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ON THE COMPOSITION OF A CERTAIN ARITHMETIC

FUNCTION
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Abstract: Let S(n) be the function which associates for each positive integer n the smallest
positive integer k such that n | k!. In this note, we look at various inequalities involving the
composition of the function S(n) with other standard arithmetic functions such as the Euler
function and the sum of divisors function. We also look at the values of S(Fn) and S(Ln), where
Fn and Ln are the nth Fibonacci and Lucas numbers, respectively.

Keywords: Arithmetic functions connected with factorials, maximal orders of compositions of
arithmetic functions, the largest prime factor of an integer, Fibonacci numbers.

1. Introduction

Let S(n) be the function that associates to each positive integer n the smallest
positive integer k such that n | k!. This function has received a lot of interest. For
example, in 1918 A. J. Kempner [7] used the prime factorization of n to give the
first algorithm for computing S(n). A recent paper of Sondow [17] relates S(n)
with the measure of irrationality of e. Erdős [6] proposed to show that the set of
n for which S(n) is not the largest prime factor of n has asymptotic density zero.
This was confirmed by Kastanas. For more on this story, the reader is referred to
the beginning of Section 3.2.

In this paper, we look at the values of S(f(n)), where f(n) is some other arith-
metic function such as the Euler function of n and the sum of divisors function of
n. We also investigate the values of S(Fn) and S(Ln), where Fn and Ln are the
nth Fibonacci and Lucas numbers, respectively. Several results on compositions
of arithmetic functions appear in [14], [15] and [16].

The rest of this paper, is organized as follows. In Section 2, we gather some
properties of the function S(n) that will be used in subsequent sections. In Sec-
tion 3, we study the composition of S(n) with several arithmetic functions. In
Section 4, we study the values of S(Fn) and S(Ln), where F = (Fn)n>1 and
L = (Ln)n>1 are the Fibonacci and Lucas numbers given by F1 = 1, F2 = 1,
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L1 = 1, L2 = 3 and Fn+2 = Fn+1 +Fn, Ln+2 = Ln+1 +Ln for all n > 1. Section 5
is concerned with various limits.

Our notations are standard. We write φ(n) and σ(n) for the Euler function
and the sum of divisors function of n, respectively. We also write ω(n), Ω(n), d(n),
γ(n) and P (n) for the number of prime divisors of n, the number of prime power
divisors (> 1) of n, the total number of divisors of n, the product of the distinct
primes dividing n, and the largest prime factor of n, respectively. We make the
convention that P (1) = 1. We use log x for the natural logarithm of x. We use the
notations O, o as well as �, � and � with their usual meanings. Recall that the
notations A = O(B), A� B and B � A are all equivalent to the fact that there
exists a constant c such that |A| < cB. The notation � means that both A � B
and B � A hold, while A = o(B) means that A/B → 0.

2. Estimates for S(n)

In the first lemma, we gather various inequalities concerning the function S(n).

Lemma 1.

(i) S(a) 6 a holds for all positive integers a with equality if and only if a = 4,
or a is prime;

(ii) If n = pa1
1 · · · pak

k , where p1 < p2 < · · · < pk are primes and a1, . . . , ak are
positive integers, then

S(n) = max{S(pai

i ) : i = 1, . . . , k}.

(iii) S(a) = P (a) holds for all squarefree positive integers a;
(iv) S(ab) 6 S(a) + S(b) holds for all positive integers a and b;
(v) S(ab) 6 aS(b) holds for all positive integers a and b with equality if and only

if a = 1, or (a, b) = (2, 2), (4, 1), or a is prime and b = 1;
(vi) If a | b, then S(b)/b 6 S(a)/a;
(vii) S(ab) 6 S(a)S(b) holds for all positive integers a and b;
(viii)

S(a1 · · · ak) 6 min{S(a1) + · · · + S(ak), S(a1) · · ·S(ak)}
holds for all positive integers a1, . . . , ak.

Proof. Part (i) follows from the obvious fact that a | a!. The equality is clear if
a is prime or a = 4, and it is easy to see that a | (a − 1)! holds for all composite
a > 6.

Part (ii) is known (see [1], for example), and it is easy to prove. Indeed, it is
clear that S(pai

i ) 6 S(n). Conversely, if m is such that pai

i | m! holds for all i =
1, . . . , k, then certainly n | m!. Taking m to be equal to max{S(pai

i ) : i = 1, . . . , k}
in the above argument, we get the desired equality.

Part (iii) is an immediate consequence of (i) and (ii).
Part (iv) follows from the fact that if a | m! and b | n!, then

ab | m!n! | (m+ n)!,
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where the last divisibility relation follows from the fact that the binomial coefficient(
m+n

m

)
is an integer.

For part (v), observe that both sides of the claimed inequality are equal when
a = 1. When b = 1, the inequality becomes S(a) 6 a, which holds by (i) with
equality if and only if a = 4, or a is prime. Finally, when a > 2 and b > 2, then

S(ab) 6 S(a) + S(b) 6 a+ S(b) 6 aS(b),

with equality if and only if (a, b) = (2, 2).
Part (vi) follows by writing b = ac and observing that, by (v), we have S(b) =

S(ac) 6 cS(a) = bS(a)/a, which is equivalent to the claimed inequality.
Part (vii) is obvious when one of a or b is 1, and follows from (iv) and the

known inequality u + v 6 uv when both u > 2 and v > 2 applied with the pair
(u, v) = (S(a), S(b)) when both a > 2 and b > 2.

Finally, part (viii) follows by induction on k > 2 having (iv) and (vii) as the
induction bases. �

In the next result, we collect various upper bounds for S(n) in terms of other
arithmetic functions of n.

Proposition 1.

(i) S(n) 6 P (n)n/γ(n);
(ii) If n is squarefull; i.e., p2 | n for all prime factors p of n, then S(n) 6

2P (n)n/γ(n)2;
(iii) S(n) 6 P (n)Ω(n);
(iv) If n > 6 is even, then S(n) 6 n/2;
(v) If n > 1 is odd, then S(n) 6 P (n) log n/(logP (n));
(vi) S(n) 6 φ(n) holds for all positive integers n > 8 except when n is a prime

or twice times a prime, with equality if and only if n = 8, 9, 18.

Proof. Part (i) follows by writing n = γ(n)(n/γ(n)) and applying (v) of Lemma 1
with a = (n/γ(n)) and b = γ(n) to conclude that

S(n) 6

(
n

γ(n)

)
S(γ(n)) =

P (n)n

γ(n)
.

For the last equality above, we used (iii) of Lemma 1 together with the observation
that γ(n) is a squarefree number having the same largest prime factor as n does.

For part (ii), we use the same argument. Since n is squarefull, we get that
γ(n)2 | n. Thus, applying again (v) of Lemma 1, we first get

S(n) 6 S(γ(n))2)
n

γ(n)2
.

Next, since by (iv) of Lemma 1 we have S(γ(n)2) 6 2S(γ(n)) = 2P (n), the desired
inequality follows.
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For (iii), write n = pa1
1 · · · pak

k with primes p1 < · · · < pk and positive integers
a1, . . . , ak and observe that, by (viii) and (i) of Lemma 1, we have

S(n) 6 a1S(p1) + · · · + akS(pk) 6 (a1 + · · · + ak)pk = P (n)Ω(n).

For part (iv), observe first that if n = 2a is a power of 2, then by (viii) of
Lemma 1 we have S(n) = S(2a) 6 2a. For a > 4, we have that 2a 6 2a−1 = n/2
and the desired equality holds. Since S(8) = 4 = 8/2, the desired inequality holds
for a = 3 as well. When n is not a power of 2 but is even, then γ(n) > 2P (n), and
the desired inequality follows from (i) above.

For (v), we use (ii) and (viii) of Lemma 1 to conclude that S(n) = S(pa) 6 ap
for some prime power divisor pa of n. Since pa 6 n, we have that a 6 logn/ log p.
Thus,

S(n) 6
p

log p
logn 6

P (n)

logP (n)
logn,

where we used the fact that p 6 P (n) and the function p 7→ p/ log p is increasing
as p runs through odd primes.

Let us now prove (vi). Write n = pa1
1 · · · pak

k , where again p1 < · · · < pk are
primes and a1, . . . , ak are positive integers. Assume first that ω(n) > 2. Then, by
(i), we have

S(n) 6
n

p1 · · · pk−1
6

n

p1p
k−2
2

. (1)

However,

φ(n)

n
=

k∏

i=1

(
1 − 1

pi

)
>

(
p1 − 1

p1

)(
p2 − 1

p2

)k−1

. (2)

Observe that the inequality

(
p1 − 1

p1

)(
p2 − 1

p2

)k−1

>
1

p1p
k−2
2

is equivalent to (p1 − 1)(p2 − 1)k−1 > p2, which holds for all k > 2 and primes
p1 < p2 unless k = 2 and p1 = 2. Thus, it remains to study the cases when n = pa

and n = 2apb.
Assume first that n = pa. We may assume that a > 2, otherwise n is prime

and the inequality fails anyway. We have that

S(n) = S(pa) 6 ap

by (viii) and (i) of Lemma 1. Since φ(n) = pa−1(p− 1), it remains to check that

a < pa−2(p− 1). (3)

Since (p− 1)pa−2 > max{2a−2, p− 1}, the above inequality (3) holds for all a > 5
(regardless of p) and all p > 7 (regardless of the value of a > 2). Checking the
remaining values of n, we get that inequality (3) holds except when n ∈ {4, 8, 9, 16}.
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Now we verify that S(n) 6 φ(n) holds when n 6= 4 in the above set with equality
if and only if n = 8, 9.

Assume next that n = 2apb. We may assume that not both a and b are 1, since
in this case the desired inequality does not hold. Note that

φ(n) = 2a−1(p− 1)pb−1.

If both a > 1 and b > 1, then φ(n) > max{2a, pb} > max{S(2a), S(pb)} = S(n).
If a = 1, then b > 1, and we get φ(n) = (p − 1)pb−1 and S(n) = S(2pb) =
S(pb) 6 bp. From the above arguments, the inequality (p − 1)pb−1 > bp holds
for all p > 3 and b > 2 except for (b, p) = (2, 3), which leads to n = 18, for which
S(18) = 6 = φ(18). Finally, if b = 1 and a > 1, then the inequalities

φ(n) = 2a−1(p− 1) > max{2a, p} > max{S(2a), S(p)} = S(2ap) = S(n)

hold with both being equalities if and only if a = 2 and p = 3. This completes the
proof of (vi). �

We conclude this section with some lower bounds on S(n).

Proposition 2.

(i) We have

S(n) > P (n) >
n

φ(n)
>
σ(n)

n
.

(ii) If n > 1 is odd, then

P (n) >
σ(n)

φ(n)
.

Proof. We first prove (i). The left most inequality follows from Lemma 1 and the
last one well-known. For the middle one, assume that n > 1 and write it again as
n = pa1

1 · · · pak

k , where 2 6 p1 < p2 < · · · < pk = P (n) are primes and a1, . . . , ak

are positive integers. Clearly, P (k) > k + 1, therefore

n

φ(n)
=

k∏

i=1

pi

pi − 1
6

k∏

i=1

i+ 1

i
=

2

1
· 3

2
· · · k + 1

k
= k + 1 6 P (n).

Next, we prove (ii). For this, we note that

σ(n)

φ(n)
=

k∏

i=1

1

1 − 1/pi

(
1 +

1

pi
+ · · · + 1

pai

i

)

<

k∏

i=1

1

(1 − 1/pi)2
=

k∏

i=1

(
pi

pi − 1

)2

.

Thus, it remains to prove that

k∏

i=1

pi

pi − 1
<

√
pk.
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When k = 1, this becomes
√
p1 < p1 − 1, or p2

1 − 3p1 +1 > 0, which holds because
p1 > 3. Assuming it to be true by induction for some k > 1, we then have that

k+1∏

i=1

pi

pi − 1
<
pk+1

√
pk

pk+1 − 1
.

Imposing that the last expression above is <
√
pk+1, we get the inequality

√
pkpk+1 < pk+1 − 1,

which is equivalent to pk+1(pk+1−2−pk)+1 > 0, which in turn holds true because
pk+1 > pk + 2. This completes the proof of (ii). �

We note the following corollary to (i) of Proposition 2 above.

Corollary 3.

(i) σ(n!) < n · n! for n > 1;
(ii) φ(n!) > (n− 1)! for n > 1 and the equality holds only when n = 2, 3.

Proof. For the inequalities in both (i) and (ii), apply (i) of Proposition 2 above
to n! upon noting that S(n!) = n. For the equalities in (ii), observe that the
proof of (i) of Proposition 2 was based on the fact that pj > j + 1 holds for all
j = 1, . . . , k, where pj was the jth prime factor of n. When k > 3, then the
above inequality with j = k becomes a strict inequality showing that in fact the
inequality S(n) > n/φ(n) holds whenever P (n) > 5. Applying this to n!, we get
that φ(n!) > (n − 1)! holds for all n > 5. For the remaining cases, the given
inequality is checked by hand. �

We remark that the Diophantine equations φ(n!) = m! and σ(n!) = m! were
solved in [12]. Observe that Corollary 3 above shows that n! < σ(n!) < (n + 1)!
(for n > 1) and (n − 1)! < φ(n!) < n! (for n > 4), so that these equations do not
have positive integer solutions (n,m) when n > 1, and n > 4, respectively.

3. On the composition of S(n) with φ(n) and σ(n)

3.1. Maximal orders

In this section, we look at large values of the composition of S(n) with other
arithmetic functions such as σ(n) and φ(n).

Theorem 4.

(i) The inequality
σ(S(n)) 6 n+ 1 (4)

holds for all n 6= 4, 9 with equality if and only if n is prime.
(ii) The inequality

S(σ(n)) 6 2n− ω(n) (5)

holds for all n > 1 with equality if and only if 2n− 1 is a Mersenne prime.
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Proof. We start with (i). Assume that n > 1. It follows easily from the results
of Lemma 1 that S(n) can be written as S(n) = bp, where p is prime, b 6 a and
pa‖n. If a = 1, then b = 1, so σ(S(n)) = σ(p) = p+ 1 6 n+ 1, with equality only
for n = p.

Assume now that a > 1, so that also b > 1. Then

σ(S(n)) 6 σ(b)σ(p) = σ(b)(p+ 1).

It remains to show that (p+ 1)σ(b) 6 pb + 1, as pb + 1 6 pa + 1 6 n+ 1. Observe
that the inequality

σ(b) 6
pb + 1

p+ 1

holds true provided that the inequality

σ(b) 6
2b + 1

3
(6)

holds true, because the function p 7→ (pb + 1)/(p+ 1) is increasing for p > 2. One
checks that inequality (6) holds true for b = 5, 6. Since

σ(b) < b

(
1 +

1

2
+ · · · + 1

b

)
< b

(
1 +

∫ b

1

dt

t

)
= b(1 + log b),

we conclude that inequality (6) holds whenever 2b + 1 > 3(log b + 1). This last
inequality holds when b > 7. Thus, we may assume b 6 4, therefore σ(b) 6 7.
Thus, it is now enough to prove that

7 <
pb + 1

p+ 1
.

Since b > 2, it is enough that 7 < (p2 + 1)/(p+ 1), and this last inequality holds
for all p > 11. Thus, we only need to deal with the case when b 6 4 and p 6 7, so
S(n) = bp 6 28.

Using Mathematica, we checked that the desired inequality holds for all divisors
of 28!, except when n is prime, or n = 4, 9, which finishes the proof of (i).

For (ii), we assume that n > 1 and write it as n =
∏k

i=1 p
ai

i . Then

σ(n) =

k∏

i=1

pai+1
i − 1

pi − 1
.

We shall use the inequality

pa+1 − 1

p− 1
6 2pa − 1,
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which is equivalent to (pa − 1)(p− 2) > 2, so it holds for all prime powers pa with
equality when p = 2. Hence, by Lemma 1 (viii) and (i), we have

S(σ(n)) 6

k∑

i=1

S

(
pai+1

i − 1

pi − 1

)
6

k∑

i=1

pai+1
i − 1

pi − 1
6

k∑

i=1

(2pai

i − 1) 6 2n− ω(n).

It can be seen easily that the equality S(n) = 2n−ω(n) holds if and only if k = 1,
p1 = 2, and (pa1+1

1 − 1)/(p1 − 1) is a prime. Hence the equality holds if and only
if 2n− 1 is Mersenne prime. This completes the proof of (ii). �

Recall that the Dedekind function ψ(n) is the multiplicative function whose
value of the prime power pa is ψ(pa) = pa−1(p+1). We next record some inequal-
ities for the compositions of S(n), ψ(n) and φ(n).

Proposition 5.

(i) The inequality S(ψ(n)) < n holds for all n > 4;
(ii) The inequality S(ψ(n)) 6 φ(ψ(n)) holds for all positive integers n 6= 2, 3, 4,

or n not a prime of the form q = 2p− 1 with p also prime;
(iii) The inequality S(φ(n)) 6 φ(φ(n)) holds for all positive integers n 6= 3, 4, 5, 6,

8, 10, 12, or n not a prime of the form q = 2p+1 with p also prime. Equality
occurs only when n = 1, 2, 15, 16, 20, 24, 30;

(iv) The inequality S(σ(n)) < φ(σ(n)) holds whenever n is not a prime power;
(v) The inequality S(φ(n)) 6 (n − 1)/2 holds for all n > 9 with equality if and

only if n is a prime of the form q = 2p+ 1.

Proof. For part (i), assume first that n is coprime to 6. Observing that ψ(n) =
(n/γ(n))ψ(γ(n)), it follows, by (v) and (viii) of Lemma 1, that

S(ψ(n)) = S

(
n

γ(n)
ψ(γ(n))

)
6

n

γ(n)
S(ψ(γ(n))) 6

n

γ(n)

∏

p|n
S(p+ 1). (7)

Since n is coprime to 6, we get that S(p + 1) 6 (p + 1)/2 < p for all primes p
dividing n (see (iii) of Proposition 1), which takes care of (i). If n is not coprime
to 6 but either 4 | n or 9 | n, then letting q be one of the primes 2 or 3 such that
q2 | n, we get, by a similar argument, that

S(ψ(n)) = S




n

qγ(n)
q(q + 1)

∏

p|n
p6=q

(p+ 1)



 6
n

qγ(n)
S(q(q + 1))

∏

p|n
p6=q

S(p+ 1).

Since q(q + 1) > 6 is even, it follows, by (iii) of Proposition 1, that S(q(q + 1)) 6

q(q + 1)/2. Thus,

S(ψ(n)) 6
q + 1

2

n

γ(n)

∏

p|n
p6=q

S(p+ 1).
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We now have again that S(p + 1) 6 (p + 1)/2 < p holds for all primes p > 5 by
(iii) of Proposition 1. Thus,

S(ψ(n)) 6
q + 1

2

n∏
p63
p|n

p
S(m),

where m = 1 if q is the only prime factor of n below 5, and m = 6/q + 1 if 6 | n.
Since (q + 1)/2 < q, it suffices to deal with the case when m = 6/q + 1. In this
case, if q = 2, we get

S(ψ(n)) 6
3

2

n

6
S(4) = n,

while if q = 3, we then get

S(ψ(n)) 6
4

2

n

6
S(3) = n.

As for equalities, tracing back our argument, we see that at (7) we used the fact
that

S(
∏

p|n
(p+ 1)) 6

∑

p|n
S(p+ 1) 6

∏

p|n
S(p+ 1),

and since S(p+ 1) > 3 for all primes p, we never get equality if ω(n) > 2. Since
also S(p+1) < p for p > 5, it follows that it suffices to assume that n = qa, where
q = 2, 3. If a > 3, then we used

S(ψ(n)) = S(qa−1(q + 1)) 6 qa−2S(q(q + 1)),

but the above inequality is, in fact, a strict inequality. Thus, it remains to check
that inequality (i) is strict for n ∈ {4, 9}, and this can be done by hand.

Assume last that n > 4, gcd(n, 6) > 1, but that n is neither divisible by 4 nor
by 9. Writing p1 < p2 < · · · < pk for all the distinct prime factors of n, we have
that p1 ∈ {2, 3}, that k > 2, and that p2 > 5. Again by (v) and (viii) of Lemma
1, we have that

S(ψ(n)) = S

(
n

γ(n)
ψ(γ(n))

)
6

n

γ(n)
S(ψ(γ(n))) 6

n

γ(n)
(pk + 1), (8)

where we used the obvious fact that

ψ(γ(n)) = (p1 + 1) · · · (pk + 1) | (pk + 1)!,

therefore S(γ(n)) 6 pk + 1. Since obviously pk + 1 < 2pk 6 γ(n), the desired
inequality follows easily from (8). This completes the proof of (i).

For part (ii), we apply Proposition 1 (vi). We remark that ψ(n) = 4 only for
n = 3, and ψ(n) is a prime only for n = 2 because ψ(n) is even for n > 3. Finally,
let us look at those n such that ψ(n) = 2p with p an odd prime. Write n = 2am,
with a > 0 and m odd. If a is positive, then 3 | ψ(n), therefore p = 3 and a = 2
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and m = 1 giving n = 4. If a = 0, then n cannot have two distinct prime factors
since otherwise ψ(n) would be a multiple of 4. Thus, n = qa with an odd prime q,
therefore ψ(n) = qa−1(q + 1) = 2p. Since q + 1 > 2 is even, it follows that a = 1
and q + 1 = 2p.

For part (iii), we apply again Proposition 1 (vi). It remains to study the
exceptions and the cases when equality might occur. Observe that if n > 3, then
ϕ(n) > 2. Furthermore, since φ(n) is even, it follows that ϕ(n) prime if and only
if ϕ(n) = 2 and this happens only for n = 3, 4, 6. Furthermore, ϕ(n) = 4 only for
n = 5, 8, 10, 12. Thus, we only need to study the cases when ϕ(n) = 2p, with p an
odd prime. As in the case of (ii) above, it is easy to see that this is possible only
when or n = 9 or n = q, where q is a prime of the form q = 2p+ 1. The equality
occurs only when φ(n) = 1, 8, 9, giving the values of n appearing in (iii) above.

For part (iv), we apply again Proposition 1 (vi). Since ω(n) > 2, it follows
that σ(n) > σ(pq) = (p + 1)(q + 1) > 9, where p and q are two distinct primes
dividing n. Proposition 1 (v) tells us that we also have to study the cases when
σ(n) = p, or σ(n) = 2p, where p is an odd prime. However, if pa‖n and qb‖n are
two prime powers exactly dividing n, then σ(pa)σ(qb) | σ(n), and both numbers
σ(pa) > p + 1 > 3 and σ(qb) > q + 1 > 3 exceed 2. This shows that σ(n) cannot
be a prime or twice times a prime for such values of n.

For part (v), observe that, by (iii), we have that S(φ(n)) 6 φ(φ(n)) with the
exceptions appearing at (ii). Since n > 9, we have that φ(n) is even, so that
φ(φ(n)) 6 φ(n)/2 6 (n − 1)/2. Thus, the only possible exceptions to the desired
inequality are among n = 10, 12, or n a prime of the form q = 2p+ 1 with p also
prime. One checks that none of these values is in fact exceptional, and that when
n = q = 2p+ 1, we have in fact equality. �

We conclude this section by remarking that

S(d(n)) 6 ω(n) + Ω(n).

Indeed, for n = pa1

1 · · · pak

k , where p1 < · · · < pk are primes and a1, . . . , ak are
positive integers, we have that d(n) = (a1 + 1) · · · (ak + 1), so by Lemma 1 (iv)
and (i), we have that

S(d(n)) 6

k∑

i=1

S(ai + 1) 6

k∑

i=1

(ai + 1) = Ω(n) + ω(n).

3.2. Normal orders

Here, we look at what S(σ(n)) and S(φ(n)) “normally"; i.e., for most integers,
are. We recall that it was a problem of Erdős to prove that S(n) = P (n) holds
for most positive integers n and to find the counting function of the exceptional
set. Work on this problem has an amusing history which we now recall. In 1999,
K. Ford [9] showed that the number of n 6 x such that S(n) 6= P (n), denoted by
N(x), satisfies

N(x) = x exp
(
−(

√
2 + o(1))(log x log log x)1/2

)
(9)
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as x → ∞. In fact, he proposed a more precise formula giving an asymptotic for
N(x) as

N(x) ∼
√
π(1 + log 2)

23/4
(log x log log x)3/4x1−1/u0ρ(u0) (10)

as x→ ∞, where u0 is defined implicitly by

log x = u0(x
1/u2

0 − 1),

and ρ(u) is the Dickman – de Bruijn function defined as

ρ(u) = 1 (0 6 u 6 1), ρ(u) = 1 −
∫ u

1

ρ(v − 1)

v
dv (u > 1).

It turns out that the constant 1+log 2 in (10) is incorrect and the correct constant
should be 2. This was worked out in 2005 by Ivić in [11]. However, the formula
(9) is correct. Meanwhile, in 2003, De Koninck and Doyon [8] published a paper
in which they proved a formula of the same shape as (9) with

√
2 replaced by 2,

which ended up being incorrect.
Here, we show that S(σ(n)) and S(φ(n)) are, perhaps unsurprisingly, P (σ(n))

and P (φ(n)), respectively, for most positive integers n and give some bounds on
the size of the exceptional set. Our bounds are not sharp and they can probably
be improved, but we do not have matching lower bounds for them.

Theorem 6. The number M(x) of positive integers n 6 x such that either S(σ(n))
or S(φ(n)) is not equal to P (σ(n)) or P (φ(n)), respectively, satisfies

M(x) 6 x exp
(
−(logx)1/8

)

for x > x0.

Proof. We deal only with the function σ(n), since for φ(n) the argument is even
easier. Let ε ∈ (0, 1) be fixed, x be large and y, z, w be parameters depending on
x satisfying

y = exp((log x)7/8), z = exp((log x)3/4), w =
(1 + ε)

log 2
(log x)1/8

as x→ ∞.
Let M(x) be the set of n 6 x such that S(σ(n)) 6= P (σ(n)). We start by

discarding some elements n ∈ M(x) as follows.
Write n = pa1

1 · · · pak

k , where p1 < · · · < pk are primes and a1, . . . , ak are
positive integers.

We let M1(x) be the subset of n 6 x such that Ω(n) > w. Lemma 13 in [13]
shows that

#M1(x) �
wx log x

2w
� x(log x)2

2w
=

x

exp((log 2 + o(1))w)

=
x

exp((1 + ε+ o(1))(log x)1/8)
(11)

as x→ ∞.
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From now on, we look at positive integers n 6 x which are not in M1(x). For
them, k = ω(n) 6 Ω(n) < w. Next, we let M2(x) be the set of n 6 x such that
there is i ∈ {1, . . . , k} with Ω((pai+1

i − 1)/(pi − 1)) > w. Assume that n ∈ M2(x).
Write n = pai

i m. Then

pai+1
i − 1

pi − 1
=

σ(n)

σ(m)
� x log log x

m
,

where we used the maximal order σ(n) � x log log x of σ(n) in the interval [1, x].
Since the number (pai+1

i − 1)/(pi − 1) has > w prime factors counting repetitions,
by the same Lemma 13 in [13], we infer that the number of possibilities for it once
m is fixed is

� wx log x log log x

2wm
� x(log x)3

2wm
.

Given the number (pai+1
i − 1)/(pi − 1) of size � x log log x, we conclude that

ai = O(log x). But once both ai and (pai+1
i − 1)/(pi − 1) are fixed, then pi is

also uniquely determined. This argument shows that for a fixed m, the number of
n = pai

i m such that n 6 x and Ω((pai+1
i − 1)/(pi − 1)) > w is

� x(log x)4

2wm
.

Summing up over possible values for m, we get that

#M2(x) �
x(log x)4

2w

∑

m6x

1

m
� x(log x)5

2w
=

x

exp((log 2 + o(1))w)

=
x

exp((1 + ε+ o(1))(log x)1/8)
(12)

as x→ ∞.
From now on, we work with integers n 6 x not in ∪2

i=1Mi(x). Note that for
them,

Ω(σ(n)) =

k∑

i=1

Ω

(
pai+1

i − 1

pi − 1

)
6 kw 6 w2, (13)

therefore
d(σ(n)) 6 2Ω(σ(n)) 6 2w2

. (14)

Next, we discard the set of positive integers n 6 x having P (n) 6 y denoted
by M3(x). The numbers in M3(x) are called y-smooth numbers. The counting
function of y-smooth numbers below x is denoted by Ψ(x, y). From known results
concerning the counting function of smooth numbers, we have that in our ranges
of y versus x the estimate

#M3(x) = Ψ(x, y) 6
x

exp((1 + o(1))u log u)
, where u =

log x

log y
(15)
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holds as x→ ∞ (see [4], for example). Hence,

#M3(x) 6
x

exp((1/8 + o(1))(log x)1/8 log log x)
(16)

as x→ ∞, which is acceptable for us.
Next we discard the set of n 6 x not in M3(x) such that P 2(n) | n. Let M4(x)

be the set of such positive integers. For each integer n ∈ M4(x), there is a prime
p > y (namely, p = P (n)), such that p2 | n. For a fixed prime p, the number of
n 6 x which are multiplies of p2 is bx/p2c 6 x/p2. Summing this up over all the
possible values of the prime p > y, we get that

#M4(x) 6 x
∑

y6p6x1/2

1

p2
6 x

∑

y6m

1

m2
� x

∫ ∞

y

dt

t2

� x

y
=

x

exp((1 + o(1)) log y)
=

x

exp((1 + o(1))(log x)7/8)
(17)

as x→ ∞.
From now on, we assume that n 6 x is not in ∪4

i=1Mi(x). In particular, we
can write n = Pm, where P = P (n) > y and P > P (m).

We next discard the set of numbers n 6 x of the above form such that
P (P + 1) 6 z. Let M5(x) be the set of such numbers. Let P > y be such
a fixed prime. The number of n 6 x such that P | n is 6 bx/P c � x/(P + 1).
Summing up over all the values of P +1, which are positive integers in [y+1, x+1]
that are z-smooth, we get that

M5(x) 6 x
∑

y+16`6x+1
P (`)6z

1

`
.

For the last sum above, we use the Abel summation formula to get that

M5(x) = x
∑

y+16`6x+1
P (`)6z

1

`
6 x

∫ x+1

y+1

dΨ(t, z)

t

=
xΨ(t, z)

t

∣∣∣
t=x+1

t=y+1
+ x

∫ x+1

y+1

Ψ(t, z)

t2
dt.

Putting v = log y/ log z, one gets immediately, via estimate (15) for Ψ(t, z), that

#M5(x) 6
x

exp((1 + o(1))v log v)

∫ x+1

y+1

dt

t

6
x log(x+ 1)

exp((1 + o(1))v log v)
=

x

exp((1 + o(1))v log v))
(18)

=
x

exp((1/8 + o(1))(log x)1/8 log log x)

as x→ ∞.
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From now on, we assume that n 6 x is not in ∪5
i=1Mi(x). We write P (n)+1 =

Q`, where Q = P (P (n)+1). Clearly, Q > z. Let M6(x) be the set of such positive
integers n 6 x such that S(P +1) 6= Q. In this case, either Q2 | P +1, or Q‖P +1
but there is some prime power pb | P + 1 such that S(pb) > Q. In this last case,
b > 1 and bp > S(pb) > Q > z. Furthermore, since pb 6 P + 1 6 x + 1, we have
that b 6 c1 log(x+1), where we can take c1 = 1/ log 2. Thus, p > z/(c1 log(x+1)).
Note also that p2 | P + 1. In conclusion, P has the property that there exists a
prime p > z/(c1 log(x + 1)) with p2 | P + 1. Note further that p2 6= P + 1,
since if p2 = P + 1, then P = p2 − 1 = (p − 1)(p + 1), but this last number is
not prime for large x (the last number above is prime only for p = 2, but for us
p > z/(c1 log(x+ 1)), and this last expression exceeds 2 for large values of x). Fix
m and p. Then P + 1 6 x/m+ 1 6 2x/m. The number of numbers P such that
P + 1 is divisible by p2 without being equal to p2 (even by ignoring the fact that
such P are primes) is at most 2x/(mp2). Summing the above inequality up over
all m 6 x and p > z/(c1 log(x+ 1)), we get that

#M6(x) 6 2x




∑

m6x

1

m








∑

z/(c1 log(x+1))<p

1

p2



� x log x

z/(c1 log(x+ 1))

� x(log x)2

z
=

x

exp((1 + o(1)) log z)
=

x

exp((1 + o(1))(log x)3/4)
, (19)

where in the above inequalities we used the same argument as the one used at
inequality (17) to deal with the sum of the reciprocals of the squares of primes
exceeding z/(c1 log(x+ 1)).

From now on, we work with numbers n 6 x not in ∪6
i=1Mi(x). Note that for

them n = Pm, P > P (m), σ(n) = (P + 1)σ(m), P + 1 = Q`, Q = P (P + 1) >
P (`) and S(P + 1) = Q. Clearly, S(σ(n)) > Q and it is not equal to Q, since
otherwise it would follow easily that Q = P (σ(n)) contradicting our assumption
that n ∈ M(x). Thus, S(σ(n)) > Q. We now distinguish two cases according to
whether S(σ(m)) = P (m) or not.

Let M7(x) be the set of such n with S(σ(m)) = P (σ(m)). Let R = P (σ(m)).
It follows that R‖σ(m). Since n ∈ M(x), it follows that there exists a prime power
pb | σ(n) such that S(σ(n)) = S(pb) > max{Q,R}. Put b = b1 + b2, where b1 and
b2 are integers such that pb1‖(P + 1) and pb2‖σ(m). Then bp > S(pb) > Q > z,
therefore by an argument used previously, we have that b < c1 log(x + 1) and
p > Q/b > z/(c1 log(x + 1)), and this last bound exceeds c1 log(x + 1) > b for
large x. Thus, p > b, therefore S(pb) = pb. It is now clear that both b1 and b2 are
positive, since if, say b1 = 0, then pb | σ(m), therefore S(σ(m)) > S(pb) = pb >
R = P (σ(m)), which is a contradiction. Thus, p divides both P + 1 and σ(m),
and p > z/(c1 log(x+ 1)). Fix P and p. Then,

m 6
x

P

is a positive integer such that σ(m) ≡ 0 (mod p). Theorem 1 in [2] shows that the
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number of such m is

� x

pP
min

{
log(x/P )2/3, (log p)2(log log(x/P ))5/3

}
� x(log x)3

pP
.

Keeping p fixed and summing up the above inequality over all primes P 6 x with
P + 1 ≡ 0 (mod p), it follows that the number of such possibilities for n when p
is fixed is

� x(log x)3

p

∑

P6x
P≡−1 (mod p)

1

P
6
x(log x)3

p

∑

16λ6x/p

1

−1 + pλ

� x(log x)3

p2

∑

16λ6x

1

λ
� x(log x)4

p2
.

Finally, summing up the above inequality over all possible values for p >

z/(c1 log(x+ 1)), we get that

#M7(x) � x(log x)4
∑

z/(c1 log(x+1))<p

1

p2
� x(log x)4

z/(c1 log(x + 1))
� x(log x)5

z

=
x

exp((1 + o(1)) log z)
=

x

exp((1 + o(1))(log x)3/4)
(20)

as x→ ∞.
Finally, assume that n ∈ M8(x) = M(x)\

(
∪7

i=1Mi(x)
)
. Then S(σ(m)) >

max{Q,P (σ(m))}. In particular, σ(m) > z is a positive integer whose S function
is not its largest prime factor. Thus, writing N = {n : S(n) 6= P (n)}, we get that
σ(m) ∈ N . Observe that

(P + 1)σ(m) = σ(n) � x log log x,

therefore for some positive constant c2 we have

P + 1 6
c2x log log x

σ(m)
. (21)

Observe also that σ(m) ∈ N (c2x log log x), where for a positive real number t we
write N (t) = N ∩ [1, t]. Given σ(m), let us see in how many ways can we recover
m. Well,

σ(m) =
k−1∏

i=1

pai+1
i − 1

pi − 1
.

Given σ(m), the number (pai+1
i − 1)/(pi − 1) can be chosen in d(σ(m)) ways, and

once (pai+1
i − 1)/(pi − 1) is chosen, then ai can be chosen in at most c1 log x ways,

after which pi is uniquely determined. Thus, pai

i can be chosen in at most

c1(log x)d(σ(m)) 6 c1(log x)2w2

= exp((log 2 + o(1))w2)
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ways by (14). Thus, since k 6 w, it follows that m = pa1
1 · · · pak−1

k−1 can be chosen
in at most exp((log 2 + o(1))w3) ways once σ(m) is known. This argument shows
that the number of possibilities for n ∈ M8 is

� x log log x exp((log 2 + o(1))w3)
∑

z<σ<c2x log log x
σ∈N

1

σ
.

For the last sum above, we use the Abel summation formula together with Ford’s
estimate (10) for N(t) = #N (t) to get that

∑

z<σ<c2x log log x
σ∈N

1

σ
=

∫ c2x log log x

z

dN(t)

t

6
1

exp((
√

2 + o(1))(log z log log z)1/2)

∫ c2x log log x

z

dt

t

� x log x

exp((
√

2 + o(1))(log z log log z)1/2)
.

Thus, we get that

#M8(x) 6
x(log x)2

exp((
√

2 + o(1))(log z log log z)1/2 − (log 2 + o(1))w3)

=
x

exp((
√

3/2 + o(1))(log x)3/8(log log x)1/2)
(22)

as x → ∞. Since the sets Mi(x) for i ∈ {1, . . . , 8} cover M(x), the conclusion
of the theorem for the function σ(n) follows from the inequalities (11), (12), (16),
(17), (18), (19), (20) and (22).

A close analysis of our arguments shows that the specific ingredients of the
proof for the case of the function σ(n) were on one hand the fact that given
σ(pa) = (pa+1 − 1)/(p− 1) on the scale of O(x), then there are at most O(log x)
possibilities for pa, while on the other hand Theorem 1 from [2] concerning an
upper bound for the number of n 6 x such that p | σ(n) which is uniform in p.
Since both these results also hold for σ(n) replaced by φ(n) (and, in fact, their
proofs are even easier), the theorem follows for φ(n) as well. �

Remark and an Open Problem. It is likely that a more careful analysis of our
arguments will show that for some positive constants c0 and κ, the inequality

#M(x) 6
x

exp((c0 + o(1))(log x)1/8(log log x)κ)

holds as x→ ∞. We did not make any efforts in this direction as we do not have
a matching lower bound. We live as a challenge to the reader to find an asymptotic
for #M(x) as x → ∞, or at least constants positive c0, α and β such that the
estimate

#M(x) =
x

exp((c0 + o(1))(log x)α(log log x)β)

holds as x→ ∞.
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4. On the S function of Fibonacci and Lucas numbers

Recall that a Lucas sequence is a sequence of integers of the form

un =
αn − βn

α− β
for n = 0, 1 . . . ,

where α and β are the roots of the quadratic equation x2 − rx − s = 0. We
make the convention that |α| > |β|. Here, it is assumed that r and s are coprime
nonzero integers, that ∆ = r2 + 4s 6= 0, and that α/β is not a root of 1. Classical
examples are the Fibonacci sequence (Fn)n>0 obtained for r = s = 1, as well as
the sequence of Mersenne numbers Mn = 2n − 1 for which r = 3, s = −2. Given
a Lucas sequence (un)n>0, its companion sequence is the sequence of general term

vn = αn + βn for all n = 0, 1, . . . .

When un = Fn, the companion sequence (vn)n>0 is the sequence of Lucas numbers
(Ln)n>0 given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n > 0. When
un = Mn, its companion sequence is the sequence of general term vn = 2n + 1 for
n = 0, 1, . . ..

The quantity P (un) has received considerable interest. For example, building
upon some results of C. L. Stewart [18] and [19], Ford, Luca and Shparlinski
showed recently [10] that

∑

n>1

(logn)α

P (2n − 1)

is convergent for all fixed α < 1/2. They cannot improve on the upper bound 1/2
on the exponent α.

Here, we prove a few results on S(Fn) and S(Ln).

Theorem 7.

(i) If n > 12, then each of S(Fn) and S(Ln) is of the form S(pa) = ap for some
prime power pa such that a < p;

(ii) If n > 1, then S(Fn) 6= S(Ln).

Proof. By the Primitive Divisor Theorem for Lucas sequences (see, for exam-
ple, [3]), if n > 12, then Fn has a primitive prime factor. That is, there exists
a prime p | Fn such that p - Fm for all 1 6 m 6 n − 1. The same holds for
Ln. Furthermore, if p is a primitive prime for either Fn or Ln, then p ≡ ±1
(mod n). Thus, both inequalities P (Fn) > n−1 and P (Ln) > n−1 hold, so, both
inequalities S(Fn) > n− 1 and S(Ln) > n− 1 hold as well.

Next, we certainly have that S(Fn) = S(pa), where pa is some prime power
dividing Fn. It is known that if p | Fn, then n is a multiple of the order of
apparition z(p) of p in the Fibonacci sequence. Recall that this is the smallest
positive integer k such that p | Fk. Let µp(m) be the exponent at which the prime
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p appears in the factorization of the positive integer m. Then it is known that if
we put ep = µp(Fz(p)), we have

µp(Fn) = ep + µp(n/z(p)) 6 ep +
logn

log p
. (23)

Furthermore, z(5) = 5, but if p 6= 5, then p ≡ ±1 (mod z(p)). In particular,
z(p) 6 p+ 1 holds for all primes p. Thus,

pep 6 Fz(p) 6 Fp+1 6 αp,

where α = (1 +
√

5)/2 in this case. Thus,

ep 6
(p+ 1) logα

log p
.

In conclusion, we get that

a 6
(p+ 1) logα

log p
+

logn

log p
.

It is enough to show that if pa is such that S(Fn) = S(pa), then a < p. Assume
that this is not so. Then a > p and, in particular, the above upper bound on a
implies that

(p+ 1) logα

log p
+

logn

log p
> p. (24)

Assume first that p > 3. Then log p > log 3 > 1 and logα/ log p < 1/2 and the
above inequality (24) implies that

p+ 1

2
+ logn > p,

yielding p < 2 logn+ 1. Since also

a 6
p+ 1

2
+ logn 6 2 logn+ 1,

we get that n−1 6 P (Fn) 6 S(Fn) = S(pa) 6 pa 6 (2 logn+1)2, giving n 6 107.
This was when p > 3. When p = 2, then it is known that for a > 3, 2a divides

Fn if and only if 3 · 2a−1 divides n. Thus, a 6 log(n/3)/ log 2 + 1, giving pa 6

2 log(n/3)/ log 2 + 2. Thus, n− 1 6 P (Fn) 6 S(Fn) 6 pa 6 2 log(n/3)/ log 2 + 2,
which has no solutions for n > 4. In conclusion, n ∈ [13, 107]. However, one checks
that in the range n ∈ [13, 107], S(Fn) = P (Fn). This shows that the inequality
a > p is impossible. Thus, indeed S(Fn) = S(pa) for some prime power pa‖Fn

with a < p.
The proof for the case of the Lucas sequence is similar. In this case, we observe

that p is not 2. Indeed, since 8 never divides Lm for any positive integer m,
it follows that if S(Ln) = S(2a) for some a such that 2a‖Ln, then a 6 2, so
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S(Ln) 6 4, contradicting the fact that S(Ln) > P (Ln) > n− 1 > 12 for n > 12.
Since p is odd, it follows, as in the case of the Fibonacci sequence, that if we put
k(p) for the smallest positive integer m such that p | Lk(p), then

µp(Ln) 6 µp(Lk(p)) + µp(n/k(p)),

with equality if and only if n/k(p) is odd. It is also well-known that k(p) exists if
and only if z(p) is even in which case k(p) = z(p)/2. In particular, Lk(p) | Fz(p)

(because F2m = FmLm), therefore

µp(Ln) 6 ep +
logn

log p
,

which is the same inequality as inequality (23). Now the above argument together
with a computer verification of the fact that S(Ln) = P (Ln) holds for all n ∈
[13, 107] proves that the same result holds for Lucas numbers. This takes care
of (i).

For (ii), we first check numerically that S(Ln) 6= S(Fn) for any n ∈ [2, 12].
For n > 13, we use (i) to infer that if S(Fn) = S(Ln), then there exist pa1

1 ‖Fn

and pa2
2 ‖Ln such that p1a1 = p2a2 and a1 < p1, a2 < p2. Identifying the largest

prime factor in the above equation, we get p1 = p2. Thus, p = p1 = p2 is a prime
dividing both Fn and Ln. Since L2

n − 5F 2
n = (−1)n4, we get that p2 | 4, therefore

p = 2. But since 8 does not divide Ln, we get that a2 ∈ {1, 2}. Thus, S(Ln) 6 4,
which is false because S(Ln) > P (Ln) > n − 1 > 12. This shows that indeed
S(Fn) 6= S(Ln) for all n > 1. �

Theorem 8.

(i) The inequality

S(Fn) > (c0 + o(1))
nφ(n)

(log n)2
(25)

holds as n → ∞, where c0 = (logα)/3. The same inequality holds when Fn

is replaced by Ln.
(ii) If α > 1/2, then both series

∑

n>1

1

S(Fn)α
and

∑

n>1

1

S(Ln)α

are convergent.

Proof. We start with (i). Let n be large. We look at the part of Fn which is
build up just of primitive prime factors. Let An be this divisor of Fn. The proof
of the Primitive Divisor Theorem shows that

An = α(1+o(1))φ(n)

as n→ ∞ (see, for example, [5]). Write An =
∏k

i=1 p
ai

i , where p1 < p2 < · · · < pk
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are all primes and a1, . . . , ak are positive integers. Clearly, pi > n − 1 for all
i = 1, . . . , k, therefore

(n− 1)ai 6 pai

i 6 An 6 α(1+o(1))φ(n),

giving ai 6 (c1 + o(1))φ(n)/ log(n− 1) as n→ ∞, where c1 = logα. In particular,
ai < pi holds for all i = 1, . . . , k, once n is large. Write

S = S(An) = max{S(pai

i ) : i = 1, . . . , k} = max{aipi : i = 1, . . . , k}.
Clearly, S(Fn) > S. It suffices to find a lower bound on S. The inequality
ai 6 S/pi holds for all i = 1, . . . , k. Furthermore, pk 6 S and p1, . . . , pk are
primes which are congruent to ±1 (mod n). We thus get

(c1 + o(1))φ(n) = logAn =

k∑

i=1

ai log pi 6 S

k∑

i=1

log pi

pi

6 S




∑

p6S
p≡±1 (mod n)

log p

p



 . (26)

Observe that, by writing the condition p ≡ 1 (mod n) as p = 1 + nλ for some
positive integer λ, and discarding the fact that the sum is only over primes (but
keeping the arithmetic progression modulo n), we get that

∑

p6S
p≡1 (mod n)

log p

p
6

∑

m6S
m≡1 (mod n)

logm

m
6

∑

16λ6S/n

log(1 + nλ)

1 + nλ

<
∑

16λ6S/n

log(nλ)

nλ
=

logn

n

∑

16λ6S/n

1

λ
+

1

n

∑

16λ6S/n

logλ

λ

6
logn

n

(
1 +

∫ S/n

1

dt

t

)
+

1

n

(
c2 +

∫ S/n

3

log tdt

t

)

<
logn

n
(1 + log(S/n)) +

1

n

(
c2 +

1

2
log(S/n)2

)

=
1

n

(
logn log(S/n) +

1

2
log(S/n)2 + O(logn)

)
,

where c2 = (log 2)/2 + (log 3)/3. Furthermore, since the inequality nλ − 1 >

n(λ− 1) + 1 holds for all λ > 2 and all n > 2, we also have that

∑

p6S
p≡−1 (mod n)

log p

p
6

log(n− 1)

n− 1
+

∑

m6S
m≡1 (mod n)

logm

m

6
1

n

(
logn log(S/n) +

1

2
log(S/n)2 +O(log n)

)
.
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Putting everything together, we get that

(c1 + o(1))φ(n) 6
S

n

(
2 logn log(S/n) + log(S/n)2 +O(log n)

)
.

The above inequality leads easily to the conclusion that

S > (c0 + o(1))
φ(n)n

(log n)2

as n→ ∞, where c0 = c1/3, which is what we wanted to prove. The proof of part
(i) for Ln is similar.

For (ii), we use (i) and the fact that φ(n) � n/ log logn to conclude that for
all fixed ε > 0, there exists nε such that the inequality S(Fn) > n2−ε holds for
n > nε, and the same holds for S(Ln). Thus, given α > 1/2, and choosing ε > 0
sufficiently small such such that α(2− ε) = 1 + δ holds with some δ > 0, it follows
that S(Fn)α > n1+δ for n sufficiently large, showing that

∑

n>1

1

S(Fn)α
6 O(1) +

∑

n>1

1

n1+δ
= O(1).

The same argument applies with Fn replaced by Ln. �

Remark. Using sieve methods to deal with the sum

∑

p6S
p≡±1 (mod n)

log p

p

appearing in the right hand side of inequality (26), like the Brun-Titchmarsh The-
orem and the Abel summation formula, we could have saved another logarithmic
factor from estimate (25). We do not enter into such details.

All the results from this section apply to other Lucas sequences as well. For
example, for the case of Mn = 2n − 1, an argument similar to the one above leads
to the conclusion that the inequality

S(2n ± 1) > (c3 + o(1))
φ(n)n

(logn)2

holds as n → ∞ with c3 = 2(log 2)/3. Here, the rôle of α is played by the
dominant root α = 2 of the characteristic equation x2−3x+2 = 0 of the sequence
of Mersenne numbers (Mn)n>1, and the fact that c3 = 2(logα)/3 is “twice" as
large as c0 (note that c0 in (25) is only c0 = (logα)/3) is due to the fact that the
primitive prime factors of 2n−1 are all congruent to 1 (mod n), as opposed to the
primitive prime factors of Fn which can be congruent to either 1 or −1 modulo n.
Similarly, ∑

n>1

1

S(2n − 1)α
<∞

holds for all fixed α > 1/2.
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5. Limits and Densities

Here, we look at some limits and densities with composites of S with the arithmetic
functions σ(n), φ(n) and d(n)

Proposition 9.

(i)

lim inf
n→∞

σ(S(n))

n
= 0, and lim sup

n→∞

σ(S(n))

n
= 1;

(ii)

lim inf
n→∞

S(σ(n))

n
= 0, and lim sup

n→∞

S(σ(n))

n
6 2;

(iii)

lim inf
n→∞

S(ϕ(n))

n
= 0, and lim sup

n→∞

S(ϕ(n))

n
6

1

2
;

(iv)

lim inf
n→∞

σ(S(n))

S(n)
= 1, and lim sup

n→∞

σ(S(n))

S(n)
= ∞;

(v)

lim inf
n→∞

σ(nS(n))

nS(n)
= 1, and lim sup

n→∞

σ(nS(n))

nS(n)
= ∞;

(vi)

lim inf
n→∞

ϕ(S(n))

n
= 0, and lim sup

n→∞

ϕ(S(n))

n
= 1;

(vii)

lim inf
n→∞

ϕ(S(n))

S(n)
= 0, and lim sup

n→∞

ϕ(S(n))

S(n)
= 1;

(viii)

lim inf
n→∞

S(ϕ(n))

ϕ(n)
= 0, and lim sup

n→∞

S(ϕ(n))

ϕ(n)
6 1/2;

(ix)

lim inf
n→∞

ϕ(S(n+ 1))

ϕ(S(n))
= 0, and lim sup

n→∞

ϕ(S(n+ 1))

ϕ(S(n))
= ∞;

(x)

lim inf
n→∞

S(d(n))

ω(n) + Ω(n)
= 0, and lim sup

n→∞

S(d(n))

ω(n) + Ω(n)
= 1.

Proof. The lower limit in (i) follows by choosing n = p2, where p is an arbitrarily
large prime by observing that S(n)/n = 2/p for such choice of n. The fact that
the upper limit in (i) is at most 1 follows by (i) of Theorem 4, and the fact that it
is at least 1 follows by letting n go to infinity through primes.
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The lower limit in (ii) follows from Theorem 6 by observing that S(σ(n)) =
P (σ(n)) < n/ logn holds for almost all positive integers n, while the upper limit
in (ii) follows from (ii) of Theorem 4.

The lower limit in (iii) follows again from Theorem 6 by observing that
S(φ(n)) = P (φ(n)) < n/ logn holds for almost all positive integers n, while the
upper limit in (iii) follows from (v) of Proposition 5.

Both limits in (iv) follow immediately from the fact that the set S(n) contains
all positive integers of the form ap, where a is arbitrary and p > a. For such
numbers, σ(S(n))/S(n) = (σ(a)/a)(1 + 1/p) and such ratios are in fact dense in
[1,∞] when p→ ∞ and a < p is arbitrary.

Similarly as in (iv), both limits in (v) follow because the set nS(n) contains
all numbers of the form apa+1 (which are nS(n) for n = pa) when a < p and p
is prime. For such numbers, σ(nS(n))/(nS(n)) = (σ(a)/a)(σ(pa+1)/pa+1), and
these numbers are dense in [1,∞] once p tends to infinity and a < p is arbitrary.

For the limits in (vi), take n = p2 for the lower limit. The fact that the upper
limit is at most 1 is obvious since φ(S(n)) 6 S(n) 6 n, and the fact that it is at
least 1 follows by letting n go to infinity through primes.

The limits in (vii) follow again because S(n) contains all numbers of the form
ap with a < p and p prime. For such numbers, we have φ(S(n))/S(n) = (φ(a)/a)
(1− 1/p), and these fractions are dense in [0, 1] when p tends to infinity and a < p
is arbitrary.

The lower limit in (viii) follows by choosing n = 2k and the upper limit in (viii)
follows from (iii) of Proposition 5 by observing that since φ(n) is even for n > 3,
one has S(φ(n)) 6 φ(φ(n)) 6 φ(n)/2 for all large n except when n = q = 2p+ 1.
In this last case, S(φ(n)) = p = φ(n)/2.

For (ix), take n = 2m − 1. Then S(n + 1) = S(2m) 6 2m, while S(n) =
S(2m − 1) � φ(m)m/(logm)2 by the results from Section 4. Thus, φ(S(n+ 1)) 6

S(n+ 1) 6 2m, while φ(S(n)) � S(n)/ log log S(n) � mφ(m)/(logm)3. Thus,

φ(S(n+ 1))

φ(S(n))
� φ(m)

(logm)3
� m

(logm)4
,

showing the upper limit in (ix). For the lower limit, take n = 2m and apply the
same argument.

Finally, for (x), let p be a large prime and take n = pp2−1 for the lower limit.
The fact that the upper limit is at most 1 follows from the remark at the end of
Subsection 3.1, and the fact that it is achieved can be seen by taking n = pp−1,
where p is a prime tending to infinity. �

As a byproduct of our arguments, we also record the following result whose
proof has already appeared above.

Proposition 10.

(i) The sequence (σ(S(n))/S(n)) is dense in [1,+∞];
(ii) The sequence (ϕ(S(n))/S(n)) is dense in [0, 1];
(iii) The sequence (σ(S(n))/ϕ(S(n))) is dense in [1,∞].
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Remark. All results in of the above two Propositions hold when σ is replaced
with ψ (Dedekind’s function).
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