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ON DILATION OPERATORS IN TRIEBEL-LIZORKIN SPACES

Cornelia Schneider, Jan Vybíral

Abstract: We consider dilation operators Tk : f → f(2k ·) in the framework of Triebel-Lizorkin
spaces F s

p,q(Rn). If s > nmax
(

1

p
−1, 0

)
, Tk is a bounded linear operator from F s

p,q(Rn) into itself

and there are optimal bounds for its norm. We study the situation on the line s = nmax
(

1

p
−1, 0

)
,

an open problem mentioned in [ET96, 2.3.1]. It turns out that the results shed new light upon the
diversity of different approaches to Triebel-Lizorkin spaces on this line, associated to definitions
by differences, Fourier-analytical methods and subatomic decompositions.
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Introduction

In this article dilation operators acting on Triebel-Lizorkin spaces F s
p,q(R

n) are
investigated. The idea for this paper originates from its forerunners [Vyb08]
and [Sch09], where the authors studied corresponding problems for Besov spaces.
Since the substantial theory of the Triebel-Lizorkin spaces is strongly linked with
the theory of Besov spaces – in the sequel briefly denoted as F-spaces and
B-spaces, respectively – the question came up whether those previous results could
be carried over to the F-space setting. This paper aims at providing a rather final
answer to this question.

We consider dilation operators of the form

Tkf(x) = f(2kx), x ∈ Rn, k ∈ N, (0.1)

which represent bounded operators from F s
p,q(R

n) into itself. Their behaviour is

well known when s > σp = nmax
(

1
p − 1, 0

)
. Then we have for 0 < p < ∞,

0 < q 6 ∞,
‖Tk|L(F s

p,q(R
n))‖ ∼ 2k(s−n

p ), s > σp,

cf. [ET96, 2.3.1, 2.3.2]. Here we investigate the situation on the line s = σp. For
1 < p < ∞ and 0 < p 6 1 with p 6 q we obtain sharp estimates for the norms of
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the operators Tk, i.e.,

‖Tk|L(F σp
p,q(R

n))‖ ∼ 2k(σp−n
p ) ·

{
k

1
q− 1

max(q,2) if 1 < p <∞,

k1/p if 0 < p 6 1, p 6 q,

whereas, for 0 < q < p < 1, we only have

2k(σp−n
p )k1/p . ‖Tk|L(F σp

p,q(R
n))‖ . 2k(σp−n

p )k1/q

or, when 0 < q < p = 1,

2−knkmax(1,1/q−1/2) . ‖Tk|L(F 0
1,q(R

n))‖ . 2−knk1/q.

As a by-product, the results for the dilation operators lead to new insights con-
cerning the nature of the different approaches to F-spaces with positive smoothness
– namely the classical (Fs

p,q), the Fourier-analytical (F s
p,q) and the subatomic ap-

proach (Fs
p,q) – on the line s = σp. Recent results by Hedberg, Netrusov [HN07]

on atomic decompositions and by Triebel [Tri06, Sect. 9.2] on the reproducing
formula prove coincidences

Fs
p,q(R

n) = Fs
p,q(R

n), s > n

(
1

min(p, q)
− 1

p

)
, 0 < p <∞, 0 < q 6 ∞,

and

F s
p,q(R

n) = Fs
p,q(R

n), s > n

(
1

min(p, q, 1)
− 1

)
, 0 < p <∞, 0 < q 6 ∞,

resulting in
F s

p,q(R
n) = Fs

p,q(R
n) = Fs

p,q(R
n),

whenever

0 < p <∞, 0 < q 6 ∞, s > n

(
1

min(p, q)
− 1

max(1, p)

)

(in terms of equivalent quasi-norms).
Furthermore, since for s < n( 1

p − 1) the δ-distribution belongs to F s
p,q(R

n)
– which is a singular distribution and cannot be interpreted as a function – the
spaces

F s
p,q(R

n) and Fs
p,q(R

n), 0 < s < σp,

cannot be compared. The situation on the line s = σp, 0 < p < 1, so far remained
an open problem. In this case F s

p,q(R
n) is a subspace of Lloc

1 (Rn) and the two
spaces F σp

p,q(Rn) and F
σp
p,q(Rn) can be compared. But our results yield, that they

do not coincide, i.e.,

F σp
p,q(R

n) 6= Fσp
p,q(R

n), 0 < q 6 ∞.
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1. Triebel-Lizorkin spaces F s

p,q
(Rn)

We use standard notation. Let N be the collection of all natural numbers and
let N0 = N ∪ {0}. Let Rn be euclidean n-space, n ∈ N, C the complex plane.
The set of multi-indices β = (β1, . . . , βn), βi ∈ N0, i = 1, . . . , n, is denoted by
Nn

0 , with |β| = β1 + · · · + βn, as usual. Moreover, if x = (x1, . . . , xn) ∈ Rn and
β = (β1, . . . , βn) ∈ Nn

0 we put xβ = xβ1

1 · · ·xβn
n .

We use the equivalence ‘∼’ in

ak ∼ bk or ϕ(x) ∼ ψ(x)

always to mean that there are two positive numbers c1 and c2 such that

c1 ak 6 bk 6 c2 ak or c1 ϕ(x) 6 ψ(x) 6 c2 ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x, where
{ak}k, {bk}k are non-negative sequences and ϕ, ψ are non-negative functions.
If a ∈ R, then a+ := max(a, 0) and [a] denotes the integer part of a.

All unimportant positive constants will be denoted by c, occasionally with
subscripts. For convenience, let both dx and | · | stand for the (n-dimensional)
Lebesgue measure in the sequel. As we shall always deal with function spaces on
Rn, we may usually omit the ‘Rn’ from their notation for convenience.

Let for 0 < p, q 6 ∞ the numbers σp and σpq be given by

σp = n

(
1

p
− 1

)

+

and σpq = n

(
1

min(p, q)
− 1

)

+

. (1.1)

Furthermore, let Qν,m with ν ∈ N0 and m ∈ Zn denote a cube in Rn with sides
parallel to the axes of coordinates, centered at 2−νm, and with side length 2−ν .
For a cube Q in Rn and r > 0, we denote by rQ the cube in Rn concentric with Q
and with side length r times the side length of Q. Moreover, χ(p)

ν,m stands for the
p-normalized characteristic function of Qν,m, i.e.,

χ(p)
ν,m(x) = 2

νn
p if x ∈ Qν,m and χ(p)

ν,m(x) = 0 if x 6∈ Qν,m.

Of course
‖χ(p)

ν,m|Lp(R
n)‖ = 1.

The Fourier-analytical approach

The Schwartz space S(Rn) and its dual S′(Rn) of all complex-valued tempered
distributions have their usual meaning here. Let ϕ0 = ϕ ∈ S(Rn) be such that

suppϕ ⊂ {y ∈ Rn : |y| < 2} and ϕ(x) = 1 if |x| 6 1 , (1.2)

and for each j ∈ N let ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x). Then {ϕj}∞j=0 forms
a smooth dyadic resolution of unity. Given any f ∈ S′(Rn), we denote by Ff
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and F−1f its Fourier transform and its inverse Fourier transform, respectively.
Let f ∈ S′(Rn), then the compact support of ϕjFf implies by the Paley-Wiener-
Schwartz theorem that F−1(ϕjFf) is an entire analytic function on Rn.

Definition 1.1. Let s ∈ R, 0 < p <∞, 0 < q 6 ∞, and {ϕj}j a smooth dyadic
resolution of unity. The space F s

p,q(R
n) is the set of all distributions f ∈ S′(Rn)

such that
∥∥f |F s

p,q(R
n)
∥∥ =

∥∥∥
∥∥{2jsF−1(ϕjFf)(·)

}
j∈N0

|`q
∥∥|Lp(R

n)
∥∥∥ (1.3)

is finite.

Remark 1.2. The spaces F s
p,q(R

n) are independent of the particular choice of
the smooth dyadic resolution of unity {ϕj}j appearing in their definition. They
are quasi-Banach spaces (Banach spaces for p, q > 1), and S(Rn) ↪→ F s

p,q(R
n) ↪→

S′(Rn), where the first embedding is dense if q <∞. An extension of Definition 1.1
to p = ∞ does not make sense if 0 < q <∞ (in particular, a corresponding space
is not independent of the choice {ϕj}j). The case p = q = ∞ yields the Besov
spaces Bs

∞,∞(Rn).
In general, the Fourier-analytical Besov spaces Bs

p,q(R
n) are defined corre-

spondingly to the spaces F s
p,q(R

n) by interchanging the order in which the quasi-
norms are taken, i.e., first using the Lp-norm and afterwards applying the `q-norm
– in view of (1.3). These B-spaces are closely linked with the Triebel-Lizorkin
spaces F s

p,q(R
n) via

Bs
p,min(p,q)(R

n) ↪→ F s
p,q(R

n) ↪→ Bs
p,max(p,q)(R

n). (1.4)

The theory of the spaces F s
p,q(R

n) (and Bs
p,q(R

n)) has been developed in detail in
[Tri83] and [Tri92] (and continued and extended in the more recent monographs
[Tri01], [Tri06]), but has a longer history already including many contributors; we
do not further want to discuss this here.

Note that the spaces F s
p,q(R

n) contain tempered distributions which can only
be interpreted as regular distributions (functions) for sufficiently high smoothness.
More precisely, we have

F s
p,q(R

n) ⊂ Lloc
1 (Rn) if, and only if,






s > σp, for 0 < p < 1, 0 < q 6 ∞,

s > σp, for 1 6 p <∞, 0 < q 6 ∞,

s = σp, for 1 6 p <∞, 0 < q 6 2,

(1.5)

cf. [ST95, Thm. 3.3.2]. In particular, for s < σp one cannot interpret f ∈ F s
p,q(R

n)
as a regular distribution in general.

The scale F s
p,q(R

n) contains many well-known function spaces. We list a few
special cases.

Let 1 < p <∞, then

F s
p,2(R

n) = Hs
p(Rn), s ∈ R,
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are the (fractional) Sobolev spaces containing all f ∈ S′(Rn) with

F−1(1 + |ξ|2)s/2Ff ∈ Lp(R
n).

In particular, for k ∈ N0, we obtain the classical Sobolev spaces

F k
p,2(R

n) = W k
p (Rn), i.e., F 0

p,2(R
n) = Lp(R

n),

usually normed by

‖f |W k
p (Rn)‖ =




∑

|α|6k

‖Dαf |Lp(R
n)‖p




1/p

.

Furthermore,
F 0

p,2(R
n) = hp(R

n), 0 < p <∞,

the latter being the inhomogenoues Hardy spaces.

Local means and atomic decompositions

There are equivalent characterizations for the F-spaces F s
p,q(R

n) in terms of local
means and atomic decompositions. We first sketch the approach via local means.
For further details we refer to [BPT96], [BPT97], and [Tri06] with forerunners in
[Tri92, Sect. 2.5.3].

Let B = {y ∈ Rn : |y| < 1} be the unit ball in Rn and let κ be a C∞ function
in Rn with supp κ ⊂ B. Then

k(t, f)(x) =

∫

Rn

κ(y)f(x+ ty)dy = t−n

∫

Rn

κ
(y − x

t

)
f(y)dy (1.6)

with x ∈ Rn, and t > 0 are local means (appropriately interpreted for f ∈ S′(Rn)).
For given s ∈ R it is assumed that the kernel κ satisfies in addition for some ε > 0,

κ∨(ξ) 6= 0 if 0 < |ξ| < ε and (Dακ∨)(0) = 0 if |α| 6 s. (1.7)

The second condition is empty if s < 0. Furthermore, let κ0 be a second C∞

function in Rn with supp κ0 ⊂ B and κ∨0 (0) 6= 0. The meaning of k0(f, t) is
defined in the same way as (1.6) with κ0 instead of κ.

We have the following characterization in terms of local means, cf. [Tri06,
Th. 1.10] and [Ryc99].

Theorem 1.3. Let 0 < p <∞, 0 < q 6 ∞ and s ∈ R. Let κ0 and κ be the above
kernels of local means. Then for f ∈ S′(Rn),

‖k0(1, f)|Lp(R
n)‖ +

∥∥∥∥∥∥∥




∞∑

j=1

2jsq |k(2−j, f)(·)|q



1/q

|Lp(R
n)

∥∥∥∥∥∥∥
(1.8)

is an equivalent quasi-norm in F s
p,q(R

n).
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Remark 1.4. We shall only need one part of Theorem 1.3, namely that
‖f |F s

p,q(R
n)‖ can be estimated from below by (1.8). In that case some of the

asumptions in (1.7) may be omitted. The inspection of the proof, cf. [Ryc99,
Rem. 3], shows that if κ is a C∞ function in Rn with

supp κ ⊂ B and Dακ∨(0) = 0, |α| 6 N,

where N > s− 1, then

‖f |F s
p,q(R

n)‖ > c

∥∥∥∥∥∥∥




∞∑

j=1

2jsq|k(2−j, f)(·)|q



1/q

|Lp(R
n)

∥∥∥∥∥∥∥

for some c > 0.

The following atomic characterization of function spaces of type F s
p,q(R

n) is
sometimes preferred (compared with the above Fourier-analytical approach), e.g.
when establishing the lower bound for the dilation operators later on; we closely
follow the presentation in [Tri97, Sect. 13].

Definition 1.5. Let 0 < p < ∞, 0 < q 6 ∞, and λ = {λν,m ∈ C : ν ∈ N0,
m ∈ Zn}. Then

fp,q =




λ : ‖λ|fp,q‖ =

∥∥∥∥∥∥

( ∞∑

ν=0

∑

m∈Zn

|λν,mχ
(p)
ν,m(·)|q

)1/q

|Lp(R
n)

∥∥∥∥∥∥
<∞






(with the usual modification if p = ∞ and/or q = ∞).

Definition 1.6.

(i) Let K ∈ N0 and d > 1. A K-times differentiable complex-valued function a
on Rn (continuous if K = 0) is called a 1K-atom if

supp a ⊂ dQ0,m for some m ∈ Zn, (1.9)

and
|Dαa(x)| 6 1 for |α| 6 K.

(ii) Let s ∈ R, 0 < p 6 ∞, K ∈ N0, L + 1 ∈ N0, and d > 1. A K-times
differentiable complex-valued function a on Rn (continuous if K = 0) is
called an (s, p)K,L-atom if for some ν ∈ N0

supp a ⊂ dQν,m for some m ∈ Zn, (1.10)

|Dαa(x)| 6 2−ν(s−n
p )+|α|ν for |α| 6 K, (1.11)

and ∫

Rn

xβa(x)dx = 0 if |β| 6 L. (1.12)
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It is convenient to write aν,m(x) instead of a(x) if this atom is located at
Qν,m according to (1.9) and (1.10). Assumption (1.12) is called a moment con-
dition, where L = −1 means that there are no moment conditions. Furthermore,
K denotes the smoothness of the atom, cf. (1.11). The atomic characterization
of function spaces of type F s

p,q(R
n) is given by the following result, cf. [Tri97,

Thm. 13.8].

Theorem 1.7. Let 0 < p < ∞, 0 < q 6 ∞, and s ∈ R. Let K ∈ N0 and
L+ 1 ∈ N0 with

K > (1 + [s])+ and L > max(−1, [σpq − s])

be fixed. Then f ∈ S′(Rn) belongs to F s
p,q(R

n) if, and only if, it can be represented
as

f =

∞∑

ν=0

∑

m∈Zn

λν,maν,m(x), convergence being in S′(Rn), (1.13)

where the aν,m are 1K-atoms (ν = 0) or (s, p)K,L-atoms (ν ∈ N) with

supp aν,m ⊂ dQν,m, ν ∈ N0, m ∈ Zn, d > 1,

and λ ∈ fp,q. Furthermore,
inf ‖λ|fp,q‖,

where the infimum is taken over all admissible representations (1.13), is an equiv-
alent quasi-norm in F s

p,q(R
n).

2. Dilation Operators

In this section we present our main results concerning dilation operators Tk in
F-spaces when s = σp. We distinguish between the cases 1 < p <∞ and 0 < p 6 1,
when σp = 0 and σp = n(1/p− 1), respectively.

Theorem 2.1. Let 1 < p <∞ and 0 < q 6 ∞. Then

‖Tk|L(F 0
p,q(R

n))‖ ∼ 2−k n
p · k 1

q − 1
max(q,2) , k ∈ N.

Proof. Step 1. Recall Definition 1.1, where in particular the dyadic resolution of
unity was constructed such that

ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x), j ∈ N.

Elementary calculation yields

(ϕj(ξ)f̂(2k·)(ξ))∨(x) = 2−kn(ϕj(ξ)f̂ (2−kξ))∨(x) = (ϕj(2
kξ)f̂(ξ))∨(2kx). (2.1)

For convenience we assume q <∞ in the sequel, but the counterpart for q = ∞ is
obvious.
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From the definition of F-spaces with f(2kx) in place of f(x) we obtain

‖f(2k·)|F σp
p,q(R

n)‖ =

∥∥∥∥∥∥∥




∞∑

j=0

2jσpq|(ϕj(2
k·)f̂)∨(2k·)|q




1/q

|Lp(R
n)

∥∥∥∥∥∥∥

= 2−k n
p

∥∥∥∥∥∥∥




∞∑

j=0

2jσpq|(ϕj(2
k·)f̂)∨(·)|q




1/q

|Lp(R
n)

∥∥∥∥∥∥∥

∼ 2−k n
p






∥∥∥(ϕ0(2
k·)f̂(·))∨(·)|Lp(R

n)
∥∥∥

+

∥∥∥∥∥∥∥




k∑

j=1

2jσpq|(ϕj(2
k·)f̂)∨(·)|q




1/q

|Lp(R
n)

∥∥∥∥∥∥∥

+

∥∥∥∥∥∥∥




∞∑

j=k+1

2jσpq|(ϕj(2
k·)f̂)∨(·)|q




1/q

|Lp(R
n)

∥∥∥∥∥∥∥





(2.2)

If j > k + 1, then ϕj(2
kx) = ϕj−k(x). This yields for the last term

2−k n
p

∥∥∥∥∥∥∥




∞∑

j=k+1

2jσpq|(ϕj(2
k·)f̂)∨(·)|q




1/q

|Lp(R
n)

∥∥∥∥∥∥∥

= 2−k n
p

∥∥∥∥∥∥∥




∞∑

j=k+1

2(j−k)σpq2kσpq|(ϕj−k(·)f̂)∨(·)|q



1/q

|Lp(R
n)

∥∥∥∥∥∥∥

= 2k(σp−n
p )

∥∥∥∥∥∥

( ∞∑

l=1

2lσpq|(ϕl(·)f̂)∨(·)|q
)1/q

|Lp(R
n)

∥∥∥∥∥∥

6 2−
kn
p ‖f |F σp

p,q(R
n)‖. (2.3)

If j = 0, we use the Hausdorff-Young inequality and obtain

‖(ϕ0(2
k·)f̂)∨|Lp‖ = ‖(ϕ0(2

k·)ϕ0f̂)∨|Lp‖
= ‖(ϕ0(2

k·)∨ ∗ (ϕ0f̂)∨|Lp‖
6 ‖(ϕ0(2

k·)∨|L1‖ · ‖(ϕ0f̂)∨|Lp‖
6 c‖f |F 0

p,q‖.
Step 2. In view of Step 1 it remains to consider j = 1, . . . , k. Using Hölder’s

inequality with
1

u
=
q

2
and

1

u′
= 1 − q

2
if q < 2
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or
||id : `k2 ↪→ `kq || = 1 when q > 2 and k ∈ N

together with the Littlewood-Paley theorem, we see that
∥∥∥∥∥∥∥




k∑

j=1

|(ϕj(2
k·)f̂)∨(·)|q




1/q

|Lp

∥∥∥∥∥∥∥
6 k

1
q − 1

max(q,2)

∥∥∥∥∥∥∥




k∑

j=1

|(ϕj(2
k·)f̂)∨(·)|2




1/2

|Lp

∥∥∥∥∥∥∥

6 k
1
q − 1

max(q,2) ‖(ϕ0f̂)∨|Lp‖
6 k

1
q − 1

max(q,2) ‖f |F 0
p,q‖,

giving the desired upper bound.

Step 3. In order to establish the lower bound we take ψ ∈ S(Rn) with

suppψ ⊂ {x ∈ Rn : |x| 6 1/8}.
We define the functions fk through their Fourier transforms

f̂k(ξ) =

k∑

j=1

ψ(2k(ξ − ξj)), ξ ∈ Rn, k ∈ N,

where ξj = (2−j , 0, . . . , 0). We shall show that

‖fk|F 0
p,q‖ . k1/22kn(1/p−1), (2.4)

and
‖fk(2k·)|F 0

p,q‖ & k1/q2−kn. (2.5)

We deal with (2.4) first. As the support of f̂k lies in the unit ball of Rn, we may
omit the terms with j > 1 in (1.3). Furthermore, since 1 < p <∞ we may use the
Littlewood-Paley decomposition theorem to estimate

‖fk|F 0
p,q‖ = ‖(ϕ0f̂k)∨|Lp‖

.

∥∥∥∥∥∥∥




∞∑

j=1

|(ϕ1(2
j ·) · ϕ0f̂k)∨(x)|2




1/2

|Lp

∥∥∥∥∥∥∥
(2.6)

=

∥∥∥∥∥∥∥




k∑

j=1

|ψ(2k(ξ − ξj))
∨(x)|2




1/2

|Lp

∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥




k∑

j=1

|2−knψ∨(2−kx)eixξj |2



1/2

|Lp

∥∥∥∥∥∥∥

= k1/22−kn
∥∥ψ∨(2−kx)|Lp

∥∥ = k1/22kn(1/p−1) ‖ψ∨|Lp‖ .
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Let us mention, that (2.4) holds also for p = 1. In this case, the inequality on the
second line of (2.6) follows (roughly speaking) by the embedding

F 0
1,2(R

n) ↪→ L1(R
n),

cf. [ST95, Th. 3.1.1]. To prove (2.5), observe that

f̂k(2k·)(ξ) = 2−knf̂k(2−kξ) = 2−kn
k∑

j=1

ψ(ξ − 2kξj), ξ ∈ Rn.

Using again the support properties of ψ and ϕj , we arrive at

‖fk(2k·)|F 0
p,q‖ =

∥∥∥∥∥∥∥




k∑

j=1

|(ϕj f̂k(2k·)(ξ))∨(x)|q



1/q

|Lp

∥∥∥∥∥∥∥

= 2−kn

∥∥∥∥∥∥∥




k∑

j=1

|(ψ(ξ − 2kξj)
∨(x)|q




1/q

|Lp

∥∥∥∥∥∥∥

= 2−kn

∥∥∥∥∥∥∥




k∑

j=1

|(ψ∨(x)eix2kξj |q



1/q

|Lp

∥∥∥∥∥∥∥

= 2−knk1/q‖ψ∨|Lp‖.

Observe, that also (2.5) holds even for p = 1.
This finally leads to

‖Tk|L(F 0
p,q)‖ >

‖fk(2k·)|F 0
p,q‖

‖fk|F 0
p,q‖

> k1/q−1/22−
kn
p .

Step 4. Let 1 < p < ∞ and q > 2. Chose an arbitrary non-vanishing ψ ∈
S(Rn). Using the trivial embedding F 0

p,2 ↪→ F 0
p,q, we obtain

‖Tk|L(F 0
p,q)|| >

‖ψ|F 0
p,q‖

‖ψ(2−k·)|F 0
p,q‖

>
‖ψ|F 0

p,q‖
‖ψ(2−k·)|F 0

p,2‖
∼ 2−k n

p .

�

Theorem 2.2. Let 0 < p 6 1, 0 < p 6 q 6 ∞. Then

‖Tk|L(F σp
p,q(R

n))‖ ∼ 2k(σp−n
p )k1/p, k ∈ N.

Proof. Step 1. We give an estimate for the upper bounds of the dilation operators
Tk similar to Theorem 2.1. We need to find suitable substitutes when 0 < p 6 1.
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For the further calculations we make use of the following Fourier multiplier
theorem, cf. [Tri83, Prop. 1.5.1],

‖(Mĥ)∨|Lp‖ 6 c‖M∨|Lp‖ · ‖h|Lp‖, if 0 < p 6 1, (2.7)

with M∨ ∈ S′ ∩ Lp, and supp ĥ ⊂ Ω, suppM ⊂ Γ, where Ω and Γ are compact
subsets of Rn (c does not depend on M and h, but may depend on Ω and Γ).
Of course for p = 1 this is just the Hausdorff-Young inequality (which was also
used in Theorem 2.1). We put h = (ϕ0f̂)∨, where supp ĥ ⊂ suppϕ0 = Ω.

If j = 0, we take M0 = ϕ0(2
k·) where suppM0 ⊂ suppϕ0 = Γ and calculate

2−k n
p ‖(ϕ0(2

k·)f̂)∨|Lp‖ 6 c2−k n
p ‖ϕ0(2

k·)∨|Lp‖ · ‖(ϕ0f̂)∨|Lp‖,
= c2−k n

p 2kσp‖ϕ0
∨|Lp‖ · ‖(ϕ0f̂)∨|Lp‖

= c′2k(σp−n
p )‖(ϕ0f̂)∨|Lp‖

= c2−kn‖f |F σp
p,q‖. (2.8)

According to the observations in Step 1 of Theorem 2.1 it remains to consider
1 6 j 6 k. This is the crucial step, leading to k1/p. In this case ϕj(x) = ϕ̄(2−jx),
where ϕ̄ = ϕ0(x) − ϕ0(2x). Hence

∥∥∥∥∥∥∥




k∑

j=1

2jσpq|(ϕj(2
k·)f̂)∨(·)|q




1/q

|Lp(R
n)

∥∥∥∥∥∥∥

=




∫

Rn




k∑

j=1

2jσpq|(ϕj(2
k·)f̂)∨(x)|q




p/q

dx





1/p

6




k∑

j=1

∫

Rn

2jσpp|(ϕj(2
k·)f̂)∨(x)|pdx




1/p

=




k∑

j=1

2jσpp‖(ϕj(2
k·)f̂)∨|Lp‖p




1/p

(2.9)

=




k−1∑

j=1

2jσpp‖(ϕ̄(2k−j ·)f̂)∨|Lp‖p + 2kσpp‖(ϕ̄f̂)∨|Lp‖p




1/p

where the inequality follows from ` p
q
↪→ `1 since p < q.

The term for j = k in (2.9) needs some extra care. Using (2.7) where we set
Mk = ϕ0(2·), suppMk ⊂ suppϕ0 = Γ we obtain
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2kσpp‖(ϕ̄f̂)∨|Lp‖p = 2kσpp‖(ϕ0f̂)∨ − (ϕ0(2·)f̂)∨|Lp‖p

6 c2kσpp
(
‖(ϕ0f̂)∨|Lp‖ + ‖(ϕ0(2·)ϕ0f̂)∨|Lp‖

)p

6 c′2kσpp‖(ϕ0f̂)∨|Lp‖p (1 + ‖ϕ∨
0 (2·)|Lp‖)p

= c12
kσpp‖(ϕ0f̂)∨|Lp‖p. (2.10)

This estimate can be incorporated into our further calculations. Now for 1 6 j 6

k − 1 we use the multiplier theorem with Mj = ϕ̄(2k−j ·), and observe that

suppMj ⊂ {x : |2k−jx| 6 2} ⊂ {x : |x| 6 2} = Γ.

Now inserting (2.10) into (2.9) yields




k−1∑

j=1

2jσpp‖(ϕ̄(2k−j ·)ϕ0f̂)∨|Lp‖p + c12
kσpp‖(ϕ0f̂)∨|Lp‖p




1/p

6 c




k−1∑

j=1

2jσpp‖(ϕ̄(2k−j ·))∨(·)|Lp‖p‖(ϕ0f̂)∨|Lp‖p + 2kσpp‖(ϕ0f̂)∨|Lp‖p




1/p

6 c‖(ϕ0f̂)∨|Lp‖




k−1∑

j=1

2jσpp‖2(j−k)nϕ̄∨(2j−k·)|Lp‖p + 2kσpp




1/p

= c‖(ϕ0f̂)∨|Lp‖




k−1∑

j=1

2jσpp2(j−k)np2−(j−k) n
p p‖ϕ̄∨|Lp‖p + 2kσpp




1/p

6 c2kσppk1/p‖F σp
p,q(R

n)‖. (2.11)

Now (2.2) together with (2.3), (2.8), and (2.11) give the upper estimate.

Step 2. We construct a function that gives the lower bound. Let ψ ∈ S(R) be
a non-negative function with suppψ ⊂ {x ∈ Rn : |x| 6 1/8} and

∫
Rn ψ(x)dx = 1.

We show that

‖ψ(2k·)|F σp
p,q(R

n)‖ > c2−knk1/p, k ∈ N, 0 < q 6 ∞.

Let us take a function κ ∈ S(Rn) with

(Dακ∨)(0) = 0, |α| 6 r, (2.12)

where r > σp−1, according to [Ryc99, Th. BPT]. In particular, by [Ryc99, Rem. 3]
these conditions on κ are sufficient for our purposes. Furthermore, we require

κ(x) = 1 if x ∈M = {z ∈ Rn : |z − (1/2, 0 . . . , 0)| < 1/4}. (2.13)
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Such a function κ was constructed in [Sch09, Th. 2.1].
Simple calculation shows that if j = 1, 2, . . . , k and |x−(− 1

2 · 1
2j , 0 . . . , 0)| < 1

2j
1
8 ,

which is equivalent to writing

x ∈ B2−(j+3)(xj), xj = (−2−(j+1), 0, . . . , 0),

then
supp yψ(2kx+ 2k−jy) ⊂M.

For these x we get

K(2−j , ψ(2k·))(x) =

∫

Rn

κ(y)ψ(2kx+2k−jy)dy =

∫

Rn

ψ(2kx+2k−jy)dy = 2(j−k)n.

Note that the for different values of j, the balls B2−(j+3)(xj) are pairwise disjoint.
Hence we calculate

‖ψ(2k·)|F σp
p,q‖ >

∥∥∥∥∥∥∥




k∑

j=1

2jσpq|K(2−j , ψ(2k·))(·)|q



1/q

|Lp

∥∥∥∥∥∥∥

=




∫

Rn




k∑

j=1

2jσpq|K(2−j , ψ(2k·))(x)|q



p/q

dx





1/p

>




k∑

l=1

∫

B
2−(l+3) (xl)




k∑

j=1

δlj2
jσpq|K(2−j , ψ(2k·))(x)|q




p/q

dx





1/p

>




k∑

j=1

2jσpp2(j−k)np2−jn




1/p

= 2−kn




k∑

j=1

2jn( 1
p−1)p2jnp2−jn




1/p

= 2−knk1/p,

which gives the desired result. Our estimate holds as well in the case p = 1. �

Refining the methods used in Theorem 2.2 we obtain the following generaliza-
tion. However, our estimates are not sharp and might still be improved.

Theorem 2.3. Let 0 < q < p < 1. Then

2k(σp−n
p )k1/p . ‖Tk|L(F σp

p,q(R
n))‖ . 2k(σp−n

p )k1/q.

Furthermore, if 0 < q < p = 1 we have

2−knkmax(1,1/q−1/2) . ‖Tk|L(F 0
1,q(R

n))‖ . 2−knk1/q.
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Proof. Step 1. Refining the estimates for the upper bound used in Step 1 of
Theorem 2.2 we see that we only need to consider the ’critical terms’ when j =
1, . . . , k. In this case we now calculate

∥∥∥∥∥∥∥




k∑

j=1

2jσpq|(ϕj(2
k·)f̂)∨(·)|q




1/q

|Lp(R
n)

∥∥∥∥∥∥∥

=




∫

Rn




k∑

j=1

2jσpq|(ϕj(2
k·)f̂)∨(x)|q




p/q

dx





1/p

=




∫

Rn




k∑

j=1

2jσpq|(ϕj(2
k·)f̂)∨(x)|q




p/q

dx





q
p · 1q

6




k∑

j=1

(∫

Rn

2jσpp|(ϕj(2
k·)f̂)∨(x)|pdx

)q/p



1/q

=




k∑

j=1

2jσpq‖(ϕj(2
k·)f̂)∨|Lp‖q




1/q

6 c




k∑

j=1

2jσpq‖ϕ̄(2k−j ·)∨|Lp‖q · ‖(ϕ0f̂)∨|Lp‖q




1/q

6 c‖(ϕ0f̂)∨|Lp‖




k∑

j=1

2jσpq‖ϕ̄(2k−j ·)∨|Lp‖q




1/q

6 c‖(ϕ0f̂)∨|Lp‖




k∑

j=1

2jσpq2(j−k)nq2−(j−k) n
p q‖ϕ̄(·)∨|Lp‖q·




1/q

6 c′‖(ϕ0f̂)∨|Lp‖2kσpnk1/q

6 c′′2kσpnk1/q‖f |F σp
p,q‖,

where in the third step we used the generalized triangle inequality, cf. [HLP52,
p. 148], since p

q > 1, before applying the Fourier Multiplier theorem (2.7).

Step 2. The proof of the lower bound

‖Tk|L(F σp
p,q(R

n))‖ & k1/p2k(σp−n
p ), k ∈ N

is the same as in Step 2 of Theorem 2.2.
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Step 3. Finally, the estimate

‖Tk|L(F 0
1,q(R

n))‖ & k1/q−1/22−kn, k ∈ N

for 0 < q < p = 1 follows from the Step 3 of Theorem 2.1. �

Remark 2.4. The picture aside summa-
rizes our results and illustrates the de-
pendency of the additional factors kα on
p and q that were obtained for upper
bounds of the dilation operators when
s = σp, i.e.

Tk ∼ 2k(σp−n/p) · kα.

There is a jump at p = 1 in the ex-
ponent of k caused by the absence of
the Littlewood-Paley assertion in this
case. Furthermore, our estimates when
0 < q < p < 1 and 0 < q < p = 1 are not
sharp and might be improved.

1
p

1
q

1
p 6 α 6 1

q

1

1

1
2

1
2

1
p

1
q − 1

2

0

s = σp

3. Applications

3.1. F-spaces with positive smoothness on Rn

In this section we want to discuss the connection and diversity of three different
approaches to F-spaces with positive smoothness, using the previous results on
dilation operators.

In addition to the Fourier-analytical approach, cf. Definition 1.1, we now
present two further characterizations – associated to definitions by differences and
subatomic decompositions – before we come to some comparisions.

The classical approach: Triebel-Lizorkin spaces Fs

p,q
(Rn)

If f is an arbitrary function on Rn, h ∈ Rn and r ∈ N, then

(∆1
hf)(x) = f(x+ h) − f(x) and (∆r+1

h f)(x) = ∆1
h(∆r

hf)(x), x ∈ Rn.

For convenience we may write ∆h instead of ∆1
h. Furthermore, for a function

f ∈ Lp(Rn), 0 < p <∞, r ∈ N, the ball means are denoted by

dr
t,pf(x) =

(
t−n

∫

|h|6t

|(∆r
hf)(x)|pdh

)1/p

, x ∈ Rn, t > 0. (3.1)
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Definition 3.1. Let 0 < p < ∞, 0 < q 6 ∞, s > 0, and r ∈ N such that r > s.
Then Fs

p,q(R
n) is the collection of all f ∈ Lp(Rn) such that

‖f |Fs
p,q(R

n)‖r = ‖f |Lp(R
n)‖ +

∥∥∥∥∥

(∫ 1

0

t−sqdr
t,pf(·)q dt

t

)1/q

|Lp(R
n)

∥∥∥∥∥ (3.2)

(with the usual modification if q = ∞) is finite.

Remark 3.2. The approach by differences for the spaces Fs
p,q(R

n) has been de-
scribed in detail in [Tri83, 2.5.10] for those spaces which can also be considered
as subspaces of S′(Rn). Otherwise one finds in [Tri06, 9.2.2] the necessary ex-
planations and references to the relevant literature. In particular, the spaces in
Definition 3.1 are independent of r, meaning that different values of r > s result
in quasi-norms which are equivalent. Furthermore, the spaces are quasi-Banach
spaces (Banach spaces, if 1 6 p < ∞, 1 6 q 6 ∞). Recall that we deal with
subspaces of Lp(Rn), in particular, we have the embedding

Fs
p,q(R

n) ↪→ Lp(R
n), s > 0, 0 < q 6 ∞, 0 < p <∞.

Further information on the classical approach to F-spaces – treated in a more
general context – may be found in [HN07].

We add the following homogeneity estimate, which will serve us later on. Let
s > 0, 0 < p <∞, 0 < q 6 ∞, and k ∈ N0. Then for all f ∈ Fs

p,q(R
n)

‖f(2k·)|Fs
p,q(R

n)‖ 6 2k(s− n
p )‖f |Fs

p,q(R
n)‖. (3.3)

Let f ∈ Fs
p,q(R

n). For the proof we observe that

‖f |Fs
p,q(R

n)‖ = ‖f |Lp(R
n)‖

+




∫

Rn




∫ 1

0

t−(s+ n
p )q

(∫

|h|6t

|∆r
hf(x)|pdh

)q/p
dt

t




p/q

dx





1/p

,

where
∫ 1

0

. . .
dt

t
can be replaced by

∫ λ

0

. . .
dt

t
with arbitrary 0 < λ 6 ∞ in the

sense of equivalent quasi-norms.
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Now straightforward calculation yields

‖f(2k·)|Fs
p,q(R

n)‖ = ‖f(2k·)|Lp(R
n)‖

+




∫

Rn




∫ 1

0

t−(s+ n
p )q

(∫

|h|6t

|∆r
hf(2kx)|pdh

)q/p
dt

t




p/q

dx





1/p

6 2−k n
p ‖f |Lp(R

n)‖

+ 2k(s−n
p )




∫

Rn




∫ ∞

0

t′
−(s+ n

p )q

(∫

|h′|6t′
|∆r

h′f(x′)|pdh′
)q/p

dt′

t′




p/q

dx





1/p

6 max
(
2−k n

p , 2k(s−n
p )
)
‖f |Fs

p,q(R
n)‖

= 2k(s−n
p )‖f |Fs

p,q(R
n)‖,

where we used in the second step that

∆r
hf(2kx) =

r∑

l=0

(
r

l

)
(−1)r−lf(2kx+ l2kh) =: ∆r

h′f(x′),

by substituting x′ = 2kx, h′ = 2kh, and t′ = 2kt.

The subatomic approach: Triebel-Lizorkin spaces Fs

p,q
(Rn)

We complement our notation. Let

Rn
++ := {y ∈ Rn : y = (y1, . . . , yn), yj > 0}.

Moreover, χν,m denotes the characteristic function of the cube Qν,m. The sub-
atomic approach provides a constructive definition for Triebel-Lizorkin spaces, ex-
panding functions f via building blocks and suitable coefficients, where the latter
belong to certain sequence spaces fs,%

p,q .

Definition 3.3. Let k be a non-negative C∞-function in Rn with

supp k ⊂
{
y ∈ Rn : |y| < 2J−ε

}
∩ Rn

++ (3.4)

for some fixed ε > 0 and some fixed J ∈ N, satisfying
∑

m∈Zn

k(x−m) = 1, x ∈ Rn. (3.5)

Let β ∈ Nn
0 , ν ∈ N0, m ∈ Zn, and set kβ(x) = (2−Jx)βk(x). Then

kβ
ν,m(x) = kβ(2νx−m) (3.6)

denote the building blocks related to Qν,m.
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Remark 3.4. The above definition implies that the building blocks are bounded by

0 6 kβ
ν,m(x) 6 2−ε|β|, x ∈ Rn, (3.7)

uniformly in ν ∈ N0, m ∈ Zn, and for their supports we observe that

supp kβ
ν,m ⊂ 2J−εQν,m (3.8)

uniformly in β ∈ Nn
0 .

Definition 3.5. Let % > 0, s ∈ R, 0 < p, q 6 ∞ and

λ =
{
λβ

ν,m ∈ C : β ∈ Nn
0 , m ∈ Zn, ν ∈ N0

}
.

Then the sequence space fs,%
p,q is defined as

fs,%
p,q :=

{
λ : ‖λ|fs,%

p,q ‖ <∞
}
, (3.9)

where

‖λ|fs,%
p,q ‖ = sup

β∈Nn
0

2%|β|

∥∥∥∥∥∥

( ∞∑

ν=0

∑

m∈Zn

2νsq|λβ
ν,m|qχν,m(·)

)1/q

|Lp(R
n)

∥∥∥∥∥∥
(3.10)

(with the usual modification if p = ∞ and/or q = ∞).

We now define the related function spaces.

Definition 3.6. Let s > 0, 0 < p < ∞, 0 < q 6 ∞, and % > 0. Then Fs
p,q(R

n)
contains all f ∈ Lp(Rn) which can be represented as

f(x) =
∑

β∈Nn
0

∞∑

ν=0

∑

m∈Zn

λβ
ν,mk

β
ν,m(x), x ∈ Rn, (3.11)

with coefficients λ =
{
λβ

ν,m

}
β∈Nn

0 ,ν∈N0,m∈Zn ∈ fs,%
p,q . Then

∥∥f |Fs
p,q(R

n)
∥∥ = inf

∥∥λ|fs,%
p,q

∥∥ , (3.12)

where the infimum is taken over all possible representations (3.11).

Remark 3.7. The definitions given above follow closely [Tri06, Sect. 9.2]. The
spaces Fs

p,q(R
n) are quasi-Banach spaces (Banach spaces for p, q > 1) and inde-

pendent of k and % (in terms of equivalent quasi-norms). Furthermore, for all
admitted parameters p, q, s, we have

F
s
p,q(R

n) ↪→ Lp(R
n) .

see [Tri06, Th. 9.8]. Concerning the convergence of (3.11) one obtains as a conse-
quence of λ ∈ fs,%

p,q , that the series on the right-hand sides converge absolutely in
Lp(Rn) if p < ∞. Since this implies unconditional convergence we may simplify
(3.11) and write in the sequel

f =
∑

β,ν,m

λβ
ν,mk

β
ν,m.
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Remark 3.8. Considering the spaces Fs
p,q(R

n) we obtain the following upper
bounds for the dilation operators Tk. Let s > 0, 0 < p < ∞, 0 < q 6 ∞, and
k ∈ N0. Then for all f ∈ Fs

p,q(R
n)

‖f(2k·)|Fs
p,q(R

n)‖ 6 2k(s− n
p )‖f |Fs

p,q(R
n)‖. (3.13)

The proof is fairly simple. We take f ∈ Fs
p,q(R

n) with optimal representation

f(x) =
∑

β,ν,m

λβ
ν,mk

β
ν,m(x),

i.e.,

‖f |Fs
p,q(R

n)‖ ∼ ‖λ|fs,%
p,q ‖ = sup

β
2%|β|

∥∥∥∥∥∥

(
∑

ν

∑

m

2νsq|λβ
ν,m|qχν,m(·)

)1/q

|Lp

∥∥∥∥∥∥
,

where χν,m(·) is the characteristic function of Qν,m. Put

g(x) := f(2k·) =
∑

β,ν,m

λβ
ν,mk

β
ν,m(2kx) =

∑

β,m

∞∑

l=k

λβ
l−k,mk

β
l,m(x),

where l := ν + k, since kβ
ν,m(2kx) = (2ν+kx −m)βk(2ν+kx −m) = kβ

l,m(x). This
yields

‖f(2k·)|Fs
p,q(R

n)‖ 6 sup
β

2%|β|

∥∥∥∥∥∥

( ∞∑

l=k

∑

m

2lsq|λβ
l−k,m|qχl,m(·)

)1/q

|Lp

∥∥∥∥∥∥

= sup
β

2%|β|

∥∥∥∥∥∥

( ∞∑

l=k

∑

m

2ksq2(l−k)sq|λβ
l−k,m|qχl−k,m(2k·)

)1/q

|Lp

∥∥∥∥∥∥

= 2k(s− n
p ) sup

β
2%|β|

∥∥∥∥∥∥

(
∑

ν

∑

m

2νsq|λβ
ν,m|qχν,m(·)

)1/q

|Lp

∥∥∥∥∥∥

= 2k(s− n
p )‖f |Fs

p,q(R
n)‖.

Connections and diversity

We now discuss the coincidence and diversity of the above presented concepts of
F-spaces and may restrict ourselves to positive smoothness s > 0. In view of
our Remarks 1.2, 3.2 and 3.7 concerning the different nature of these spaces, it is
obvious that there cannot be established a complete coincidence of all approaches
when s < σp.
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In particular, no equivalent quasi-norms of type (3.2) can be expected for the
spaces F s

p,q(R
n) if s < σp. It seems to be clear that such a characterization is also

impossible if σp < s < σpq (in particular, when 0 < q < p), i.e.

Fs
p,q(R

n) 6= F s
p,q(R

n), 0 < p <∞, 0 < q 6 ∞, 0 < s < σpq,

cf. [Tri06, Rem. 9.15], based on [CS06] – so the situation is even more complicated.
Nevertheless, under certain restrictions on the smoothness parameter s, the above
approaches result in the same F-space.

Theorem 3.9. Let s > 0, 0 < p <∞, 0 < q 6 ∞.

(i) Then

Fs
p,q(R

n) = Fs
p,q(R

n), s > n

(
1

min(p, q)
− 1

p

)
, (3.14)

and
F s

p,q(R
n) = Fs

p,q(R
n), s > σpq (3.15)

(in the sense of equivalent quasi-norms).
(ii) Furthermore,

F s
p,q(R

n) = Fs
p,q(R

n) = Fs
p,q(R

n), s > n

(
1

min(p, q)
− 1

max(1, p)

)

(3.16)
(in the sense of equivalent quasi-norms).

Remark 3.10. The first equality in (3.16) is longer known, see [Tri83, Section
2.5.11], [Tri92, Thm. 3.5.3], whereas the second equality in (3.16) is a consequence
of the recently proved coincidence (3.14), see [Tri06, Prop. 9.14] (with forerunners
in [Tri97, Sect. 13.8], [Tri01, Thm. 2.9]). In the figures aside and below we have
indicated the situation in the usual ( 1

p , s)-diagram for different values of q.

s

1
p1

F s
p,∞ = Fs

p,∞ = Fs
p,∞

Fs
p,∞ = Fs

p,∞

Figure 1: Parameter q = ∞

0

s = σp,∞ = σp
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s

1
p1

n

F s
p,1 = Fs

p,1 = Fs
p,1

Fs
p,1 = F s

p,1

Fs
p,1 = Fs

p,1

Figure 2: Parameter q = 1

0

s = σp,1

s

1
p1

2n

n

F s
p, 1

2

= Fs
p, 12

= Fs
p, 1

2

Fs
p, 1

2

= F s
p, 1

2

Fs
p, 12

= Fs
p, 1

2

Figure 3: Parameter q = 1

2

0 2

s = σp, 1
2

Our new results concerning the norms of the dilation operators Tk established
in Section 2 now lead to new insights when dealing with different approaches for
F-spaces in the limiting case s = σp. We obtain the following assertions which are
especially interesting when p < q.

Corollary 3.11. Let 0 < p < 1 and 0 < q 6 ∞. Then

F σp
p,q(R

n) 6= Fσp
p,q(R

n)

and
F σp

p,q(R
n) 6= Fσp

p,q(R
n)

(in terms of equivalent quasi-norms) as sets of measurable functions.

Proof. We use the homogeneity estimate (3.3),
∥∥f(2k·)|Fs

p,q

∥∥ 6 2k(s− n
p )
∥∥f |Fs

p,q

∥∥ ,

where s > 0, 0 < p < ∞, and 0 < q 6 ∞. We proceed indirectly, assuming that
F

σp
p,q(Rn) = F

σp
p,q(Rn) for 0 < q 6 ∞. But then using Theorem 2.2 when p 6 q or

Theorem 2.3 for q < p, together with (3.3) we could find a function ψ ∈ F
σp
p,q such

that

2k(σp−n
p )k1/p‖ψ|F σp

p,q‖ 6 c‖ψ(2k·)|F σp
p,q‖ ∼ ‖ψ(2k·)|Fσp

p,q‖
6 2k(σp−n

p )‖ψ|Fσp
p,q‖ ∼ 2k(σp−n

p )‖ψ|F σp
p,q‖,
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which leads to
k1/p 6 c, k ∈ N.

This gives the desired contradiction.
The proof for the spaces Fs

p,q(R
n) is the same; we only need to use the estimate

(3.13) instead of (3.3). We give an alternative proof of this result in the next
subsection. �

Remark 3.12. We know that F s
p,q(R

n) = Fs
p,q(R

n) if s > σpq. Corollary 3.11
yields F σpq

p,q (Rn) 6= F
σpq
p,q (Rn) if p 6 q since in this case σpq = σp. If p > q, then

σpq > σp and the sharp estimates for the norms of the dilation operators Tk in
F

σpq
p,q (Rn), cf. [ET96, 2.3.1], coincide with the bounds for spaces F

σpq
p,q (Rn) as given

in (3.13). So in this case studying dilation operators will not help solving the
problem. It does not seem unlikely that the approaches coincide in this case.

3.2. A comment on atomic expansion

It might not be obvious immediately, but the building blocks kβ
ν,m in our subatomic

approach differ from the atoms aν,m – used to characterize the spaces F s
p,q(R

n)
in Theorem 1.7 – mainly by the imposed moment conditions on the latter and
some unimportant technicalities. In particular, the normalizing factors 2ν(s−n

p )

are incorporated in the sequence spaces fs,%
p,q in the subatomic approach; recall

Definition 1.5. We refer as well to [Tri01, Th. 3.6]. Now following [Sch09, Sect. 3.2]
one can show that first moment conditions on the line s = σpq are necessary. This
immediately leads to

F σp
p,q(R

n) 6= Fσp
p,q(R

n),

yielding an alternative proof of Corollary 3.11. We present the main ideas.
Every f ∈ F

σp
p,q(Rn) may be represented by optimal atomic decompositions

f(x) =
∑

ν,m

λν,maν,m(x), x ∈ Rn,

with
‖λ|fp,q‖ 6 c‖f |F σp

p,q‖, f ∈ F σp
p,q(R

n),

see [Tri06, Ch. 1.5] for details. If no moment conditions were required here, then

gk(x) = f(2kx) =
∑

ν,m

λν,maν,m(2kx), x ∈ Rn

would represent an atomic decomposition of f(2kx). This can be seen by setting

gk(x) =
∑

ν,m

λν,m2k(σp−n
p )2−k(σp−n

p )aν,m(2kx) =
∑

ν,m

λk
ν,ma

k
ν,m(x),

where ak
ν,m(x) = 2−k(σp−n

p )aν,m(2kx) ∼ ãν+k,m(x), since

supp ak
ν,m ⊂ Qν+k,m,
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|Dαak
ν,m(x)| = 2−k(σp−n

p )+k|α||Dαaν,m(x)| 6 2−(ν+k)(σp−n
p )+(ν+k)|α|.

Therefore we obtain

‖gk|F σp
p,q‖ 6 ‖λk|fp,q‖ = 2k(σp−n

p )‖λ|fp,q‖ = 2−nk‖λ|fp,q‖,

resulting in
‖f(2k·)|F σp

p,q‖ 6 c2−nk‖f |F σp
p,q‖.

But we know by Theorem 2.2 and Theorem 2.3 that this is not true in general
when 0 < p <∞.
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