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Abstract: In this paper, we show that the sequences of arithmetic, geometric and harmonic
means of the first n values of the Euler function are all three dense modulo 1. This answers in
the affirmative a question of A. Schinzel.
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1. Introduction

Let ϕ(n) be the Euler function of the positive integer n. At the Czech-Slovak
Number Theory Conference in Smolenice in August 2007, the second author asked
whether the sequences of general term

an =
1
n

∑
m≤n

ϕ(m) or gn =

⎛⎝∏
m≤n

ϕ(m)

⎞⎠1/n

which give the arithmetic and the geometric means of the first n values of the Euler
function, respectively, are uniformly distributed modulo 1. A. Schinzel modified
these questions by asking whether these sequences are dense modulo 1. This ques-
tion was repeated at the meeting on Uniform Distribution in Luminy in January,
2008. In this paper, we give an affirmative answer to Schinzel’s question. Our
results are the following:

Theorem 1.1. Each one of the sequences of general terms:

(i) sn =
√∑

m≤n

ϕ(m);

(ii) an =
1
n

∑
m≤n

ϕ(m);
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(iii) gn =

⎛⎝∏
m≤n

ϕ(m)

⎞⎠1/n

;

(iv) hn =
n∑

m≤n
1

ϕ(m)

is dense modulo 1.

Regarding the sequence (ii), it was shown in [5] that for a large positive real
number x the number of n ≤ x such that sn is an integer is � x/(log x)0.0003. The
exponent 0.0003 was later improved to 0.2 in [1]. These results were extended by I.
Kátai [3] to the instance when the Euler function ϕ(n) is replaced by a multiplica-
tive function satisfying some technical conditions. This includes the sum of the
divisors function σ(n), for example. Some of the above sequences when the Euler
function ϕ(n) is replaced by the nth prime number function pn have been treated
in [4] and [2]. For example, in [4] it was shown that the set of n such that

∑
m≤n pm

is a square is of asymptotic density zero although no nontrivial upper bound on
the counting function of the set of such positive integers n ≤ x was given. This
was achieved in [2], where it was shown that for a large positive real number x the
number of such positive integers n ≤ x is ≤ x exp(−c0(log x)3/5(log log x)−1/5) for
some positive constant c0 unconditionally and � (x log x)5/6 under the Riemann
Hypothesis. A similar result was obtained for the number of positive integers
n ≤ x such that the arithmetic mean of the first n primes is an integer. It was

also shown in [2] that both sequences of general terms
√∑

m≤n

pm and
1
n

∑
m≤n

pm

are uniformly distributed modulo 1.
In what follows, we use p and q for prime numbers. We also use the Landau

symbols O and o as well as the Vinogradov symbols �, � and � with their usual
meaning.

Acknowledgements. This work started when both authors attended the work-
shop on Uniform Distribution Theory in CIRM, Marseille Luminy,in January of
2008 and ended when both authors attended the Workshop on Additive Combi-
natorics at the CRM in Barcelona in February, 2008. They thank the organizers
for the opportunity to attend these workshops. They also thank Professor Igor
Shparlinski for useful conversations. During the preparation of this paper, F. L.
was also supported in part by Grant SEP-CONACyT 46755.

2. Proof of Theorem 1.1

(i) We let ε ∈ (0, 1/10) be arbitrarily small and let M be a positive integer depend-
ing on ε to be fixed later. For j ∈ {1, . . . ,M} we put cj = ϕ(j)/j. Let α = 3/π2

and choose finite disjoint sets of primes Pj consisting of primes p > M such that∏
p∈Pj

(
1 − 1

p

)
∈
[√

αε

cj
,
2
√
αε

cj

]
. (2.1)
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We shall show that this is possible when ε is sufficiently small: this will come from
the condition

2
√
αε < cj holds for all j = 1, . . . ,M, (2.2)

and the fact that the infinite product
∏
p≥2

(
1 − 1

p

)
diverges to zero. Put Pj =

∏
p∈Pj

p.

Let x be a positive real number whose natural logarithm exceeds the largest mem-
ber in ∪M

j=1Pj and let

Q = {M < q ≤ log x}\ ∪M
j=1 Pj .

Put Q =
∏
q∈Q

q. We use the Chinese Remainder Lemma to deduce that there exists

a positive integer n such that

n ≡ 0 (mod M !Q) and n ≡ −j (mod Pj) for all j = 1, . . . ,M. (2.3)

The above system is solvable and all its positive integer solutions n form an arith-
metic progression n0 (mod N), where

N = M !(
M∏

j=1

Pj)Q.

Here, we take n0 to be the least positive integer in the above progression. By the
Prime Number Theorem, keeping M fixed and taking x large, we get that

N = M !
∏

M<p<log x

p = M ! exp((1 + o(1)) log x), as x → ∞,

therefore we may choose x to be sufficiently large such that N < x2. Let n ≡ n0

(mod N) be in the interval [x2, 2x2). Write n = n0 +N� for some � ≥ 1. Observe
that for j ∈ {1, . . . ,M} the positive integer n+ j is a multiple of both j and Pj ,
which are coprime. Further, if p ≤ log x is a prime and p | n + j, then p | jPj .
Indeed, let p ≤ log x be a prime factor of n + j. If p ≤ M or p ∈ Q, then since
M !Q | n, we get that p | n, therefore p | (n + j) − n = j, which is what we
wanted. If p > M and p �∈ Pj , then p ∈ Pi for some i �= j. System (2.3) leads
to p | n + i, therefore p | (n + i) − (n + j) = i − j, which is impossible because
0 < |i− j| < M < p. Note that since n+ j ≤ 2x2, it follows that

ω(n+ j) � log(n+ j)
log log(n+ j)

� log x
log log x

.
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Here, for a positive integer m we write ω(m) for the number of distinct prime
factors of m. Hence,

ϕ(n+ j)
n+ j

=
∏

p|n+j

(
1 − 1

p

)
=
∏

p|jPj

(
1 − 1

p

) ∏
p|n+j
p�jPj

(
1 − 1

p

)

=
ϕ(j)
j

∏
p∈Pj

(
1 − 1

p

)(
1 − 1

log x

)O( log x
log log x)

=
ϕ(j)
j

ϕ(Pj)
Pj

(
1 +O

(
1

log log x

))
∈
[√

αε

2
, 3

√
αε

]
, (2.4)

where the last containment holds by (2.1) provided that x is sufficiently large with
respect to ε and M .

We put S(n) =
∑

m≤n ϕ(m). We use the elementary estimate

S(n) = αn2 + E(n), (2.5)

where E(n) = O(n log n), as well as the fact that
√

1 + t = 1 +
t

2
+O(t2), (2.6)

to deduce that for each fixed j ∈ {0, . . . ,M − 1} we have

√
Sn+j+1 =

√
Sn+j

(
1 +

ϕ(n+ j + 1)
Sn+j

)1/2

=
√
Sn+j +

ϕ(n+ j + 1)
2
√
Sn+j

+O

(
ϕ(n+ j)2

S
3/2
n+j

)
. (2.7)

Clearly, by estimates (2.5) and (2.6), we have

n+ j + 1
2
√
Sn+j

=
1

2
√
α

(
1 +O

(
logn
n

))
=

1
2
√
α

(
1 +O

(
log x
x2

))
,

while the error term in the above approximation (2.7) is

� x4

x6
=

1
x2
.

Thus, for large x, we get that

sn+j+1 − sn+j =
√
Sn+j+1 −√Sn+j

=
ϕ(n+ j + 1)
n+ j + 1

(
1

2
√
α

+O

(
log x
x2

))
+O

(
1
x2

)
=

ϕ(n+ j + 1)
2
√
α(n+ j + 1)

+O

(
log x
x2

)
.
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Using containment (2.4), we get that

sn+j+1 − sn+j ∈
[ ε
5
, 3ε
]

holds for all j = 0, . . . ,M − 1 provided that x is sufficiently large. We now choose
M =  5/ε! + 1. The above estimates show that

sn+M − sn =
M−1∑
j=0

(sn+j+1 − sn+j) > 1.

This easily implies that for each interval I ⊂ [0, 1] of length > 3ε there exists
j ∈ {1, . . . ,M} such that {sn+j} ∈ I, which finishes the proof of (i) because ε > 0
was arbitrary. It remains to check that (2.2) is fulfilled with this choice of M
versus ε. However, from the minimal order of the Euler function in the interval
[1,M ], we know that if M ≥ 3, then

ϕ(m)
m

≥ β

log logM
holds for all m ∈ [1,M ], (2.8)

where β is some positive constant. Thus, we have that the inequality

cj ≥ β

log log(5/ε+ 1)
holds for all j = 1, . . . ,M.

Hence, in order for inequality (2.2) to hold, it suffices that

2
√
αε <

β

log log(5/ε+ 1)

and this last inequality is certainly fulfilled if ε is sufficiently small.

(ii) We follow the same method as at (i). First, we note that for each nonneg-
ative integer a there is a positive integer b such that∑

a<j≤b

ϕ(j)
j

>
4(b− a)
π2

. (2.9)

Indeed, if this were not so, then for some positive integer a we would have

1
b− a

∑
a<j≤b

ϕ(j)
j

≤ 4
π2

for all b > a. However, passing to the limit when b tends to infinity, the left hand
side above tends to

lim
x→∞

1
x

∑
n≤x

ϕ(n)
n

=
6
π2

>
4
π2
,
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which is a contradiction. In fact, using the elementary estimate∑
n≤y

ϕ(n)
n

= 2αy +O(log y) (2.10)

valid for all y ≥ 2 we get easily that for every a ≥ 2 the minimal b satisfying (2.9)
satisfies the estimate b = a+O(log a).

Let now (mi)i≥0 be the increasing sequence of integers given by m0 = 0 and
for i ≥ 0, mi+1 is the smallest positive integer b such that the inequality (2.9)
holds with a = mi. The above remark shows that the estimate

mi+1 = mi +O(logmi) holds for all i ≥ 2.

Put

Ti =

∑
mi<j≤mi+1

cj

α(mi+1 −mi)
>

4
3
.

Now let ε ∈ (0, 1/10) be small and let L be the minimal positive integer such that
M = mL > 7/ε. Let ε1 = 7/M ∈ (0, 1/10). For j ∈ {1, . . . ,M} we let Pj be
finite disjoint sets of prime numbers exceeding M with the following property. Let
i ∈ {0, . . . , L− 1} be such that j ∈ [mi + 1,mi+1]. We impose that∏

p∈Pj

(
1 − 1

p

)
− 1
Ti

∈ (ε1, 2ε1) .

Note that since Ti > 4/3 and ε1 < 1/10, we have that 1/Ti+2ε1 < 1. Put as at (i)
Pj =

∏
p∈Pj

p. We now let again x be a large positive real number whose logarithm

exceeds all primes in ∪M
j=1Pj put Q for the set of primes M < q ≤ log x which

do not belong to any of the Pj ’s for j = 1, . . . ,M and set Q =
∏
q∈Q

q. Let n be

a positive integer satisfying the system of congruences (2.3). By the arguments at
(i) it follows that if x is large, then we may find such an integer n in the interval
[x2, 2x2). Further, every prime factor of n+ j either divides jPj , or exceeds log x.
Let again i be such that j ∈ [mi + 1,mi+1]. Thus, for some θj ∈ (1, 2) we have

ϕ(n+ j)
n+ j

=
∏

p|jPj

(
1 − 1

p

) ∏
p|n+j
p�jPj

(
1 − 1

p

)

=
ϕ(j)
j

(
1
Ti

+ θjε1

)(
1 − 1

log x

)O( log x
log log x )

=
ϕ(j)
j

(
1
Ti

+ θjε1

)(
1 +O

(
1

log log x

))
=
ϕ(j)
jTi

+ λjε1,
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where λj ∈ (cj/2, 3cj) provided that x is sufficiently large with respect to ε.
Observe that

an+mi+1 − an+mi =
Sn+mi+1

n+mi+1
− Sn+mi

n+mi

=
∑

mi<j≤mi+1

ϕ(n+ j)
n+mi+1

− (mi+1 −mi)
(n+mi)(n+mi+1)

∑
�≤n+mi

ϕ(�)

=
∑

mi<j≤mi+1

ϕ(n+ j)
n+ j

(
1 +O

(
1
n

))

− (mi+1 −mi)
(n+mi)2

(
α(n+mi)2 +O(n log n)

)(
1 +O

(
1
n

))
=

∑
mi<j≤mi+1

(
ϕ(j)
jTi

+ λjε1

)
− (mi+1 −mi)α+O

(
log x
x2

)

=

⎛⎝ ∑
mi<j≤mi+1

λj

⎞⎠ ε1 +O

(
log x
x2

)
.

In the above calculation, we used estimate (2.5). Furthermore, the constants im-
plied by the aboveO’s depend on ε. Put di =

∑
mi<j≤mi+1

cj for i = 0, 1, . . . , L−1.
Since ε1 = 7/M and λj ≥ cj/2, we get, by the minimal order of the Euler function
(2.8), that

diε1 ≥ 7β
2M log logM

� ε

log(log(7/ε))
,

while from the growth condition on the sequence (mi)i≥0, we also have

diε1 ≤ 7(mi+1 −mi)
M

� logM
M

� ε log(7/ε).

Hence, if ε is sufficiently small, then the inequalities

diε1 ∈ [ε2, ε1/2]

hold for all i = 0, . . . , L− 1. In particular, if x is sufficiently large with respect to
ε, then the containments

an+mi+1 − an+i ∈ [diε1/2, 2diε1]

hold for all i = 0, . . . , L− 1. Now observe that, by using estimate (2.10), we have

an+M − an =
L−1∑
i=0

(an+mi+1 − an+mi) >
ε1
2

L−1∑
i=0

di

≥ ε1
4

∑
1≤j≤M

cj =
7

4M
(2αM +O(logM))

=
21
2π2

+O

(
logM
M

)
=

21
2π2

+O (ε log(7/ε))
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and the last expression above is > 1 provided that ε > 0 is sufficiently small. The
above calculations show that for such a small ε and for each interval I ⊂ [0, 1] of
length ε1/2, there exists i ∈ {0, . . . , L−1} such that {an+mi} ∈ I which takes care
of (ii).

(iii) We first give an asymptotic evaluation of gn when n tends to infinity. We
use Stirling’s relation as logn! = n logn− n+O(log n). We have

log gn =
1
n

∑
m≤n

logϕ(m) =
1
n

∑
m≤n

⎛⎝logm+
∑
p|m

log
(

1 − 1
p

)⎞⎠
= log n− 1 +O

(
logn
n

)
+

1
n

∑
p≤n

log
(

1 − 1
p

)⌊
n

p

⌋

= log n− 1 +O

(
logn
n

)
+
∑
p≤n

1
p

log
(

1 − 1
p

)
+O

⎛⎝ 1
n

∑
p≤n

1
p

⎞⎠
= log n− 1 +

∞∑
p=1

1
p

log
(

1 − 1
p

)
+O

(
logn
n

)

= log(αn) +O

(
logn
n

)
,

therefore

gn = αn+O(log n), where α =
1
e

∏
p≥2

(
1 − 1

p

)1/p

. (2.11)

We now turn our attention to the difference gn+1 − gn. Using the previous
relation and the fact that gn+1

n+1 = ϕ(n)gn
n , we have

gn+1 − gn =

⎛⎝∏
m≤n

ϕ(n)

⎞⎠
1

n+1
⎛⎜⎝ϕ(n+ 1)

1
n+1 −

⎛⎝∏
m≤n

ϕ(m)

⎞⎠
1

n(n+1)
⎞⎟⎠ .

Observe that⎛⎝∏
m≤n

ϕ(n)

⎞⎠ 1
n+1

= g
n

n+1
n = gn exp

(
O

(
log gn

n

))
= αn+O (logn) ,

that⎛⎝∏
m≤n

ϕ(m)

⎞⎠
1

n(n+1)

= g
1

n+1
n = exp

(
1

n+ 1
log
(
αn

(
1 +O

(
logn
n

))))

= 1 +
log(α(n+ 1))

n+ 1
+O

(
(logn)2

n2

)
,
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and certainly that

ϕ(n+ 1)
1

n+1 = exp
(

logϕ(n+ 1)
n+ 1

)
= 1 +

logϕ(n+ 1)
n+ 1

+O

(
(logn)2

n2

)
,

which together give

gn+1 − gn =
(
α log

(
ϕ(n+ 1)
α(n+ 1)

)
+O

(
(logn)2

n

))(
1 +O

(
logn
n

))
= α log

(
ϕ(n+ 1)
α(n+ 1)

)
+ o(1), as n → ∞.

To prove part (iii) of our theorem, it is enough to show that for any ε > 0, one
can find M =  5/ε! + 1 consecutive integers n+ 1, . . . , n+M such that for every
j ∈ {1, 2, . . . ,M}, one has

ε/5 ≤ {gn+j − gn+j−1} ≤ ε. (2.12)

We shall first build a family of integers n1, . . . , nM such that for every j ≤ M we
have j | nj and

ε/4 ≤
{
α log

(
ϕ(nj)
αnj

)}
≤ ε/2. (2.13)

Then, we shall use again the Chinese Remainder Lemma as in (i) to prove that
there exists n such that for any j, the integer n+ j ≤ 2x2 is the product of nj by
a number of at most O(log x/ log log x) prime factors each exceeding log x, so that
(2.13) will imply (2.12).

In a way which bears similarity with our treatment of part (i), we build finite
disjoint sets Pj of primes p > M such that⎧⎨⎩α log

⎛⎝ϕ(j)
αj

∏
p∈Pj

(
1 − 1

p

)⎞⎠⎫⎬⎭ ∈
[ ε
4
,
ε

2

]
.

We then let Pj =
∏

p∈Pj
p and we put nj = jPj . Let again x be a positive real

number whose logarithm exceeds all the members in ∪M
j=1Pj , and let again Q be the

set of primes p ≤ log x not in ∪M
j=1Pj . Put Q =

∏
q∈Q q and let N = M !Q

∏M
j=1 Pj .

By the Chinese Remainder Lemma, there exists an arithmetic progression modulo
N , say n0 +N� such that n ≡ n0 (mod N) is equivalent to n ≡ 0 (mod M !Q) and
n ≡ −j (mod Pj) for all j = 1, . . . ,M . If x is large, then N < x2, therefore one
can choose such a value for n such that n+M ∈ [x2, 2x2]. Clearly, all prime factors
of n+ j which are ≤ log x are precisely the prime divisors of nj and certainly there
are at most O(log x/ log log x) of them. This takes care of part (iii).

(iv) This is trivial. Indeed, hn � n/ logn, while

hn+1 − hn =

⎛⎝∑
m≤n

1
ϕ(m)

− n

ϕ(n+ 1)

⎞⎠⎛⎝∑
m≤n

1
ϕ(m)

⎞⎠−1⎛⎝ ∑
m≤n+1

1
ϕ(m)

⎞⎠−1

.
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The first factor above is � logn, while the next two are � (logn)−1 showing that

hn+1 − hn = O

(
1

logn

)
= o(1) as n → ∞.

These estimates trivially imply that {hn} is dense in [0, 1].
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