hand side of (3.19). From Lemma 10, the num-

ber of quadruples satisfying (3.21) is

< Te/G(PHZ +AP3H4)1/2(QK2 +AQ3K4)1/2.
We now consider three cases.
Case 1. We have A < (PH)™2.

In this case the number of quadruples satisfying (3.21) is
< PYVPHQY?K < (PH)?(PQ)~/2
Estimating the integral trivially, the contribution to the left-hand side of (3.19) is
< PleQ e —V2K=3/2(p[)2(PQ)~Y/2 X2/
< (PH)**(QK) 32Xk « X?/F « X%,
Case 2. We have A > (PH)~2? and t = 0, that is, A = C(k)Y X L.
In this case the number of quadruples satisfying (3.21) is
< TY/S(APPHY)'?(AQPK*)'? < T/°A(PH)*(PQ)~"/?
<L T/Y XY (PH)Y(PQ)~Y/2.
Estimating the integral trivially, the contribution to the left-hand side of (3.19) is
< T/SpleQ-ag=1/2[=3/2y x~L(PH)4(PQ)~1/2 X ?/k

< TG/G(PH)7/2(QK)—?)/QYXQ//C—I
< TE/G(PH)2YX2/]€71 < Te/ﬁxg/kfﬁldfly < X2071YT176/6
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since
X8/k*60’ g X4/k720’ < T.

Case 8. A > (PH) 2 and t > 1, so that A > 2C(k)Y/X.
We can now infer from (3.20) that the quadruples satisfying (3.21) have
I_y(h,m,hi,my) < XY APHXY 1)1 « XV*(PH)T'A.

The number of quadruples is again < T/SA(PH)*(PQ)~'/2. Thus the contribu-
tion to the left-hand side of (3.19) is

< TE/GplfanaHfl/QK73/2A(PH)4(PQ)71/2X1/]€(PH)flAfl
< TE/GP—l(PH)5/2(QK)—3/2X1/k
< THXYF < TX?

from (3.18). This completes the proof of Theorem 5.

4. Proof of Theorem 4

Let o be fixed, % <oy < % (k=13), % — k% <oy < 2—3}9 (k=4,5...). Define the
positive number X by X?2°¢ = T'. It is immediate from Lemma 1 that

Mk(Uo,T) < W1 + T2W2 + T7 (41)

where
2

2T
_ rx(n)
Wy = / Z nootit at,

T |a<x
We may apply Theorem 5 to W7; the conditions
oo = g (k= 3), oo = (4k — 4)/(3k* — 2k),

4
max (k — 200,3 — 200k> < 209

are easily seen to be satisfied.
It follows that W; < T1+¢. Recalling the decomposition of Ay (z) in (2.1), we
have only to show that

2T
o= [
T

2

/OO M dw| dt < T71F,

x w1 +1t
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where o1 = 09 + 1 —1/k + 1/k?, and

2T
wi— [
T

where 05 = 09 + 1, Fi(w) = Pp(w) 4+ Bg(w*/?).
Crudely, we have

2T
/;

if we choose

e Fk(w)

2
it dt < T,
X

dw

2
dt

Y n=1=1/k cos (27an1/k — i (1 + %))

n>B
m dw
x w01+2

< TB2/kx—201+2 -1

B = Tkxk(oit1),
After a splitting up of the sum
1 1
5 ks (2t (141))
n cos | 2mnw ,
= 4 k

we find that for some NV, % < N < B, we have

2T (%) ] 2
Ws < T 4 (logT)Q/ / g(w)w™ | dt, (4.2)
T X
where ) )
— —01 —1—1/k‘ - 2 1/k _ 1 -
gw) =w Zn cos( Tnw 4( +k>)
n~N
00 0o
We decompose the integral / as Z / , where
j=0"J0)
J(j) = [X27, X2741],
We have
. 1 t1
/ g(w)wﬂtdw <= Z n—1-1/k (/ w e <nw1/k . ng) dw)
J(7) 2| = J(5) 2m
(4.3)
+ : Z n-1-1/k (/ w e (nwl/k - tlogw) dw) | )
2 ; 27
n~N J(3)
Let F(w) = nw'/*F — “;’7%“’ and F(w) = —nw!/* — “;grw. We have

: T
|FY (w)] > max (N(XQJ)l/k_l, X2J>
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in (4.3). If
, T
ETIN(X2)YE > = (4.4)
s

we have

|F'(w)| > N(X27)1/k=1
in (4.3), while if

. T
2kIN(X2TH)E < o (4.5)
we have instead ‘
|F'(w)| > T(X27)~!
in (4.3).
We conclude from Lemma 8 that
/J( ) glw)w dw <« N™I7VFk(I X))~ —-1/k+1 (4.6)
J
< N*l/kT71(2jX)170'1
if (4.4) holds, while
/J( ! g(w)w dw <« NTVrEp=1(21 X)1-n (4.7)
J

if (4.5) holds. There are only O(1) ‘exceptional’ values of j satisfying neither (4.4)
nor (4.5). For these j, _
N(X2)VF =T,

(Of course, there are no exceptional j unless N < TX /%))
If there are no exceptional j, then we can apply (4.6), (4.7) as follows:

2

/2T /OO ) 2 2T i ) i ) )
g(w)w " dw dtg/ Jj J / g(W)w dw| dt
T X T j=1 j=1 J(5)
21 o0 P
< ij/ g(w)w dw| dt (4.8)
T =1 J(J)

<« T-1x2201 — p-1x—2(00—i—75),
Recalling (4.2), we obtain the bound
Wi < T}

using only the lower bound o¢ > % — ,712
Suppose now that there are exceptional j. For some fixed jj satisfying

N(X270)V/k <, (4.9)
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we can modify the above calculation to obtain

2T | poo _ 2T _
/ / g(w)w™ " dw dt<</ /g(w)wﬂtdw
T T |JJ

X
Here J = J(jo)-
We now appeal to Lemma 5. We have

[ | oo

A change of variable shows that the integral on the right-hand side of (4.11) is

2 2

dt + T 1X?7291 . (4.10)

2
dw.

2

dt < (X270)17291 Jog T /
J

Z n—l—l/ke(nwl/k)

n~N

(4.11)

(200+1 x)1/k 2

/ kUk_l
(290 X)1/k

by Parseval’s equality applied to subintervals of [(270 X))/, (270+1X)1/¥] having
length 1. We conclude that

[ | oo

by (4.9). This bound is

Z n_l_l/ke(nv)

n~N

dv < (270 X)) 1/k N=(+2/k) (970 x)1/k

2
dt < N~U+2/k) (940 X)2=201 Jog T

< N—(1+2/k) (TkN—k’)Q—Qal 10gT

< N=UH2/R)(TR =)=k o0 T < T~ og T
since o1 > 1+ 5. Recalling (4.2), (4.10), we always have
W3 < T~ (log T)3.
Now we have to show that
W, < T7He.

Arguing as in (4.8), it suffices to show that

2T
/;

Lemma 5 yields, for any measurable function E(w) such that

Fy(w)

= dw
. oo+t
J(5) W7?

2
dt < T~ (4.12)

E(w) < T%  on [X27, X277},
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2T
/T

Thus it suffices to show that

2T
/;

Define R as in Section 2 with U = (X27)*/2. In view of (4.13) and the decom-
position (2.6), it suffices to show for a fixed r, 0 < r < R, that

/2T
T

Let H = H(T,r) be a positive integer, to be chosen below. Let

E(w)

w2 +it

2
dw| dt < (X27)7292%2(log T)T/* (4.13)

J ()

< (X2j)720'0T6/3 < T71+6/3272j00.

Py (w¥F)

2
WCyE dt < T~

dw

J(3)

2
dt < T~1+e/2=4,

Nyy1(w?/%)

wfagfit W — nk 1/k dw
/J(j) S (w—nh)

n=N,(w2/k)

Nppa(w?/%)

fw= Y Wlw—nf)"),

n:Nr(w2/k)

Ny (w?/F)

1 e(h(w — nk)1/k
g(w):_% Z Z (( - ) )

n=N,(w2/k) 0<|h|<H

It will suffice to show that

2T
J;

2
dt < T 1+e/2574, (4.14)

[ o) - g
J(5)

and
2

dt < T=1e/2=4, (4.15)

2T _
/ / w2 % g(w)dw
T J ()

We begin with (4.14). Let P = 27. For n = (X27)'/*, we write f,(w) for the
indicator function of the interval

I(n) = [n*(1 4 (2P)79), n*(1 + P79)).

Let
Ii(n) = [X27, X227 N I(n).
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Now

/Il(n)

Sty Ly o=

7 h
0<|h|<H

2

1 h
whtnkel(n) ™ o<ln<n
: I ()|
, e(hw
X2/ p S d
< /0 vlw)+ 55 no| M
0<|h|<H

< X299 p~ag—1

by (2.7). (Note that the variable w introduced by the change of variable satisfies
w =< nP~%) Hence

[ @ -gpa - |
JG) IO | (X010

1 e(h(w — nk)t/k
pLoy eliloon )}

1
0<|h|<H

fn<w>{w(<w —nF)lF)

2
dw

< (X27)VF 3 fu(w)
nx=(X29)1/k J(J)

P((w —nM)F)

2

+ L Z e(h(w_nk)l/k) dw

h

T
0<|h|<H

(by Cauchy’s inequality)

Y((w —n*)Hk)

= (X27)/F Z /
1k JI1(n)

nx(X27)
2

k k)l/k) "

1 e(h(w® —n
tom 2 h

0<|h|<H
< (XY kpmag—L,

In view of Lemma 5, the left-hand side of (4.14) is

< (X2 0pT [ () - gl
I (n)

< (X27) 200t K log T)PTIH " < T~ log T 2770 =2/0)
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if we now specify that
H = TX 200%2/kp=a — x2/kp~a,
Turning to (4.15), it is sufficient to show for a fixed K, % < K < H, that

/2T 2
T

dt << T_1+6/3j_4,
where &« = 1 or —1 and

/ w—cfz-ﬁ-aith(w)dw
J(7)

Nrta (Wz/k)

grw@) =Y > elh(w—n")").

hoK p=N, (w?/*)

Recalling (4.13), we can reduce this to showing that

2T
A

2
dt < T71+e/3574,

/ PfaK73/2w7”37MtG(w)dw
J ()

Here
0310271/2]{31004‘1*1/2]6

and

Gw)= Y b(hym)e(w"*|(h,m)|)

(h,m)e&
with b(h,m) < 1,
E={(h,m):h~K, Ph<m<2Ph}.
Compare the reduction of (3.10) to (3.11).

Arguing as in the discussion of W3, we find that after excluding O(1) ‘excep-
tional” values of j for which

Cl(k)T CQ(k)T

(with ¢1(k) > 0) we have

(4.16)

1/k ) )
/ e(|(hvm)|w ) dw < min ((Xz])l—ag—l/k(PK)—l’(X2J)1—03T—1)
J(d)

for all (h,m) € &.
Since || < PK?, the ‘non-exceptional’ j satisfy

2
2T
P—QO.K—3/ / G(W) dOJ
T J(j) w03+azt

< P72QK73T(PK2)2 min((XQj)szk*zUS P72K72, (X2j)27203T72)
< P~ yin((PK) ™1 T(X27)272/k=20s pRT—Y(X27)%203)
< (X2j)2720’2 < T71272a’0j.

dt (4.17)
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Now suppose that j satisfies (4.16). We have

[0 e ¥ s W) (1.18)
1G) | @7

(h1,m1)€E (ha,m2)€EE

[ e (U ml = ma) ) o

min j\1—203 (X27)1-202
< > <<X2> »|<h1,m1>||<h2,m2)||>

(hl,ml)eé‘ (hz,mz)eg

by Lemma 8.
We consider the contribution to the last sum from hi, mi, ho, mo satisfying

APK — (X29)7VE < ||(hy,m1)| — |(h2,m2)|| < 2APK. (4.19)
Here A runs over the numbers in (0, 3] of the form
A = (PK)"YX29)"Vkah  (h=0,1,...).

Clearly (4.19) implies

|h{ +m{ — h] —mi| < A(PK)*.
By Lemma 11, the number A of such quadruples satisfies

N < (PK)?(PK? + AP*K*). (4.20)
The contribution of these quadruples to the last sum in (4.18) is

(X2j)1—2<72
APK
= (PK)“/{(X27)! 23 PK? + (X27)' 7?7 P?K*}.

< (PK)</® {(X2j)1_2”3PK2 + AP3K4}

Summing over O(j + logT) values of A, we find that

/J(J')

Applying Lemma 5, and recalling (4.16), we have

2
2T
P—QG.K—3/ / G(W) dw
T J(j) w03+azt

< JT3{(X27)?7273(PK) ™" + (X27)?7272}
< jTE/S{(ij)272U3+1/kT71 4 (X2j)720'0}.

2

G| g L JT/H(X2) 720 PK? 4 (X 29)1 7203 P25},

was

dt (4.21)
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We recall that X270 = T and that
2—203+4+1/k=—200+2/k <0.
Thus the left-hand side of (4.21) is
« T 1He/39=(200=2/k)j.

Combining this with (4.17), we see that the proof of (4.15) is complete. As already
noted before (4.14), this finishes the proof of Theorem 4.

5. Proof of Theorem 3

It suffices to show that

2X
Ek(x)zdx _ dk((zx)uz/kq/k? _ X172/k72/k2) + O(X1+2/k72/k2717)
X
for large X. We write (in this section only) ||...|| for the L? norm on [X,2X]. We
note that

I+ G|I* = [FI* + O FIIGII)
if |G|l = O(||F||). Accordingly it suffices to write Fy(z) in the form
Ey(x) = F(z) + G1(z) + - - - + Ga(x), (5.1)
and to show that
HFHz _ dk((ZX)1+2/k—2/k2 _ X1+2/k—2/k2) _|_O(X1+2/k—2/k2—n)7 (5.2)
and that each G satisfies
|G| = O(x12/k2/ ), (5.3)

Let A\ = 1/k — 1/k®> + e. Let ¢ = c(x,k) be a small positive constant,
¢ <1/(2k+1), and let y = X°. By combining Lemma 2 with (2.1), we obtain

By(z) = cja'/H— /K P i aop (2
k(T) = cha > pu(d)®y, 7 + " u(d)Py 2
d<y

d<y
1 AJr’LwC .TS
— Jks)Z —d O(y).
Fomi ) e F(y, ks)Zi(s) — ds + O(y)
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Thus in (5.1), we may choose

1/k 1
_ 1/ k=1/k? —1-1/k p(d) b _ 4L
F(z)=cyx E 14 E cos 27 1 1+

—1/k
<X d<y a1/ d
, 1/k
Gi(x) = cjat/k1/k Z 11k Z d’LlLECBk cos 21 (&Ed - i (1 + ]1)
>X d<y
=0(1),
L2/k
d<y
Atiz© 8
Gs(x) = / fly, ks)Zk(s) — ds,
A—izC s
Ga(z) = O(y).

Obviously G1, Gy satisfy (5.3) for n < 1/k—1/k? —c. Tt remains to prove (5.2),
and (5.3) for Ga, Gjs.

We can dismiss G5 quickly. By Cauchy’s inequality, a change of variable,
and (2.4),

/2X , Z 2X 220N\ 2 Z i x2/k
Go(z)%dx <y / Py (2> dr<y) d ( 5
X <y 7 X d d<y d

1
= yX“‘l/k Z p < X“‘l/kylogy.
<y

>3/2+(k/2—1)

Thus G satisfies (5.3) for 2n < 1/k —2/k* —c.
For G3, we note that, with 7 running over powers of 2, 2 < T < (2X),

2T
Gs(x) < xk=D/k +e (1 + Z / g(t)z"dt > : (5.4)
= | Jr
Here
fly, kX + kit) Z (X +it)
+ 1t
By Lemmas 7 and 4,
2X | 2T s 2T
/ / gB)zitdt| dx < XlogT/ () [2dt (5.5)
x |Jr T
X oy [T N
<t \Zk(\ + it) .

Recalling Lemma 6, the right-hand side of (5.5) is

< X1+2€y2(X7k)\) )
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Combining (5.4), (5.5),

2X
/ Gg(l‘)Zdl' < X1+2/k72/k2+2c(xfk/\)+56'
b'e
Since 2c(x — kA) = 2¢(x — 1+ 1 — ke), we see that (5.3) is valid for Gj if
n<c (1 - % - x).

Our treatment of F'(z) resembles that of Zhai [19], but we give the details for
the convenience of the reader. Using the identity

2cos Acos B = cos(A — B) + cos(A + B),

we can write
2F(2)% = 222" (Ky + Fy(2) + Fa(2)),

where
p1(d1)p(do)
Ky = ’
61,62@(2,;1,(12@ (0102) 17k (dydg) =17k
Oyda=0od;
p(dr)p(dz) ((el eg> W)
Fi(z) = cos2w (| ——— |z
1(z) zl,z2<)§ud2<y (€102)1H1/k(dydy)1=1/k 4, dy
eldQ;éele
and
_ p(d1)p(d2)
Fy(z) = Z (6152)1+1/k(d1d2)171/k

£1,62<X,d1,d2<y

Y4 Y4 1 1
><cos27r<<dll+dz) xl/k—§ <1+k>>'

We now apply the particular case
2X ) )
/ 22/F=2/E o8 27T(Axl/k +a)dr < XA/ k=2/k |AI!
X

of Lemma 8. This yields

2/2X F( )2d _ C;cQKX ((2X)1+2/’“*2/’“2 X1+2/k72/k2 5.6
T Tk -2k - ) (5:6)

+ 10} <X1+1/k72/k‘2 (Sl + SQ)) .
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Here
Si= > : b 6"
. 01,6,<X (1l2) 1k (dydo) =1k |dy do| 7
d1,d2<y
LidaF#Lady
! gl EQ -1
Sy = b by .
2 e%;x (0102) 7R (dr o) =17 (dl * d2>
dy,d2<y
We evaluate Kx as follows. We may write
Kx =Y bn),
nz1
where
p(d1)p(d2)
b(n) = ’
(n) Z (€1£2)1+1/k(d1d2)1_1/k

n:fldnggdl
£1,62< X, d1,d2<y

If n < y, then clearly

n2 \ LUk
)= S wtutan) (7) (ane

dl\n dz‘n

2

_ n7272/k: Zﬂ(d)dz/k

d|n
A similar calculation yields
2
\b(n)| < n—2—2/k Zd2/k < n—2+2/kd2(n)
d|n
for all n. Hence.
2
Ky = Z n~272/k Z w(dyd** | +0 <Z n=22/k 2 (n)) (5.7)
n=1 d|n n>y

=er + O(yﬂ“/kXe).
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Turning to Si, it is clear that

S < yZ/k Z (4152)7171/16\51612 — lody |t
01 02K X
dy,d2<y
Lida#Lady

<yP N ()T R <y R og X
£y,02,dy,r
d1<y, r<Xy

Similar reasoning yields the same bound for Ss.
Recalling (5.6) and (5.7),

2X
/ F(z)*dx = dy ((2)()1+2/k*2/k2 _ X1+2/k72/k2)
X

+O(X1+2/k—2/k2+ey—1+2/k +X1+1/k—2/k2+ey1+2/k).

Thus (5.2) is satisfied provided that

2
n<c(1—k) and 0 <1/k—c(1+2/k).
As noted above, this completes the proof of Theorem 3.

6. Proofs of Theorems 1 and 2
Let k=3 o0r4, o3 = %7 oy = 1573 Just as in §5, we find that

o +izC 5 T
B =g [ sz S ds + Y w(@e (5) +00). (6)

T omi o
ki d<yi

Here yy, is to be specified below, y; > 1. Moreover, we can argue as in §5 to obtain
alarge T, T < 2€ with

U;ﬁ»ixc s
[ 192 % ds < (loga)a™ max (ko + 0] (62)

k—irc Itlg

2T
x (Tl/ |Zk(ak+it)|dt+1>
T

—k
< xak+ey£k Ok .

We used Theorem 4 (together with the Cauchy-Schwarz inequality) and Lemma 4
in the last step.
We take

— x60374/3 — x0,2260,..’ — x404/371/12 — .730'1931"'.

Ys Ya
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It is easily verified that in each case, (6.2) yields

or+ix o .
/ - f(Yr, 8)Z1(s) ?ds < gt (6.3)
o —1ix
From (2.1),
> ndAy () = X+ Y+ 0), (6.4)
d<yk
where
1/k 1 1
_ 1/k—1/k? _1— 1/k 2mhx 1 1
Xi = ey o d1 1/k Zé < ] 1 1+k
and

Yi=-8Y u@ S v ((; - n’f)l/k> .

<y S <nF <

Clearly, in bounding X}, we need only show that for 1 < D <y, and £ > 1

2
we have

1/k
3 u(d)e (“ d/ ) <« (/KDY kg O 1K K e (6.5)
d~D

Since (6.5) is trivial for D < 2*%~1F1/* we assume that
D > ghoe—1+1/k (6.6)

in proving (6.5). By appealing to [2], §7, we can suppose much more when k = 3,
namely
D > g0-221, (6.7)

For Y}, we follow the initial stages of the argument of Zhai and Cao, with their
(2.10) as the point of departure. Let P > 1 and write

H = max(z'/F=%p=a 1)
We find as in (5.7), (5.9) of [20] that in bounding Y%, it is sufficient to prove

21/ (2k) D\ /2 2%\ (h, )
_ I A S Or+e
PU+q)/2D1/23/2 Z <d> Z b(h,@)e( y ) <z

(h,0)e€

(6.8)
for 1< K < Hand 1< D <y Here

E=E(K,P)={(h,0):h~K, Ph<l<2Ph}
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as in Section 4, and |b(h,£)| < 1. Strictly speaking, one also needs to prove the
analogue of (6.8) with u(d) replaced by 1; this is easier and need not be discussed
separately.

Naturally we may apply Lemma 12. Thus we need only prove in place of (6.5)
that, for a suitable U, 0 < U < D'/3,

Y 1/k
S; = Z Z ame< :m ) < el/lefl/kkafl/kJrl/lere (6.9)

m~M n~N
mn~D
for {>1, MN < D, N> DU!, |a,,| < 1; and that
éxl/k 2
Srr = Z Zamcne ) « VR DIk Ok =1 k1 ke (6.10)
m~M n~N mn
mnn~D

for £>1, MN < D, U < N < DY2 |a,,| <1, |ea] < 1.
It turns out that (6.8) requires no new work in the case k = 4. It is shown in
85 of Zhai and Cao [20] that

Yy < 2(ys +x1/7yi/28 +x1/8yi/12 +x1/6yi/9 +x0.1875)7

which is easily seen to be stronger than we need. In the case k = 3, we can quote
the result we need from [2], §6 when D < 22/9. Thus we suppose that

in proving (6.8) for k = 3. Appealing to Lemma 12, we need only prove in place
of (6.8) that, for a suitable U, 0 < U < D'/3,

LL‘l/G D 1/2 —$1/3|(h7f)| b
P5/4D1/23/2 Z Zam (mn) Z b(h, l)e (mn) Lzx®

m~M n~N
mn~D

(6.12)

whenever MN =< D, N > DU! and |a,,| < 1; and that

21/6 _$1/3|(h,€)| bote
PS/ADIZK3/2 Do D amen > bhiDe (mn> <Lzre (6.13)

m~M n~N (h,e)eg
mn~ D

whenever MN = D, U < N < D? and |a,,| <1, |b,] < 1.
We begin with (6.9), (6.10) for k = 3. We take U = D'/3. By Lemma 13 with
X =< z'/3D71, Ny = M and (k,A) = (%, 2), the left-hand side of (6.9) is
< (logz)X{DN~Y2 4 D2z=1/3
+ (D3+2n€1+2m$(1+2m)/3N—(1+2n)M2(A—n))1/(6-&-45)}

< (log x)Q{DQ/g’ + (611D25x11/3N711M4)1/50}'
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Moreover,

(D25x11/3N’11M4)1/50 < D19/50,11/150 _ 152/3,.65-2/9

as a consequence of (6.7).
For (6.10), we appeal to Lemma 14 with X < (z'/4D~1, (k,\) = (1/2,1/2),
obtaining
SII < (1og I)3€1/5{$1/15D9/20N1/10 4 $1/18D1/2N1/9 4 I1/15D2/5N1/5 (614)
+ $1/33D6/11N3/11 + D2/3N5/18 + DN—1/2
4 gTL/60 pl5/22\9/22 | p3/2,—1/6)
< (log )30V /5 (g /15 DL/2 4 g1/18D5/9 4 41/33 p15/22
4 D/6 4 = 1/66 39/44 4 [y3/2,—1/6
Now
DO/6 < D2/3405=2/9
because D < y3 = x%%374/3. The remaining terms in the last expression in (6.14)
are easily seen to be of smaller order than ¢1/5D?/33%~2/9 This establishes (6.10)

and completes the proof of (6.5) for k = 3.
Turning to (6.9), (6.10) for k = 4, we suppose that

g0-0T950 — 404-3/4 ) <y

Let U = DY/22=204+3/8 Tt is easily verified that 1 < U < D'3. According to
Lemma 13 (i) with (k,\) = (1/14,11/14), X =< 2'/*D~', Ny = M, we have

(logx)—QSI <<DN—1/2+D2:L,—1/4+(D64£16x4N—36)1/88.

Now
DN~Y2 « D2/3 « p3/4,04=3/16
D214 & D3/4,04-3/16
Finally,
(D64I4N736)1/88 < (D28x4U36)1/88 _ (D46I35/2—7204)1/88
< D3/4404-3/16
since

D > x49473/4 > x17/107894.

This proves (6.9).
To obtain (6.10) in the range

2101-3/4 - 20125
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we apply Lemma 13 (i) with X < ¢z'/4D~1, (k,\) = (&5, 1 + &%). This expo-

nent pair is due to Huxley [5], [6]; his significantly deeper work in [8] hardly affects
the value of 4. The condition X >> D follows from D < z912°. We have

(log )~ 7/4S;; <« DN-Y2 4 DM~V/4 4 (D10+8r 1426, (1420) /4 )1/ (14+125),
Now
DN™'? « DUY/? = D3/4g0+=3/18, (6.15)
DM71/4 < D7/8 < D3/4$9473/16
since D < 20125 < 2894=3/2_ Finally
(D10+8r(1420)/4 N )1/ (144126) _ (6412187 \r5T0Y1/9048 - ( [)6697 ;,187)1/9048

< D3/4,04=3/16

since
D89 > 89(404—3/4) _ ,.3767/2-90480, (6.16)
This is where the precise value of 6, arises.
It remains to obtain (6.9) for
2912 < D Ly, (6.17)

According to Lemma 14, with X < 24D~ (k,\) = (1/2,1/2), we have

(logz) ™38y < 51/5{:&1/20D9/20N1/10 4 pl/24pl/2 N1/9 (6.18)
4 /2025 N1/5 o 1/44 p6/11 NB/11 . p2/3 \r5/18
4+ DN-V2 4 p-1/88p15/227\9/22 | D3/2x—1/8}
< €1/5{a:1/20D1/2 1 p1/24p5/9 4 p1/44 [15/22
L pol/88D39/44 | p3/2,-1/8 +D3/4$94—3/16}
404/3—1/12

where we have applied (6.15) in the last step. Now since D < y4 = x

we have
D3/2$_1/8 < D3/4J)04_3/16.

Moreover,
21/24p5/9 D3/4m94—3/167

since

0.125 - ,.33/28—-3604/7

D>z >

It is easily verified that the remaining three terms in the last expression in (6.18)
are smaller than ¢1/5D3/4294=3/16  This completes the proof of (6.10), and indeed
(6.5), for k = 4. Since we already have (6.3), (6.5) and (6.8), we have finished the
proof of Theorem 2.
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It remains only to prove (6.12) and (6.13) for the short range (6.11) of D.
If H = 1, then we can argue as on pp. 137-138 of Baker [2] to obtain (6.12),
(6.13). Thus we suppose that H > K > 1, and it follows that

KP3/2 < $1/3—93

from the choice of H.
We can dispose of the case

K > DP—l/Qx—5/27

by repeating verbatim the argument in the last paragraph of [2], §6. We suppose
that
K < DP~Y/2g=5/27, (6.19)

We shall prove (6.12), (6.13) with
U = Dg=20s+1/3p=1/2, (6.20)
obviously U < D/3,

We can easily dispose of (6.12) using the Kusmin-Landau theorem. For if
N > DU~! = p1/23205=1/3 then

< x7293+2/3pl/2KD71

dn DN

< 1’7203+13/27 _ I70‘03H.

d (2'3|(h, 0]\ _ 2'/*PK
mn -

from (6.19). A partial summation gives

D3 [ —2/3|(h,0)| DN
> (2)" <D
mn D 21/3PK

n~N
mn~D

and the left-hand side of (6.12) is

1/6 DN

- 2
-PK*M - PR

—1/6 n3/2 0

Turning to (6.13), we may remove the condition mn ~ D from the sum to be
estimated at the cost of a factor logx, as noted earlier. Let us suppose this has
been done. Let

Q = max(64[z'/3PKM~2N~1), 1).

We divide the interval [O, %] into @ equal subintervals I, ..., Ig, and bound

_p1/3
S= Y am Y cn > blhoe (W(LH)')

mn~ M n~N (h,0)e€
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as follows:

Q 1/3
z /7| (h, )]
< —_— .
s> Y| X avnoe(-2HE
m~M q=1 |n~N, (h,£)EE
[(h,)|/n€ly

Cauchy’s inequality yields

2
1512 < MQi STOY cubh e (_5”1/3(}“5)') (6.21)
b neA  mn :
g=1 m~M |n~N, (h,0)EE
[(h,0)|/nEly
a3 ((ha, 01)]  [(ha, £)]
g M _ ) _ ) ’
Q Z Z e( m < ny %) >)
ni,ng,(hi,41),(ha,l2) Im~M

(6.22)

where ny, na, (h1,£1), (ha,3) are restricted in the last summation by

(B, )] |k, )] | _ 8PK
o = NQ '

ni

A splitting-up argument yields

/
SE<MQge Y 5 e(m:ni" (l(hzlle) - Khl&)))"

ni,n2,(h1,01),(h2,l2) lm~M
(6.24)

(6.23)
where the outer summation (6.23) is restricted by n; ~ N, (h;,¢;) € £ and

(6.24)

( MN ) PK _ ‘|(h17£1) - |(h27£2)‘ _2APK

C2/BPK) N O N

ni1 o
The positive number A is of the form

2" M N 8
<

A= ——n©0 A< —,
zl/3PK’ Q

We can apply the Kusmin-Landau theorem again, since

‘ d (1'1/3 <(h1,41)| - (h2,€2)|>)‘ < 1623 PK 1

dm \ m ni no

M2NQ 2
by the choice of ). Thus the inner sum in (6.23) is
M?N )

< min (M, BPRA



Sums of two relatively prime k-th powers 111

According to Lemma 11, the number of solutions ni, na, (h1,£1), (ha,¥2) of
(6.24) is
< 2°(APPK*N? + P32K3N).
Thus
15> < 2°MQlog x(AP3K*N? + P*?K3N)min | M _MEN
"xl/3PKA
< 2*MQlog (P> K*ND?¢~1/3 + P32K3D),
S < .’EEQl/QPKS/Q(DS/2Z‘_1/6 +DN_1/2).
The left-hand side of (6.12) is now seen to be
< $1/6+6P71/4D71/2Q1/2(D3/2$71/6 + DN*I/Q).
To verify that this is < 2%2%€ reduces to showing that
Q < min(z2% PY/2p=2  2%-1/3pl/2p-1N), (6.25)

If @ =1, then (6.25) is a simple consequence of the lower bound N > U. Other-
wise (6.25) reduces to the two assertions

#PPEKM™AN"! « 2203 p1/2p~2 (6.26)
and
e PPKM™ANTY « 20~ 1/3pl2D—IN, (6.27)
Both assertions follow from (6.19). In the case of (6.26),

$1/3_293P1/2KM_2N_1D2 < 1‘4/27_293D3/2 < 1.
In the case of (6.27),
I2/37293P1/2KM72N72D < 11713/277203 < 1.

This completes the proof of (6.13). All the required bounds are now in place, and
the proof of Theorem 1 is complete.
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