ON A KAKEYA-TYPE PROBLEM II

Gregory A. Freiman, Yonutz V. Stanchescu

Abstract

Let A be a finite subset of an abelian group G. For every element b_{i} of the sumset $2 A=\left\{b_{0}, b_{1}, \ldots, b_{|2 A|-1}\right\}$ we denote by $D_{i}=\left\{a-a^{\prime}: a, a^{\prime} \in A ; a+a^{\prime}=b_{i}\right\}$ and $r_{i}=\left|\left\{\left(a, a^{\prime}\right): a+a^{\prime}=b_{i} ; a, a^{\prime} \in A\right\}\right|$. After an eventual reordering of $2 A$, we may assume that $r_{0} \geqslant r_{1} \geqslant \ldots \geqslant r_{|2 A|-1}$. For every $1 \leqslant s \leqslant|2 A|$ we define $R_{s}(A)=\left|D_{0} \cup D_{1} \cup \ldots \cup D_{s-1}\right|$ and $R_{s}(k)=\max \left\{R_{s}(A): A \subseteq G,|A|=k\right\}$. Bourgain and Katz and Tao obtained an estimate of $R_{s}(k)$ assuming s being of order k. In this paper we describe the structure of A assuming that $G=\mathbb{Z}^{2}, s=3$ and $R_{3}(A)$ is close to its maximal value, i.e. $R_{3}(A)=3 k-\theta \sqrt{k}$, with $\theta \leqslant 1.8$.

Keywords: Inverse additive number theory, Kakeya problem.

1. Introduction

Let A be a finite subset of the group $G=\mathbb{Z}$ or $G=\mathbb{Z}^{2}$. For every element b_{i} of the sumset $2 A=A+A=\left\{x+x^{\prime}: x \in A, x^{\prime} \in A\right\}=\left\{b_{0}, b_{1}, b_{2}, \ldots, b_{|2 A|-1}\right\}$ we denote

$$
\begin{align*}
D_{i} & =\left\{a-a^{\prime}: a \in A, a^{\prime} \in A, a+a^{\prime}=b_{i}\right\}, \quad d_{i}=\left|D_{i}\right|, \tag{1}\\
r_{i} & =r_{i}(A)=\left|\left\{\left(a, a^{\prime}\right): a+a^{\prime}=b_{i}, a \in A, a^{\prime} \in A\right\}\right| . \tag{2}
\end{align*}
$$

After an eventual reordering of the set $2 A$, we may assume that $r_{0} \geqslant r_{1} \geqslant \ldots \geqslant$ $r_{|2 A|-1}$. We denote

$$
\begin{aligned}
c_{i}=\frac{b_{i}}{2}, \quad C & =\left\{c_{0}, c_{1}, c_{2}\right\}, \quad \operatorname{Diff}(A)=D_{0} \cup D_{1} \cup D_{2}, \\
R_{3}(A) & =|\operatorname{Diff}(A)|=\left|D_{0} \cup D_{1} \cup D_{2}\right|, \\
R_{3}(k) & =\max \left\{R_{3}(A): A \subseteq G,|A|=k\right\} .
\end{aligned}
$$

In the paper [1], we determined the maximal value of $|\operatorname{Diff}(A)|$ for finite sets $A \subseteq \mathbb{Z}^{2}$, assuming that b_{0}, b_{1}, b_{2} are non-collinear. We also described the structure

[^0]of planar extremal sets A^{*}, i.e. sets of integer lattice points on the plane \mathbb{Z}^{2} for which we have
\[

$$
\begin{equation*}
R_{3}\left(A^{*}\right)=R_{3}(k)=3 k-\sqrt{3 k} . \tag{3}
\end{equation*}
$$

\]

More precisely, for every $\alpha \in \mathbb{N}$ we denote by H_{α} the set of all points $P=(x, y) \in$ \mathbb{Z}^{2} such that x and y are odd integers and $-2 \alpha<x, y, x+y-1<2 \alpha$. We proved the following result (see [1], Section 3):

Theorem 1. Let A be a finite subset of $\mathbb{Z}^{2},|A|=k$. Then

$$
\begin{equation*}
R_{3}(A)=|\operatorname{Diff}(A)| \leqslant 3 k-\sqrt{3 k} \tag{4}
\end{equation*}
$$

Moreover, the equality $R_{3}(A)=3 k-\sqrt{3 k}$ holds if and only if $k=3 \alpha^{2}$ and there is an affine isomorphism $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $A=\phi\left(H_{\alpha}\right)$.

Note that H_{α}, the canonical form of an extremal set, contains only odd lattice points (x, y) (i.e. both coordinates x and y are odd integers), its convex hull is a hexagon and the set H_{α} lies on 2α lines parallel to the line $y=0$, on 2α lines parallel to the line $x=0$ and on 2α lines parallel to the line $x+y=1$ (see Figure 1.1). Moreover, H_{α} satisfies equality (3) with respect to the centers c_{0}, c_{1}, c_{2} given by $e_{0}=(0,0), e_{1}=(1,0), e_{2}=(0,1)$, respectively.

Figure 1.1: The set H_{α} and the centers $c_{i}=e_{i}, i=0,1,2$.

In this paper we continue the study of such finite sets and we will determine the structure of sets of odd lattice points on the plane for which $c_{i}=e_{i}, i=0,1,2$ and the number of differences $R_{3}(A)$ is close to its maximal value (3). In order to formulate our main result we will use the following notation. If $u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$, we denote by u_{1} and u_{2} its coordinates with respect to the canonical basis $e_{1}=$ $(1,0), e_{2}=(0,1)$ and $e_{0}=(0,0)$ represents the origin point. Let $a=2 \alpha, b=2 \beta$ and $c=2 \gamma$ be three natural numbers such that

$$
\begin{equation*}
2 \leqslant c \leqslant a+b-2 . \tag{5}
\end{equation*}
$$

We denote by $H(a, b, c)$ the set of all points $P=(x, y) \in \mathbb{Z}^{2}$ which satisfy the following conditions:

$$
H(a, b, c): \begin{cases}-2 \alpha+1 \leqslant x \leqslant 2 \alpha-1, & x \text { odd } \tag{6}\\ -2 \beta+1 \leqslant y \leqslant 2 \beta-1, & y \text { odd } \\ -2 \gamma+1 \leqslant x+y-1 \leqslant 2 \gamma-1 .\end{cases}
$$

Note that if $a=b=c=2 \alpha$, then $H(a, b, c)$ is the perfect hexagon H_{α} described in Figure 1.1.

We will prove that if $c_{i}=\frac{b_{i}}{2}=e_{i}$, for $i=0,1,2$ and if $|\operatorname{Diff}(A)| \geqslant 3 k-1.8 \sqrt{k}$, then A is almost hexagonal, i.e. an essential part of the set A can be approximated by a hexagon similar to the extremal set H_{α}. A precise formulation is given in the following:

Definition 1. We say that $A \subseteq \mathbb{Z}^{2}$ is an almost hexagonal set if there is a subset $A^{*} \subseteq A$ and a hexagon $H(a, b, c)$ which satisfy the conditions:

1. $\left|A^{*}\right| \geqslant 0.91|A|$,
2. A^{*} is included in $H(a, b, c)$ and $|H(a, b, c)| \leqslant 1.081\left|A^{*}\right|$,
3. if $a \leqslant b \leqslant c$, then $a>0.8 \sqrt{\left|A^{*}\right|}, b<1.75 a, c<0.75(a+b)$.

Using the above notations, we can state now our main result:
Theorem 2. Let $A \subseteq \mathbb{Z}^{2}$ be a finite subset of odd lattice points on the plane. Assume that $|A|=k$ is sufficiently large and $c_{i}=e_{i}$, for $i=0,1,2$. If

$$
\begin{equation*}
R_{3}(A)=|\operatorname{Diff}(A)|=3 k-\theta \sqrt{k}, \quad \theta \leqslant 1.8 \tag{7}
\end{equation*}
$$

then the set A is almost hexagonal.
We prove Theorem 2 in Sections 2-5. Actually, we will prove a more precise estimate (16). In Section 3 we prove Theorem 2 for connected sets and in Section 5 we complete the proof using properties of disconnected sets obtained in Section 4. In Section 6 we will discuss some directions for further research.

We complete the introduction by recalling some simple remarks from [1]. We will use them whenever necessary without further mention. We easily see that $d_{i}=r_{i}$, for every $0 \leqslant i \leqslant|2 A|-1$. Indeed, using (1) and (2) we get that for two pairs $\left(a_{1}, a_{1}^{\prime}\right)$ and (a_{2}, a_{2}^{\prime}) of $A \times A$ such that $a_{1}+a_{1}^{\prime}=a_{2}+a_{2}^{\prime}=b_{i}$ we have $a_{1}-a_{1}^{\prime}=a_{2}-a_{2}^{\prime}$ if and only if the equality $\left(a_{1}, a_{1}^{\prime}\right)=\left(a_{2}, a_{2}^{\prime}\right)$ holds.

Moreover, using (1), we see that d_{i} is equal to the number of pairs (a, a^{\prime}) such that $a \in A, a^{\prime} \in A$ and a and a^{\prime} are symmetric with respect to the center $c_{i}=\frac{b_{i}}{2}$, i.e.

$$
d_{i}=\left|D_{c_{i}}\right|, \quad \text { where } \quad D_{c_{i}}=\left\{\left(a, a^{\prime}\right): a \in A, a^{\prime} \in A, a+a^{\prime}=2 c_{i}\right\} .
$$

We also note that if $a \neq a^{\prime}$ then the pairs $\left(a, a^{\prime}\right)$ and $\left(a^{\prime}, a\right)$ give two distinct differences

$$
a-a^{\prime}=a-\left(b_{i}-a\right)=2 a-b_{i} \quad \text { and } \quad a^{\prime}-a=-\left(2 a-b_{i}\right)
$$

and if $a=a^{\prime}$ we have one pair (a, a) and one difference $d=a-a=0$. We have

$$
\begin{aligned}
R_{3}(A)=|\operatorname{Diff}(A)| & =3 k-\theta \sqrt{k}=\left|D_{0}(A) \cup D_{1}(A) \cup D_{2}(A)\right| \\
& \leqslant\left|D_{0}(A)\right|+\left|D_{1}(A)\right|+\left|D_{2}(A)\right| \leqslant d_{i}+2 k
\end{aligned}
$$

and thus

$$
d_{i} \geqslant R_{3}(A)-2 k=k-\theta \sqrt{k},
$$

for every $0 \leqslant i \leqslant 2$. Let us denote by

$$
p_{i}=2 c_{i}-p
$$

the symmetric of p with respect to c_{i}. Denote by M_{i} the set of points $p \in A$ such that $p_{i} \notin A$. If $m_{i}=\left|M_{i}\right|$, then $d_{i}=\left|D_{i}(A)\right|=k-m_{i}$ and thus

$$
\begin{equation*}
m_{i}=k-d_{i} \leqslant k-\left(R_{3}(A)-2 k\right)=\theta \sqrt{k} \tag{8}
\end{equation*}
$$

In other words, Theorem 2 describes the structure of sets of lattice points that are "almost" symmetric with respect to some set C of centers of symmetry. This is a natural question to be studied in geometry and in inverse additive number theory.

2. Normal sets and Covering Hexagons

We will prove first several simple remarks.
Lemma 1. Assume that there is a point $p \in A$ such that $p_{1}=2 c_{1}-p$ and $p_{2}=2 c_{2}-p$ don't belong to A. If

$$
A^{\prime}=A \backslash\{p\}
$$

is the set obtained from A by removing the point p, then

$$
R_{3}\left(A^{\prime}\right) \geqslant R_{3}(A)-2
$$

Proof. Assumptions $p_{1}=2 c_{1}-p \notin A$ and $p_{2}=2 c_{2}-p \notin A$ imply that the differences

$$
d_{1}= \pm\left(p-p_{1}\right), \quad d_{2}= \pm\left(p-p_{2}\right)
$$

do not belong to $D_{1}(A)$ and $D_{2}(A)$, respectively. Therefore the removal of p from the set A reduces the cardinality of $\operatorname{Diff}(A)$ by maximum two differences:

$$
d_{0}= \pm\left(p-p_{0}\right)
$$

We conclude that

$$
D_{0}\left(A^{\prime}\right) \geqslant D_{0}(A)-2, D_{1}\left(A^{\prime}\right)=D_{1}(A), D_{2}\left(A^{\prime}\right)=D_{2}(A)
$$

which implies $R_{3}\left(A^{\prime}\right)=\left|\operatorname{Diff}\left(A^{\prime}\right)\right| \geqslant|\operatorname{Diff}(A)|-2=R_{3}(A)-2$.

Definition 2. If a point $p \in A$ satisfies the condition

$$
\begin{equation*}
\left|\left\{p_{0}, p_{1}, p_{2}\right\} \cap A\right| \leqslant 1, \tag{9}
\end{equation*}
$$

i.e. at least two symmetric points of p with respect to $\left\{c_{0}, c_{1}, c_{2}\right\}$ do not belong to A, then we will say that p is a removable point of A. If the point p doesn't satisfy the condition (9), then we will say that p is an essential point of A.

Assume that A satisfies inequality (7). In the following Lemma we will estimate the number of removable points of A and we will show that the subset A_{0} of A consisting of all essential points of A has the same property (7).
Lemma 2. Let A be a finite subset of $\mathbb{Z}^{2},|A|=k$. Assume that

$$
\begin{equation*}
R_{3}(A)=|\operatorname{Diff}(A)|=3 k-\theta \sqrt{k}, \quad \theta \leqslant 1.8 \tag{10}
\end{equation*}
$$

Let A_{0} be the set of all essential points of A and let $A \backslash A_{0}$ be the set of removable points of A.
(a) If $k_{0}=\left|A_{0}\right|$, then $R_{3}\left(A_{0}\right) \geqslant 3 k_{0}-\theta \sqrt{k_{0}}$.
(b) If $n=\left|A \backslash A_{0}\right|$, then $n \leqslant(\theta-1.73) \sqrt{k} \leqslant 0.07 \sqrt{k}$, if k is sufficiently large.

Proof. If $n=\left|A \backslash A_{0}\right|=k-k_{0}$ denotes the number of removable points of A, then Lemma 1 implies that

$$
\begin{aligned}
R_{3}\left(A_{0}\right) & \geqslant R_{3}(A)-2 n \geqslant 3 k-\theta \sqrt{k}-2 n \\
& =3(k-n)-\theta \sqrt{k-n}+n-\theta(\sqrt{k}-\sqrt{k-n}) \\
& =3 k_{0}-\theta \sqrt{k_{0}}+n\left(1-\frac{\theta}{\sqrt{k}+\sqrt{k-n}}\right) \\
& \geqslant 3 k_{0}-\theta \sqrt{k_{0}},
\end{aligned}
$$

in view of $k \geqslant 4 \geqslant \theta^{2}$. Assertion (a) is proved. We will now estimate the number of removable points of A. We first note that

$$
3 k-\theta \sqrt{k} \leqslant R_{3}(A) \leqslant R_{3}\left(A_{0}\right)+2 n \leqslant 3\left|A_{0}\right|+2 n=3(k-n)+2 n=3 k-n
$$

and thus

$$
\begin{equation*}
n=k-k_{0} \leqslant \theta \sqrt{k} \leqslant 2 \sqrt{k} . \tag{11}
\end{equation*}
$$

This estimate can be improved by using inequality (4) for the set A_{0}. Indeed, we have

$$
R_{3}\left(A_{0}\right) \leqslant 3\left|A_{0}\right|-\sqrt{3\left|A_{0}\right|}=3(k-n)-\sqrt{3(k-n)}
$$

and inequality

$$
3 k-\theta \sqrt{k} \leqslant R_{3}(A) \leqslant R_{3}\left(A_{0}\right)+2 n \leqslant 3(k-n)-\sqrt{3(k-n)}+2 n
$$

clearly implies

$$
n \leqslant \theta \sqrt{k}-\sqrt{3(k-n)} \leqslant \theta \sqrt{k}-\sqrt{3} \sqrt{k-2 \sqrt{k}} \leqslant(\theta-1.73) \sqrt{k} \leqslant 0.07 \sqrt{k}
$$

if k is sufficiently large. Assertion (b) is proved.

Lemma 2 allows us to study planar sets A consisting only of essential points.
Definition 3. We say that $A \subseteq \mathbb{Z}^{2}$ is normal set (with respect to the centers $c_{0}=e_{0}, c_{1}=e_{1}, c_{2}=e_{2}$) if
(i) every point of A is an essential point and
(ii) every point $p=(x, y) \in A$ has both coordinates x and y odd integers.

Let us choose six integers $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$ such that:
(i) every point $p=(x, y) \in A$ satisfies the inequalities

$$
H=H(A): \begin{cases}\alpha_{1} \leqslant x \leqslant \alpha_{2}, & x \text { odd } \\ \beta_{1} \leqslant y \leqslant \beta_{2}, & y \text { odd } \\ \gamma_{1} \leqslant x+y \leqslant \gamma_{2}\end{cases}
$$

(ii) on each line $\left(x=\alpha_{1}\right),\left(x=\alpha_{2}\right),\left(y=\beta_{1}\right),\left(y=\beta_{2}\right),\left(x+y=\gamma_{1}\right),\left(x+y=\gamma_{2}\right)$ there is a least one point of A.
The finite set $H(A) \subseteq(2 \mathbb{Z}+1) \times(2 \mathbb{Z}+1)$ defined by the above two conditions will be called a covering polygon of the set A.

We will prove that if A is normal set then the points of A lie on pairs of symmetric lines with respect to three lines defined by

$$
\begin{equation*}
l_{1}:(x=0), \quad l_{2}:(y=0), \quad l_{3}:(x+y=1) \tag{12}
\end{equation*}
$$

More precisely:
Lemma 3. Let $A \subseteq \mathbb{Z}^{2}$ be a finite normal set. Then
(a) If $A \cap(x=\alpha) \neq \varnothing$, then $A \cap(x=-\alpha) \neq \varnothing$.
(b) If $A \cap(y=\beta) \neq \varnothing$, then $A \cap(y=-\beta) \neq \varnothing$.
(c) If $A \cap(x+y-1=\gamma) \neq \varnothing$, then $A \cap(x+y-1=-\gamma) \neq \varnothing$.

Proof. In view of (12), the points c_{0} and c_{2} belong to l_{1}, c_{0} and c_{1} belong to l_{2} and finally c_{1} and c_{2} belong to l_{2}. Therefore there is no loss of generality if we will prove only assertion (a).

To the contrary, assume that $A \cap(x=\alpha) \neq \varnothing$ and $A \cap(x=-\alpha)=\varnothing$. In this case, every point $p \in A \cap(x=\alpha)$ has no symmetric with respect to c_{0} and c_{2} and therefore p is a removable point of A. This contradicts our assumption that A is normal set. Lemma 3 is proved.

Let $A \subseteq \mathbb{Z}^{2}$ be a normal set. We will now estimate the number of odd points belonging to a covering polygon $H(A)$. In view of Definition 3 and Lemma 3, the integers $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$ that define the covering lines of $H(A)$ satisfy

$$
\begin{array}{ll}
\alpha_{1} \text { and } \alpha_{2} \text { are odd, } & \alpha_{2}=-\alpha_{1}=2 \alpha-1, \\
\beta_{1} \text { and } \beta_{2} \text { are odd, } & \beta_{2}=-\beta_{1}=2 \beta-1, \\
\gamma_{1} \text { and } \gamma_{2} \text { are even, } & \gamma_{2}=-\gamma_{1}+2=2 \gamma .
\end{array}
$$

It follows that $H(A)=H(a, b, c)$, where $a=2 \alpha, b=2 \beta, c=2 \gamma$. Let us denote by

$$
\begin{equation*}
\epsilon=\epsilon(a, b, c)=\frac{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}{2} . \tag{13}
\end{equation*}
$$

We have the following estimate
Lemma 4. The set $H(a, b, c)$ lies on $a=2 \alpha$ lines parallel to $(x=0)$, on $b=2 \beta$ lines parallel to $(y=0)$, on $c=2 \gamma$ lines parallel to $(x+y=1)$ and

$$
|H(a, b, c)|= \begin{cases}c \min \{a, b\}, & \text { if } c \leqslant|a-b| \tag{14}\\ a b-\frac{(a+b-c)^{2}}{4}, & \text { if } c \geqslant|a-b|+2\end{cases}
$$

Moreover,

(a) if $c \leqslant|a-b|$, then $|H(a, b, c)| \leqslant \frac{1}{4} \frac{(a+b+c)^{2}}{4}$.
(b) if $c \geqslant|a-b|+2$, then $|H(a, b, c)| \leqslant \frac{1}{3}\left(\frac{(a+b+c)^{2}}{4}-\epsilon\right)$.

Proof. Every point $P=(x, y) \in H(a, b, c)$ belongs to the rectangle defined by

$$
R(A):|x| \leqslant 2 \alpha-1, \quad|y| \leqslant 2 \beta-1, \quad x \text { and } y \text { are odd. }
$$

and thus $H(a, b, c)$ lies on $a=2 \alpha$ lines parallel to $(x=0)$, on $b=2 \beta$ lines parallel to $(y=0)$. Moreover, if $P=(x, y)$ is a point of $H(a, b, c)$ lying on the supporting line $(x+y=2 \gamma)$, then $x+y \leqslant 2 \alpha+2 \beta-2$ and therefore $H(a, b, c)$ lies on $c=2 \gamma \leqslant 2 \alpha+2 \beta-2=a+b-2$ lines parallel to $(x+y=1)$.

It is enough to examine only the case $a \geqslant b$.
Case 1. If $2 \leqslant 2 \gamma \leqslant 2 \alpha-2 \beta$, then $2 \leqslant c \leqslant a-b$, the set $H(a, b, c)$ is actually a parallelogram and

$$
H(a, b, c)=2 \gamma b=c b=c \min \{a, b\} .
$$

Case 2. If $2 \gamma=2 \alpha-2 \beta+2$, then $c=a-b+2$. The set $H(a, b, c)$ lies on two parallel lines, if $a=b$, or $H(a, b, c)$ is a pentagon, if $a \neq b$. Therefore
$H(a, b, c)=2 \gamma b-1=c b-1=(a-b+2) b-1=a b-(b-1)^{2}=a b-\frac{(a+b-c)^{2}}{4}$.
Case 3. If $2 \alpha-2 \beta+4 \leqslant 2 \gamma \leqslant 2 \alpha+2 \beta-4$, then $a-b+4 \leqslant c \leqslant a+b-4$, the set $H(a, b, c)$ is a hexagon and

$$
H(a, b, c)=a b-\sum_{j=1}^{\alpha+\beta-\gamma-1} j-\sum_{j=1}^{\alpha+\beta-\gamma} j=a b-(\alpha+\beta-\gamma)^{2}=a b-\frac{(a+b-c)^{2}}{4} .
$$

Case 4. If $2 \gamma=2 \alpha+2 \beta-2$, then $c=a+b-2$, the set $H(a, b, c)$ satisfies

$$
H(a, b, c)=R(A) \backslash\{v\},
$$

where v is the vertex $v=(-2 \alpha+1,-2 \beta+1)$. Thus

$$
H(a, b, c)=a b-1=a b-\frac{(a+b-c)^{2}}{4}
$$

Equality (14) is proved.
Moreover, in case 1 we have $c \leqslant a-b, a \geqslant b+c$ and thus

$$
\begin{aligned}
|H(a, b, c)| & =c b=\frac{(b+c)^{2}-(b-c)^{2}}{4} \leqslant \frac{1}{4}\left(\left(\frac{a+b+c}{2}\right)^{2}-(b-c)^{2}\right) \\
& \leqslant \frac{1}{4}\left(\frac{a+b+c}{2}\right)^{2}
\end{aligned}
$$

In cases 2,3 and 4 we have $c \geqslant a-b+2$ and thus

$$
\begin{aligned}
|H(a, b, c)| & =a b-\frac{(a+b-c)^{2}}{4}=\frac{2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}}{4} \\
& =\frac{(a+b+c)^{2}}{12}-\frac{\epsilon}{3} .
\end{aligned}
$$

Lemma 4 is proved.

3. Normal connected sets

In this section we prove Corollary 1 which implies Theorem 2 for connected normal sets. We need the following:
Definition 4. Let $A \subseteq \mathbb{Z}^{2}$ be a finite normal set and let

$$
x= \pm(2 \alpha-1), \quad y= \pm(2 \beta-1), \quad x+y-1= \pm(2 \gamma-1)
$$

denote the supporting lines of the covering polygon $H(A)=H(a, b, c)$. We say that A is a connected normal set if the following three conditions are true:
(a) for every odd integer p such that $|p| \leqslant 2 \alpha-1$ we have $A \cap(x=p) \neq \varnothing$.
(b) for every odd integer q such that $|q| \leqslant 2 \beta-1$ we have $A \cap(y=q) \neq \varnothing$.
(c) for every odd integer r such that $|r| \leqslant 2 \gamma-1$ we have $A \cap(x+y-1=r) \neq \varnothing$.

We will use the following result:
Lemma 5. Let $A \subseteq \mathbb{Z}^{2}$ be a connected normal set. If $H(A)$, the covering polygon of A, is equal to $H(a, b, c)$, then

$$
\begin{equation*}
R_{3}(A)=|\operatorname{Diff}(A)| \leqslant 3 k-\frac{a+b+c}{2} \tag{15}
\end{equation*}
$$

Proof. See assertion (b) of Lemma 2 in [1].
We can now prove without difficulty the following corollary which describes the structure of a connected normal set A which satisfies $R_{3}(A) \geqslant 3 k-\sqrt{3.241 k}$. This condition is less restrictive than inequality (10) and will be used in Section 5.

Corollary 1. Let $A \subseteq \mathbb{Z}^{2}$ be a connected normal set. Let $H(A)=H(a, b, c)$ be the covering polygon of A. Denote by

$$
k=|A|, \quad k^{*}=|H(A)| .
$$

(a) If $c \leqslant|a-b|$, then $R_{3}(A) \leqslant 3 k-2 \sqrt{k^{*}} \leqslant 3 k-2 \sqrt{k}$.
(b) If $c \geqslant|a-b|+2$, then $R_{3}(A) \leqslant 3 k-\sqrt{3 k^{*}+\epsilon} \leqslant 3 k-\sqrt{3 k+\epsilon}$.
(c) If $R_{3}(A) \geqslant 3 k-\sqrt{3.241 k}$, then $|H(A)|<1.081|A|$. Moreover, if we assume that $a \leqslant b \leqslant c$, then $a>0.8 \sqrt{k}, b<1.75 a$ and $c<0.75(a+b)$.

Proof. We have $H(A)=H(a, b, c), k \leqslant k^{*}$ and we may assume without loss of generality that $a \leqslant b$.

Case (a). If $c \leqslant b-a$, then assertion (a) of Lemma 4 implies that

$$
\frac{a+b+c}{2} \geqslant 2 \sqrt{|H(A)|}=2 \sqrt{k^{*}} \geqslant 2 \sqrt{k} .
$$

Using (15), we get $R_{3}(A) \leqslant 3 k-\frac{a+b+c}{2} \leqslant 3 k-2 \sqrt{k^{*}} \leqslant 3 k-2 \sqrt{k}$.
Case (b). If $c \geqslant b-a+2$, then assertion (b) of Lemma 4 implies that

$$
\frac{a+b+c}{2} \geqslant \sqrt{3 k^{*}+\epsilon} \geqslant \sqrt{3 k+\epsilon} .
$$

Using (15), we get

$$
R_{3}(A) \leqslant 3 k-\frac{a+b+c}{2} \leqslant 3 k-\sqrt{3 k^{*}+\epsilon} \leqslant 3 k-\sqrt{3 k+\epsilon} .
$$

We prove now assertion (c). Let us assume that the set A satisfies the inequality

$$
R_{3}(A) \geqslant 3 k-\sqrt{3.241 k} .
$$

Using Corollary 1 (a) and inequalities (5) and (15) we get that

$$
2+|a-b| \leqslant c \leqslant a+b-2
$$

and

$$
\begin{aligned}
3 k-\sqrt{3.241 k} & \leqslant R_{3}(A) \leqslant 3 k-\frac{a+b+c}{2} \leqslant 3 k-\sqrt{3 k^{*}+\epsilon} \\
& \leqslant 3 k-\sqrt{3 k+\epsilon} \leqslant 3 k-\sqrt{3 k} .
\end{aligned}
$$

Therefore $3 k^{*}+\epsilon \leqslant 3.241 k, \sqrt{3 k} \leqslant \frac{a+b+c}{2} \leqslant 3 k-R_{3}, \epsilon \leqslant\left(3 k-R_{3}\right)^{2}-3 k$ and thus

$$
\begin{gather*}
|H(A)|<1.081|A|-\frac{\epsilon}{3}, \tag{16}\\
3.464 \sqrt{k} \leqslant a+b+c \leqslant 2 \sqrt{3.241 k}, \\
2 \epsilon=(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \leqslant 0.482 k . \tag{17}
\end{gather*}
$$

We may assume without loss of generality that

$$
a \leqslant b \leqslant c
$$

Denote $b=a+u$ and $c=b+v$. Inequality (17) imply that $u^{2}+v^{2}+(u+v)^{2} \leqslant 0.482 k$. Thus $u^{2} \leqslant 0.241 k, v^{2} \leqslant 0.241 k,(u+v)^{2} \leqslant 0.322 k$. Therefore

$$
\begin{gathered}
u \leqslant 0.491 \sqrt{k}, \quad v \leqslant 0.491 \sqrt{k}, \quad u+v \leqslant 0.568 \sqrt{k} \\
3.464 \sqrt{k} \leqslant a+b+c=3 a+u+(u+v) \leqslant 3 a+1.059 \sqrt{k}, \\
a \geqslant \frac{1}{3} 2.405 \sqrt{k} \geqslant 0.801 \sqrt{k} .
\end{gathered}
$$

Moreover, the quotient $\frac{b}{a}$ is less than 1.75 because $2 \sqrt{3.241 k} \geqslant a+b+c \geqslant a+2 b=$ $a\left(1+2 \frac{b}{a}\right)$ implies that

$$
\frac{b}{a} \leqslant \frac{1}{2}\left(\frac{2 \sqrt{3.241 k}}{a}-1\right) \leqslant \frac{1}{2}\left(\frac{2 \sqrt{3.241 k}}{0.801 \sqrt{k}}-1\right) \leqslant 1.748
$$

In order to prove assertion (c), it remains to be shown that $t=\frac{c}{a+b} \leqslant 0.75$. We have

$$
\begin{gathered}
2 \sqrt{3.241 k} \geqslant a+b+c=(1+t)(a+b) \geqslant 2(1+t) \sqrt{a b}, \\
k \leqslant a b-\left(\frac{a+b-c}{2}\right)^{2}=a b-\left(\frac{(1-t)(a+b)}{2}\right)^{2}
\end{gathered}
$$

and thus

$$
2 \sqrt{3.241 k} \geqslant 2(1+t) \sqrt{k+\left(\frac{(1-t)(a+b)}{2}\right)^{2}}
$$

Clearly $\sqrt{3.241 k} \geqslant(1+t) \sqrt{k}$ and thus $t \leqslant 0.8003$. This last estimate can be slightly improved using the inequalities $a+b \geqslant 2 \sqrt{a b} \geqslant 2 \sqrt{k}$. Indeed, we obtain

$$
2 \sqrt{3.241 k} \geqslant 2(1+t) \sqrt{k+(1-t)^{2} k}, \quad 3.241 \geqslant(1+t)^{2}+\left(1-t^{2}\right)^{2}
$$

and so $t^{4}-t^{2}+2 t \leqslant 1.241$. Using $0 \leqslant t \leqslant 1$ we get $t<0.75$. Corollary 1 is proved.

4. Disconnected normal sets

Definition 5. Let $A \subseteq \mathbb{Z}^{2}$ be a finite normal set and let

$$
\begin{gathered}
x=2 \alpha-1, \quad x=-2 \alpha+1, \quad y=2 \beta-1, \quad y=-2 \beta+1, \\
x+y=2 \gamma, \quad x+y=-2 \gamma+2
\end{gathered}
$$

denote the supporting lines of the covering polygon $H=H(A)$. We say that A is a disconnected normal set if it is normal and at least one of the assertion (a), (b), (c) of Definition 4 is not true.

As we remarked before, this means that the set A is normal and at least one of the following three conditions is true:
(a) there is an odd integer u such that $-2 \alpha+1 \leqslant u \leqslant 2 \alpha-1$ and $A \cap(x=$ $\pm u)=\varnothing$.
(b) there is an odd integer v such that $-2 \beta+1 \leqslant v \leqslant 2 \beta-1$ and $A \cap(y=$ $\pm v)=\varnothing$.
(c) there is an even integer w such that $-2 \gamma+2 \leqslant w \leqslant 2 \gamma$ and $A \cap(x+y=$ $\pm w)=\varnothing$.
We will examine now such a set $K \subset \mathbb{Z}^{2}$ for which only condition (c) is satisfied. Example 1. Let $t \in \mathbb{Z}$ be a positive integer. Let us define

$$
K(t)=H_{t} \pm(2 t, 2 t) .
$$

Figure 4.1: The set $K(t)$ for $t=3 . K(t)$ is included in $(2 \mathbb{Z}+1) \times(2 \mathbb{Z}+1)$.

The set $K(t)$ is described in Figure 4.1 and is defined by the following conditions: a point (x, y) belongs to $K(t)$ if and only if:
(i) $1 \leqslant x, y \leqslant 4 t-1,2 t+2 \leqslant x+y \leqslant 6 t$ and x and y are both odd integers. or
(ii) $-4 t+1 \leqslant x, y \leqslant-1,-6 t+2 \leqslant x+y \leqslant-2 t$ and x and y are both odd integers.

Lemma 6. The set $K=K(t)$ satisfies $k=|K|=6 t^{2}$ and

$$
\begin{equation*}
R_{3}(K)=3 k-\frac{a+b+c}{2}=3 k-6 t=3 k-\sqrt{6 k} . \tag{18}
\end{equation*}
$$

Proof. The set $K(t)$ consists of two disjoint translates of H_{t} and thus

$$
k=|K(t)|=2\left|H_{t}\right|=6 t^{2} .
$$

Using the properties of the set H_{α} it follows that $K(t)$ lies on $a=4 t$ lines parallel to $e_{2}, b=4 t$ lines parallel to e_{1} and $c=4 t$ lines parallel to $e_{1}-e_{2}$. Each line $\left(x=x_{0}\right), x_{0}$ odd, $-4 t+1 \leqslant x_{0} \leqslant 4 t-1$ intersects the set K. Each line $\left(y=y_{0}\right)$, y_{0} odd, $-4 t+1 \leqslant y_{0} \leqslant 4 t-1$ intersects the set K. Nevertheless, the lines $(x+y=s), s$ even, $-2 t+2 \leqslant s \leqslant 2 t$ does not intersect K. It follows that only condition (c) of Definition 4 is satisfied. Moreover, the three centers of symmetry of K are $c_{i}=e_{i}$, for $i=0,1,2, K$ is a normal set and we clearly have:

$$
\begin{aligned}
d_{0}=\left|D_{0}(K)\right| & =\left|\left\{p \in K: p_{0}=2 c_{0}-p \in K\right\}\right| \\
& =k-|K \cap((x+t=6 t) \cup(x+y=-2 t))|, \\
d_{1}=\left|D_{1}(K)\right| & =\left|\left\{p \in K: p_{1}=2 c_{1}-p \in K\right\}\right| \\
& =k-|K \cap((x=1) \cup(x=-4 t+1))|, \\
d_{2}=\left|D_{2}(K)\right| & =\left|\left\{p \in K: p_{2}=2 c_{2}-p \in K\right\}\right| \\
& =k-|K \cap((y=1) \cup(y=-4 t+1))| .
\end{aligned}
$$

We conclude that K is a disconnected normal set and

$$
R_{3}(K)=d_{0}+d_{1}+d_{2}=(k-2 t)+(k-2 t)+(k-2 t)=3 k-6 t=3 k-\sqrt{6 k}
$$

We will now examine in detail a normal disconnected set satisfying case (a). Cases (b) and (c) are similar. The following result generalizes inequality (18):

Lemma 7. Assume that the set A is a normal disconnected set satisfying condition (a). Let us choose $u \geqslant 1$ minimal such that u is odd and

$$
A \cap(x= \pm u)=\emptyset .
$$

Define $A_{1}=A \cap(-u<x<u), A_{2}=A \backslash A_{1}, k_{1}=\left|A_{1}\right|, k_{2}=k-k_{1}$. Then

$$
\begin{equation*}
R_{3}(A)=R_{3}\left(A_{1}\right)+R_{3}\left(A_{2}\right) \leqslant 3 k-\sqrt{3 k_{1}}-\sqrt{6\left(k_{2}-n_{0}-0.5\right)}, \tag{19}
\end{equation*}
$$

where n_{0} is the number of points $p \in A_{2}$ such that $p_{0}=2 c_{0}-p \notin A_{2}$.
Proof. We will first show that the subset A_{2} satisfies an inequality similar to (18). More precisely, we have

$$
\begin{equation*}
R_{3}\left(A_{2}\right) \leqslant 3 k_{2}-\sqrt{6\left(k_{2}-n_{0}-0.5\right)} \tag{20}
\end{equation*}
$$

The set A_{2} is a disjoint union of

$$
A_{+}=A \cap(x>u)
$$

and

$$
A_{-}=A \cap(x<-u) .
$$

Denote by $\pi_{1}(x, y)=x$ the projection parallel to line $(x=0)$, by $\pi_{2}(x, y)=y$ the projection parallel to line $(y=0)$ and by $\pi_{3}(x, y)=x+y$ the projection parallel to line $(x+y=0)$. We claim that there is an integral vector $w \in \mathbb{N}^{2}$ such that the sets

$$
B_{+}=A_{+}+w \quad \text { and } \quad B_{-}=A_{-}-w
$$

satisfy the following assertions:
(i) B_{+}and B_{-}are disjoint,
(ii) the projections $\pi_{i}\left(B_{+}\right)$and $\pi_{i}\left(B_{-}\right)$are disjoint, for $i=1,2,3$,
(iii) the set $B=B_{+} \cup B_{-}$satisfies $R_{3}\left(A_{2}\right) \leqslant R_{3}(B)$.

If both coordinates of w are large enough, then assertions (i) and (ii) are clearly true. Let us explain now (iii). Each difference $d=\left(d_{1}, d_{2}\right) \in \operatorname{Diff}(A)$ can be written as $d=p-p^{\prime}$, where $p+p^{\prime}=2 c_{i}=2 e_{i}$ and $p, p^{\prime} \in A$. Therefore, we have either

$$
p \in A_{+}, \quad p^{\prime} \in A_{-}, \quad d_{1} \geqslant 2(u+2) \geqslant 6
$$

or

$$
p \in A_{-}, \quad p^{\prime} \in A_{+}, \quad d_{1} \leqslant-2(u+2) \leqslant-6
$$

This remark allows us to define a one to one map φ from

$$
\operatorname{Diff}\left(A_{2}\right)=D_{0}\left(A_{2}\right) \cup D_{1}\left(A_{2}\right) \cup D_{2}\left(A_{2}\right)
$$

to

$$
\operatorname{Diff}(B)=D_{0}(B) \cup D_{1}(B) \cup D_{2}(B)
$$

More precisely, if $p_{i}=2 e_{i}-p$ denotes the symmetric of p with respect to e_{i}, then φ is given by

$$
\varphi(d)=\left\{\begin{array}{lll}
d+2 w, & \text { if } d=p-p_{i}, & p \in A_{+}, \\
p_{i} \in A_{-} \\
d-2 w, & \text { if } d=p-p_{i}, & p \in A_{-}, \\
p_{i} \in A_{+}
\end{array}\right.
$$

The image $\varphi(d) \in \operatorname{Diff}(B)$; indeed, if $d=p-p_{i}, p \in A_{+}, p_{i} \in A_{-}$, then

$$
\begin{gathered}
d+2 w=p-p_{i}+2 w=(p+w)-\left(p_{i}-w\right), \\
p+w \in B_{+} \subseteq B, \quad p_{i}-w \in B_{-} \subseteq B, \\
(p+w)+\left(p_{i}-w\right)=p+p_{i}=2 c_{i}=2 e_{i}
\end{gathered}
$$

and if $d=p-p_{i}, p \in A_{-}, p_{i} \in A_{+}$, then

$$
\begin{gathered}
d-2 w=p-p_{i}-2 w=(p-w)-\left(p_{i}+w\right), \\
p-w \in B_{-} \subseteq B, \quad p_{i}+w \in B_{+} \subseteq B \\
(p-w)+\left(p_{i}+w\right)=p+p_{i}=2 c_{i}=2 e_{i} .
\end{gathered}
$$

Moreover, we may choose the vector w such that $d^{\prime}+2 w \neq d^{\prime \prime}-2 w$, for every $d^{\prime} \neq d^{\prime \prime}, d^{\prime}, d^{\prime \prime} \in \operatorname{Diff}\left(A_{2}\right)$. This implies that φ is one to one and assertion (iii) follows.

Assume that the set B_{+}lies on exactly a_{1} lines parallel to the line $(x=0)$, on b_{1} lines parallel to the line $(y=0)$ and on c_{1} lines parallel to the line $(x+y=0)$. In other words:

$$
a_{1}=\left|\pi_{1}\left(B_{+}\right)\right|, \quad b_{1}=\left|\pi_{2}\left(B_{+}\right)\right|, \quad c_{1}=\left|\pi_{3}\left(B_{+}\right)\right| .
$$

The set B_{-}determines the parameters a_{2}, b_{2} and c_{2} in a similar way, i.e.

$$
a_{2}=\left|\pi_{1}\left(B_{-}\right)\right|, \quad b_{2}=\left|\pi_{2}\left(B_{-}\right)\right|, \quad c_{2}=\left|\pi_{3}\left(B_{-}\right)\right|
$$

Therefore, property (ii) implies that the set B lies on exactly $a_{1}+a_{2}$ lines parallel to the line $(x=0)$, on $b_{1}+b_{2}$ lines parallel to the line $(y=0)$ and on $c_{1}+c_{2}$ lines parallel to the line $(x+y=0)$. Using Lemma 2.b. and Corollary 1 from [1] we get

$$
\begin{aligned}
R_{3}(B) & \leqslant 3|B|-\frac{\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)+\left(c_{1}+c_{2}\right)}{2} \\
& =3\left|B_{+}\right|-\frac{a_{1}+b_{1}+c_{1}}{2}+3\left|B_{-}\right|-\frac{a_{2}+b_{2}+c_{2}}{2} \\
& \leqslant 3\left|B_{+}\right|-\sqrt{3\left(\left|B_{+}\right|-0.25\right)}+3\left|B_{-}\right|-\sqrt{3\left(\left|B_{-}\right|-0.25\right)} .
\end{aligned}
$$

Let us estimate the cardinalities of the sets B_{+}and B_{-}using the fact that A, A_{2} and B are all "almost symmetric" with respect to c_{0}. Let us recall that n_{0} denotes the number of points $p \in A_{2}$ such that $p_{0}=2 c_{0}-p \notin A_{2}$; therefore we get

$$
n_{0}=\left|\left\{p: p \in B, p_{0} \notin B\right\}\right| \leqslant|B|=\left|A_{2}\right|=k_{2}
$$

and

$$
\left|B_{+}\right|=\left|A_{+}\right| \geqslant \frac{|B|-n_{0}}{2}, \quad\left|B_{-}\right|=\left|A_{-}\right| \geqslant \frac{|B|-n_{0}}{2} ;
$$

inequality (20) follows from:

$$
\begin{aligned}
R_{3}\left(A_{2}\right) \leqslant R_{3}(B) & \leqslant 3|B|-\sqrt{3\left(\left|B_{+}\right|-0.25\right)}-\sqrt{3\left(\left|B_{-}\right|-0.25\right)} \\
& \leqslant 3|B|-2 \sqrt{3\left(\frac{|B|-n_{0}}{2}-0.25\right)}=3 k_{2}-\sqrt{6\left(k_{2}-n_{0}-0.5\right)}
\end{aligned}
$$

We will show that inequality (19) is true. The set A is a disjoint union of A_{1} and A_{2}. Using Corollary 1 from [1] we get $R_{3}\left(A_{1}\right) \leqslant 3 k_{1}-\sqrt{3 k_{1}}$. For every $i=0,1,2$ the sets $D_{i}\left(A_{1}\right)$ and $D_{i}\left(A_{2}\right)$ are disjoint and thus

$$
\begin{aligned}
R_{3}(A) & =R_{3}\left(A_{1}\right)+R_{3}\left(A_{2}\right) \leqslant 3 k_{1}-\sqrt{3 k_{1}}+3 k_{2}-\sqrt{6\left(k_{2}-n_{0}-0.5\right)} \\
& =3 k-\sqrt{3 k_{1}}-\sqrt{6\left(k_{2}-n_{0}-0.5\right)} .
\end{aligned}
$$

Lemma 7 is proved.

5. The general case and proof of Theorem 2

Assume that A is a finite set that satisfies the hypothesis of Theorem 2. Let A_{0} be the set of all essential points of A. Using inequality (11) or in view of Lemma 2 we have

$$
\begin{equation*}
k_{0}=\left|A_{0}\right|, \quad 0 \leqslant k-k_{0} \leqslant 2 \sqrt{k}, \quad R_{3}\left(A_{0}\right) \geqslant 3 k_{0}-\theta \sqrt{k_{0}} . \tag{21}
\end{equation*}
$$

A_{0} is a finite normal set. If A_{0} is connected we apply Corollary 1 and Theorem 2 is proved. Assume that A_{0} is disconnected. In what follows, we will apply three times Lemma 7 in order to obtain a large normal connected proper subset $A_{5} \subset A_{0}$. Let us choose $u \geqslant 1$ minimal such that u is odd and

$$
A_{0} \cap(x= \pm u)=\emptyset .
$$

Define $A_{1}=A_{0} \cap(-u<x<u), A_{2}=A_{0} \backslash A_{1}, k_{1}=\left|A_{1}\right|, k_{2}=k_{0}-k_{1}$. The sets A_{1} and A_{2} form a partition of A_{0} and in view of Lemma 7 we have

$$
\begin{equation*}
R_{3}\left(A_{0}\right)=R_{3}\left(A_{1}\right)+R_{3}\left(A_{2}\right) \leqslant R_{3}\left(A_{1}\right)+3 k_{2}-\sqrt{6\left(k_{2}-n_{0}-0.5\right)}, \tag{22}
\end{equation*}
$$

where n_{0} is the number of points $p \in A_{2}$ such that $p_{0}=2 c_{0}-p \notin A_{2}$.
Let us choose $v \geqslant 1$ minimal such that v is odd and

$$
A_{1} \cap(y= \pm v)=\emptyset
$$

Define $A_{3}=A_{1} \cap(-v<y<v), A_{4}=A_{1} \backslash A_{3}, k_{3}=\left|A_{3}\right|, k_{4}=k_{1}-k_{3}$. The sets A_{3} and A_{4} form a partition of A_{1} and using a similar argument as in the proof of Lemma 7, we get

$$
\begin{equation*}
R_{3}\left(A_{1}\right)=R_{3}\left(A_{3}\right)+R_{3}\left(A_{4}\right) \leqslant R_{3}\left(A_{3}\right)+3 k_{4}-\sqrt{6\left(k_{4}-n_{1}-0.5\right)}, \tag{23}
\end{equation*}
$$

where n_{1} is the number of points $p \in A_{4}$ such that $p_{0}=2 c_{0}-p \notin A_{4}$.
Let us choose $w \geqslant 1$ minimal such that w is odd and

$$
A_{3} \cap(x+y-1= \pm w)=\emptyset .
$$

Define $A_{5}=A_{3} \cap(-w<x+y-1<w), A_{6}=A_{3} \backslash A_{5}, k_{5}=\left|A_{5}\right|, k_{6}=k_{3}-k_{5}$. The sets A_{5} and A_{6} form a partition of A_{3} and using a similar argument as in the proof of Lemma 7, we get

$$
\begin{equation*}
R_{3}\left(A_{3}\right)=R_{3}\left(A_{5}\right)+R_{3}\left(A_{6}\right) \leqslant R_{3}\left(A_{5}\right)+3 k_{6}-\sqrt{6\left(k_{6}-n_{2}-0.5\right)}, \tag{24}
\end{equation*}
$$

where n_{2} is the number of points $p \in A_{6}$ such that $p_{0}=2 c_{0}-p \notin A_{6}$. In view of (22), (23), (24) and using $k_{0}=k_{5}+k_{2}+k_{4}+k_{6}$ and $R_{3}\left(A_{5}\right) \leqslant 3 k_{5}-\sqrt{3 k_{5}}$ we get:

$$
\begin{align*}
R_{3}\left(A_{0}\right) \leqslant & R_{3}\left(A_{1}\right)+3 k_{2}-\sqrt{6\left(k_{2}-n_{0}-0.5\right)} \\
\leqslant & R_{3}\left(A_{3}\right)+3 k_{4}-\sqrt{6\left(k_{4}-n_{1}-0.5\right)}+3 k_{2}-\sqrt{6\left(k_{2}-n_{0}-0.5\right)} \\
\leqslant & R_{3}\left(A_{5}\right)+3 k_{6}-\sqrt{6\left(k_{6}-n_{2}-0.5\right)}+3 k_{4}-\sqrt{6\left(k_{4}-n_{1}-0.5\right)} \\
& +3 k_{2}-\sqrt{6\left(k_{2}-n_{0}-0.5\right)} \\
\leqslant & R_{3}\left(A_{5}\right)+3\left(k_{0}-k_{5}\right)-\sqrt{6\left(k_{0}-k_{5}\right)-6\left(n_{0}+n_{1}+n_{2}\right)-9} \tag{25}\\
\leqslant & 3 k_{0}-\sqrt{3 k_{5}}-\sqrt{6\left(k_{0}-k_{5}\right)-6\left(n_{0}+n_{1}+n_{2}\right)-9} \\
\leqslant & 3 k_{0}-\sqrt{3 k_{5}+6\left(k_{0}-k_{5}\right)-6\left(n_{0}+n_{1}+n_{2}\right)-9 .}
\end{align*}
$$

Inequality (21) gives a lower bound for $R_{3}\left(A_{0}\right)$ and implies that

$$
\begin{aligned}
3 k_{5}+6\left(k_{0}-k_{5}\right)- & 6\left(n_{0}+n_{1}+n_{2}\right)-9 \\
& =3 k_{0}+3\left(k_{0}-k_{5}\right)-6\left(n_{0}+n_{1}+n_{2}\right)-9 \leqslant \theta^{2} k_{0} \leqslant 3.24 k_{0}
\end{aligned}
$$

Thus

$$
\begin{align*}
k_{0}-k_{5} & \leqslant 0.08 k_{0}+2\left(n_{0}+n_{1}+n_{2}\right)+3 \\
& \leqslant 0.08 k_{0}+6 m_{0}+3 \leqslant 0.08 k_{0}+10.8 \sqrt{k_{0}}+3, \\
k_{5} & \geqslant 0.92 k_{0}-10.8 \sqrt{k_{0}}-3 . \tag{26}
\end{align*}
$$

We applied here (8) and the obvious inequality $n_{i} \leqslant m_{0}, i=0,1,2$.
We claim that the set A_{5} satisfies an inequality similar to (7), namely

$$
\begin{equation*}
R_{3}\left(A_{5}\right) \geqslant 3 k_{5}-\sqrt{3.241 k_{5}} \tag{27}
\end{equation*}
$$

Indeed, assume to the contrary that $R_{3}\left(A_{5}\right)<3 k_{5}-\sqrt{3.241 k_{5}}$. Using (25) we get

$$
\begin{aligned}
R_{3}\left(A_{0}\right) & \leqslant R_{3}\left(A_{5}\right)+3\left(k_{0}-k_{5}\right)-\sqrt{6\left(k_{0}-k_{5}\right)-6\left(n_{0}+n_{1}+n_{2}\right)-9} \\
& <3 k_{5}-\sqrt{3.241 k_{5}}+3\left(k_{0}-k_{5}\right)-\sqrt{6\left(k_{0}-k_{5}\right)-6\left(n_{0}+n_{1}+n_{2}\right)-9} \\
& \leqslant 3 k_{0}-\sqrt{3.241 k_{5}+6\left(k_{0}-k_{5}\right)-6\left(n_{0}+n_{1}+n_{2}\right)-9} \\
& \leqslant 3 k_{0}-\sqrt{3.241 k_{0}-6\left(n_{0}+n_{1}+n_{2}\right)-9} \\
& \leqslant 3 k_{0}-\sqrt{3.241 k_{0}-10.8 \sqrt{k_{0}}-9}
\end{aligned}
$$

which contradicts inequality (21), if $k=|A|$ is sufficiently large.
Choose a proper subset $A_{5} \subset A_{0}$ such that (26) and (27) are true and $k_{5}=\left|A_{5}\right|$ is minimal. The choice of u, v, w and the minimality of k_{5} imply that A_{5} is normal and connected. Let

$$
H\left(A_{5}\right):\left\{\begin{array}{l}
-2 \alpha+1 \leqslant x \leqslant 2 \alpha-1, \quad x \text { odd } \tag{28}\\
-2 \beta+1 \leqslant y \leqslant 2 \beta-1, \quad y \text { odd } \\
-2 \gamma+2 \leqslant x+y \leqslant 2 \gamma
\end{array}\right.
$$

be the covering polygon of A_{5}. Then $H\left(A_{5}\right)$ lies on $a=2 \alpha$ lines parallel to $(x=0)$, on $b=2 \beta$ lines parallel to ($y=0$), on $c=2 \gamma$ lines parallel to $(x+y=1)$ and $2 \leqslant c \leqslant a+b-2$. We will use now inequality (27) and assertion (c) of Corollary 1. We may assume without loss of generality that $a \leqslant b \leqslant c$. We get that

$$
\left|H\left(A_{5}\right)\right|<1.081\left|A_{5}\right|, \quad a>0.8 \sqrt{k_{5}}, \quad b<1.75 a \quad \text { and } \quad c<0.75(a+b) .
$$

Define $A^{*}=A_{5}$ and $H(a, b, c)=H\left(A_{5}\right)$. Using (21) and (26), we conclude that

$$
\begin{aligned}
k-k_{5} & =\left(k-k_{0}\right)+\left(k_{0}-k_{5}\right) \leqslant 2 \sqrt{k}+0.08 k_{0}+10.8 \sqrt{k_{0}}+3 \\
& \leqslant 0.08 k+12.8 \sqrt{k}+3
\end{aligned}
$$

and thus $\left|A^{*}\right|=\left|A_{5}\right|=k_{5} \geqslant 0.92 k-12.8 \sqrt{k}-3$. Theorem 2 is proved, if k is sufficiently large.

6. Remarks

We use now the notations of Section 1 for finite sets of integers. It is a natural question whether it is possible to describe the structure of sets of integers $A \subseteq \mathbb{Z}$ such that $R_{3}(A) \geqslant 3 k-1.8 \sqrt{k}$.

We propose the following:
Conjecture. Let $A \subseteq \mathbb{Z}$ be a finite set of integers. Assume that $|A|=k$ and

$$
\begin{equation*}
R_{3}(A)=|\operatorname{Diff}(A)| \geqslant 3 k-1.8 \sqrt{k} \tag{29}
\end{equation*}
$$

Then there is a two dimensional set of odd lattice points on the plane $\bar{A} \subseteq \mathbb{Z}^{2}$ with the following properties:
(a) $|\bar{A}|=|A|=k$,
(b) $3 k-1.8 \sqrt{k} \leqslant R_{3}(A) \leqslant R_{3}(\bar{A}) \leqslant 3 k-\sqrt{3 k}$,
(c) the canonical projection $\pi: \bar{A} \rightarrow \mathbb{Z}, \pi(x, y)=x$ has the image $\pi(\bar{A})=A$.

Inequality (29) for integers is similar to condition (7) for sets of lattice points in the plane and in a subsequent paper we will show that it is possible to apply Theorem 2 in order to study the structure of such sets of integers.

References

[1] G.A. Freiman, Y.V. Stanchescu, On a Kakeya-type problem, Funct. Approx. Comment. Math. 37.1 (2007), 131-148.

Address: Gregory A. Freiman: School of Mathematical sciences, Tel Aviv University, Tel Aviv 69978, Israel;
Yonutz V. Stanchescu: The Open University of Israel, Raanana 43107, Israel and Afeka Academic College, Tel Aviv 69107, Israel.
E-mail: ionut@openu.ac.il, yonis@afeka.ac.il
Received: 22 January 2009; revised: 20 April 2009

[^0]: The research of the second named author was supported by The Open University of Israel's Research Fund, Grant No. 100937.

 2000 Mathematics Subject Classification: primary 11P70; secondary 11B75.

