Functiones et Approximatio XXXIX.2 (2008), 223–235

BERNOULLI NUMBERS AND ZEROS OF p-ADIC L-FUNCTIONS

Tauno Metsänkylä

Dedicated to Władysław Narkiewicz for his 70th birthday

Abstract: Rational *p*-adic zeros of the Leopoldt–Kubota *p*-adic *L*-functions give rise to certain sequences of generalized Bernoulli numbers tending *p*-adically to zero, and conversely. This relationship takes different forms depending on whether the corresponding Iwasawa λ -invariant is one or greater than one. To understand the relationship better it is useful to consider approximate zeros of those functions.

Keywords: Bernoulli numbers, generalized Bernoulli numbers, p-adic L-functions and their zeros, Iwasawa λ -invariants

1. Introduction

For a prime p and for a nonprincipal even Dirichlet character χ whose conductor is not divisible by p^2 (or by 8, if p = 2), consider the Leopoldt–Kubota p-adic Lfunction $L_p(s, \chi)$. Let θ denote the p-free component of χ . The aim of the present article is to study a relationship between rational p-adic zeros of $L_p(s, \chi)$ and the p-divisibility of the Bernoulli numbers $B^m(\theta)$ as m tends to infinity. As is to be expected, this relationship depends on the Iwasawa λ -invariant attached to χ .

Let ω denote the cyclotomic character mod p when p > 2, or the unique character with conductor 4 when p = 2. The relationship in question is a direct consequence of the basic formula

$$L_p(1-m,\chi) = -(1-\chi\omega^{-m}(p)p^{m-1})\frac{B^m(\chi\omega^{-m})}{m} \qquad (m=1,2,\dots).$$
(1.1)

It was studied in the recent work [4] by Kellner in the case of ordinary Bernoulli numbers B^m . The present discussion not only contains an extension to $B^m(\theta)$, including p = 2, but also treats some new aspects and offers proofs different from [4] that are perhaps more natural and give deeper insight into the results.

²⁰⁰⁰ Mathematics Subject Classification: primary 11B68, 11R23, 11S40.

2. Preliminaries

Fix an embedding of the field of algebraic numbers into \mathbb{C}_p , the completion of an algebraic closure of the *p*-adic field \mathbb{Q}_p . Let v_p denote the *p*-adic exponential valuation on \mathbb{C}_p , normalized so that $v_p(p) = 1$. A congruence $\alpha \equiv \beta \pmod{p^z}$ in \mathbb{C}_p means that $v_p(\alpha - \beta) \geq z$.

Let α be a rational *p*-adic integer, that is, $\alpha \in \mathbb{Z}_p$. We define $r_n(\alpha) \in \mathbb{Z}$ by

$$r_n(\alpha) \equiv \alpha \pmod{p^n}, \qquad 0 \le r_n(\alpha) < p^n$$

To avoid complications occurring for the prime p = 2 we assume throughout sections 2–5 that p > 2. The case p = 2 is treated in the final section 6.

With the assumptions on χ mentioned above we fix the notation

$$\chi = \theta \omega^t, \qquad 2 \le t \le p$$

and denote by d the conductor (prime to p) of θ . The reader mainly interested in the case $\theta = 1$ should keep in mind that t then assumes the values $2, 4, \ldots, p-3$.

We introduce the usual difference operator $\Delta_c x_n = x_{n+c} - x_n$ and recall the identity

$$\Delta_{cd} = (1 + \Delta_c)^d - 1. \tag{2.1}$$

The Kummer congruences for $B^m(\theta)$ state, for c divisible by $\varphi(p^h) = (p-1)p^{h-1}$, that

$$\Delta_c^k (1 - \theta(p) p^{m-1}) \frac{B^m(\theta)}{m} \equiv 0 \pmod{p^{hk}}$$
(2.2)

whenever $k \ge 0$, $h \ge 1$, $m \ge 1$, with the additional condition $m \ne 0 \pmod{p-1}$ for $\theta = 1$. These congruences, first proved by Carlitz [2], are in fact crucial for the analyticity of *p*-adic *L*-functions. Proofs based on the theory of these functions were presented in [6] and [7].

Recall that $L_p(s,\chi)$ is defined and analytic for all $s \in \mathbb{C}_p$ satisfying $v_p(s) > -1 + \frac{1}{p-1}$. Moreover,

$$L_p(s,\chi) = f_{\chi}((1+dp)^s - 1), \qquad (2.3)$$

where

$$f_{\chi}(T) = \sum_{i=0}^{\infty} a_i(\chi) T^i \in \mathcal{O}_{\theta}[[T]]$$

is the Iwasawa power series. Here \mathcal{O}_{θ} is the valuation ring of the field $\mathbb{Q}_p(\theta)$ generated by the values of θ .

By the λ -invariant attached to χ we mean

$$\lambda_{\chi} = \min\{ \, i \ge 0 \mid v_p(a_i(\chi)) = 0 \, \} \, ,$$

that is, the λ -invariant of the power series f_{χ} . This power series defines an analytic function on the disc $D_T = \{T \in \mathbb{C}_p \mid v_p(T) > 0\}$, and it follows from the *p*-adic

Weierstrass Preparation Theorem ([9], Theorem 7.3) that f_{χ} has λ_{χ} zeros (counting multiplicities) in D_T . Indeed, these zeros are exactly the zeros of a "distinguished" polynomial of degree λ_{χ} belonging to $\mathcal{O}_{\theta}[T]$.

It is easy to see (e.g., [3]) that the zeros T_0 of $f_{\chi}(T)$ satisfying $v_p(T_0) > \frac{1}{p-1}$ correspond bijectively to the zeros s_0 of $L_p(s, \chi)$; this correspondence is given by

$$T_0 = (1+dp)^{s_0} - 1, \qquad s_0 = \frac{\log(1+T_0)}{\log(1+dp)}.$$
 (2.4)

In particular, $s_0 = 0$ if and only if $T_0 = 0$, and $v_p(s_0) = v_p(T_0) - 1$ otherwise.

Now consider rational p-adic zeros s_0 , that is, zeros $s_0 \in \mathbb{Q}_p$. Trivially, $s_0 \in \mathbb{Q}_p$ if and only if $T_0 \in \mathbb{Q}_p$. Since the positive values of v_p in \mathbb{Q}_p are $\geq 1 > \frac{1}{p-1}$, we find that the zeros $s_0 \in \mathbb{Q}_p$ correspond bijectively to the zeros $T_0 \in \mathbb{Q}_p$, and for those zeros one has $T_0 \in p\mathbb{Z}_p$, $s_0 \in \mathbb{Z}_p$.

In general, the zeros T_0 of f_{χ} of course belong to an extension of $\mathbb{Q}_p(\theta)$ of degree $\leq \lambda_{\chi}$. Thus, if $\lambda_{\chi} = 1$, the unique zero T_0 is in $\mathbb{Q}_p(\theta)$. If $\theta = 1$ or θ is a quadratic character, this field is just \mathbb{Q}_p . For $\theta = 1$, λ_{χ} has been computed for all p below 12 million (see [1]); if nonzero, it is always = 1 and so the corresponding zero T_0 is in $p\mathbb{Z}_p$.

But also in the case $\lambda_{\chi} > 1$ there are numerous examples known in which f_{χ} has rational *p*-adic zeros T_0 ; see [3].

It will also be useful to introduce approximate zeros of $L_p(s, \chi)$. Let us call $\sigma \in \mathbb{Z}_p$ an approximate zero of order $l(\geq 1)$ for $L_p(s, \chi)$, if

$$L_p(\sigma, \chi) \equiv 0 \pmod{p^l}$$
.

By [9], Theorem 5.12, rational *p*-adic integers σ_1 and σ_2 satisfy the condition

$$L_p(\sigma_1, \chi) \equiv L_p(\sigma_2, \chi) \pmod{p^l}$$
 whenever $\sigma_1 \equiv \sigma_2 \pmod{p^{l-1}}$. (2.5)

Hence an approximate zero σ of order l is obtained by approximating a zero $s_0 \in \mathbb{Z}_p$ modulo p^{l-1} . Conversely, when does a given approximate zero σ really approximate some zero s_0 ? This question, related to Hensel's lemma, will play a role in Section 4.

3. Bernoulli numbers tending *p*-adically to zero

Throughout the following we use the abbreviations

$$\widehat{B}^m(\theta) = B^m(\theta)/m, \qquad \widetilde{B}^m(\theta) = (1 - \theta(p)p^{m-1})\widehat{B}^m(\theta).$$

Theorem 3.1. (i) Let $\sigma \in \mathbb{Z}_p$ be an approximate zero of order $l \ge 1$ for $L_p(s, \chi)$ and let

$$\beta = \frac{1 - t - \sigma}{p - 1} \left(\in \mathbb{Z}_p \right) \,.$$

Then

$$\widehat{B}^{t+(p-1)r_n(\beta)}(\theta) \equiv 0 \pmod{p^{n+1}} \qquad (n=0,\dots,l-1).$$
 (3.1)

(ii) Conversely, let $\beta \in \mathbb{Z}_p$ and assume that the congruences (3.1) hold true. Then $\sigma = 1 - (t + (p-1)\beta)$ is an approximate zero of order l for $L_p(s, \chi)$.

Proof. For any $n \ge 0$, let

$$w_n = t + (p-1)r_n(\beta) \; .$$

We have $\omega^{t-w_n} = 1$ and $\sigma \equiv 1 - w_n \pmod{p^n}$. Hence, by (1.1) and (2.5),

$$\widetilde{B}^{w_n}(\theta) = -L_p(1 - w_n, \chi) \equiv -L_p(\sigma, \chi) \pmod{p^{n+1}}.$$

This implies both parts of the theorem, with \tilde{B} in place of \hat{B} . The assertions then follow, since $v_p(1-\theta(p)p^{w_n-1}) = 0$. One needs here the assumption that $t \ge 2$.

Note that the congruences (3.1) hold for all n in the range $0 \le n \le l-1$, once this congruence holds for n = l - 1.

Theorem 3.1 implies that if $L_p(s, \theta \omega^t)$ $(2 \le t \le p)$ has an approximate zero of order 1, then

$$\widehat{B}^t(\theta) \equiv 0 \pmod{p}$$
.

More generally, with the mere assumption that $\lambda_{\theta\omega^t} > 0$, it is known that one just has $v_p(\widehat{B}^t(\theta)) > 0$ (e.g., [8]).

By letting $l \to \infty$ in the preceding theorem we immediately get the following theorem.

Theorem 3.2. (i) Let s_0 be a rational p-adic zero of $L_p(s, \chi)$ (hence $s_0 \in \mathbb{Z}_p$) and let

$$\beta = \frac{1 - t - s_0}{p - 1} \,.$$

Then

 $\widehat{B}^{t+(p-1)r_n(\beta)}(\theta) \equiv 0 \pmod{p^{n+1}} \qquad (n=0,1,\ldots).$ (3.2)

(ii) Conversely, let $\beta \in \mathbb{Z}_p$ and assume that the congruences (3.2) hold true. Then $s_0 = 1 - (t + (p - 1)\beta) \in \mathbb{Z}_p$ is a zero of $L_p(s, \chi)$.

For part (ii) of Theorem 3.2, we can replace the moduli p^{n+1} in (3.2) by any p^{z_n} , where the sequence (z_n) of rational numbers tends to infinity.

A by-product from part (i) of Theorem 3.2 is that the sequence $(r_n(\beta))$ tends to infinity in \mathbb{Z} , in other words, that β cannot be a nonnegative rational integer (under the given assumption). This is easy to prove directly, too.

Suppose, for a moment, that the value t = p is reduced to t = 1. Then one obtains, with $\beta = -s_0/(p-1)$, the congruences

$$\widehat{B}^{1+(p-1)r_n(\beta)}(\theta) \equiv 0 \pmod{p^{n+1}} \qquad (n=0,1,\dots) ,$$

provided $v_p(1 - \theta(p)) = 0$. If $v_p(1 - \theta(p)) > 0$, these congruences are still valid for $n \ge n_0$, say, where n_0 is the least suffix such that $r_{n_0}(\beta) > 0$. Such an n_0 of course exists if $s_0 \ne 0$.

If t = 1 and $s_0 = 0$, then $w_n = 1$ for all $n \ge 0$ and the reasoning above produces nothing but the equation

$$(1 - \theta(p))B^{1}(\theta) = 0,$$
 (3.3)

which is equivalent to $\theta(p) = 1$. This is a well-known case in which λ_{χ} is "trivially" nonzero.

Now return to the original notation $2 \le t \le p$.

Example. Assume that $L_p(s,\chi)$ has the zero $s_0 = 0$. Then $\beta = (t-1) \sum_{j=0}^{\infty} p^j$ and $w_n = t + (t-1)(p^n - 1)$, so that the congruences in Theorem 3.2 become

$$\widehat{B}^{1+(t-1)p^n}(\theta) \equiv 0 \pmod{p^{n+1}} \qquad (n = 0, 1, \dots) .$$

In particular, if t = p, then the preceding discussion shows that $\theta(p) = 1$. In this case we can also derive these congruences directly by applying Kummer congruences to the trivial relation (3.3).

4. Strict uniqueness

Let s_1 and s_2 be two rational *p*-adic zeros of $L_p(s, \chi)$ with the corresponding β_1 and β_2 , respectively, defined as in Theorem 3.2. Since $s_1 \neq s_2$ if and only if $\beta_1 \neq \beta_2$, we see that the preceding correspondence between different s_0 and the sequences $(r_n(\beta))$ satisfying (3.2) is bijective. In particular, if there is but one rational *p*-adic zero s_0 (not counting multiplicities), then the infinite sequence $(r_n(\beta))$ is unique.

In the case that $\lambda_{\chi} = 1$, the following stronger uniqueness result holds true.

Theorem 4.1. Assume that $\lambda_{\chi} = 1$ and that $L_p(s, \chi)$ has an approximate zero σ of order $l \geq 2$ (or, alternatively, a rational p-adic zero s_0). If, for some n in the range $1 \leq n \leq l-1$ (or in the range $n \geq 1$, respectively),

$$\widehat{B}^{t+(p-1)r_n}(\theta) \equiv 0 \pmod{p^{n+1}}, \qquad 0 \le r_n < p^n ,$$

then $r_n = r_n(\beta)$ with β defined in Theorem 3.1 (or Theorem 3.2, respectively).

Proof. One has to show that r_n is unique mod p^n . By Theorem 3.1, it is enough to show that the congruence

$$L_p(\sigma, \chi) \equiv 0 \pmod{p^{n+1}}$$

determines σ uniquely mod p^n . Passing over to the Iwasawa power series we find, by (2.3) and (2.4), that this amounts to proving that the conditions

$$f_{\chi}(\tau) \equiv 0 \pmod{p^{n+1}}, \qquad \tau \equiv 0 \pmod{p} \tag{4.1}$$

determine τ uniquely mod p^{n+1} .

Since $\lambda_{\chi} = 1$, the derivative of f_{χ} satisfies

$$v_p(f'_{\chi}(\tau)) = v_p(a_1(\chi)) = 0$$
 .

The assertion follows from this by the general principles of Newton's *p*-adic tangent method. Indeed, by writing

$$f_{\chi}(T) = (T - \tau)g(T) + f_{\chi}(\tau), \qquad g(T) \in \mathcal{O}_{\theta}[[T]],$$

we first have $f'_{\chi}(\tau) = g(\tau)$. If τ_0 satisfies the conditions (4.1), then $\tau_0 \equiv \tau \pmod{p}$ and we obtain $0 = v_p(f'_{\chi}(\tau)) = v_p(g(\tau)) = v_p(g(\tau_0))$. The equation

$$f_{\chi}(\tau_0) = (\tau_0 - \tau)g(\tau_0) + f_{\chi}(\tau)$$

then yields $\tau_0 \equiv \tau \pmod{p^{n+1}}$.

As for the assumptions in Theorem 4.1, note that if $\mathbb{Q}_p(\theta) = \mathbb{Q}_p$, then the assumption $\lambda_{\chi} = 1$ implies that $L_p(s, \chi)$ has a rational *p*-adic zero.

Note a by-product from the preceding proof: Assume that $\lambda_{\chi} = 1$ and $L_p(s, \chi)$ has a rational *p*-adic zero s_0 . If σ is an approximate zero of order $l \geq 2$ for $L_p(s, \chi)$, then

$$\sigma \equiv s_0 \pmod{p^{l-1}}.$$

In the case $\theta = 1$ Theorem 4.1 is essentially due to Kellner [4]. He also used it to compute (approximations of) zeros of $L_p(s, \omega^t)$.

5. Sharper divisibility

If $\lambda_{\chi} > 1$, it turns out that the congruences of Theorems 3.1 and 3.2 can be sharpened. This is a consequence of the following "sharper Kummer congruences".

Let δ denote the inverse of the ramification index of $\mathbb{Q}_p(\theta)/\mathbb{Q}_p$. Note that $0 < \delta \leq 1$; δ is the least positive v_p -value in the field $\mathbb{Q}_p(\theta)$.

Theorem 5.1. If $\lambda_{\chi} > 1$, then

$$\Delta_{\varphi(p^n)}\widetilde{B}^m(\theta) \equiv 0 \pmod{p^{n+\delta}}$$

for all $n \ge 1$ and all $m \equiv t \pmod{p-1}$.

Proof. Fix n and m as in the theorem. From $\lambda_{\chi} > 1$ it follows ([8], Theorems 1 and 2) that

$$\Delta_{p-1}(\widetilde{B}^m(\theta)) \equiv 0 \pmod{p^{1+\delta}}$$

By (2.1),

$$\Delta_{(p-1)p^{n-1}}\widetilde{B}^m(\theta) = p^{n-1}\Delta_{p-1}\widetilde{B}^m(\theta) + \sum_{k=2}^{p^{n-1}} \binom{p^{n-1}}{k} \Delta_{p-1}^k \widetilde{B}^m(\theta).$$
(5.1)

Here the first term on the right hand side is of v_p -value $\geq n + \delta$. So are also the remaining terms, since for k in the range $2 \leq k \leq p^{n-1}$ (for n > 1) one finds, making use of (2.2),

$$v_p\left(\binom{p^{n-1}}{k}\Delta_{p-1}^k\widetilde{B}^m(\theta)\right) = n-1-v_p(k)+v_p(\Delta_{p-1}^k\widetilde{B}^m(\theta)) \ge n-1-v_p(k)+k > n.$$
(5.2)

Theorem 5.2. Assume that $\lambda_{\chi} > 1$. If $L_p(s, \chi)$ has an approximate zero $\sigma \in \mathbb{Z}_p$ of order $l \geq 2$, then

$$\widehat{B}^{t+(p-1)r_n(\beta)}(\theta) \equiv 0 \pmod{p^{n+1+\delta}} \qquad (n=0,\ldots,l-2),$$

where $\beta = \frac{1-t-\sigma}{p-1}$ as before. If $L_p(s,\chi)$ has a rational p-adic zero s_0 , then the same congruences hold for all $n \ge 0$, with $\beta = \frac{1-t-s_0}{p-1}$.

Proof. As to the former part, we see from Theorem 3.1 that $\widetilde{B}^{t+(p-1)r_{n+1}(\beta)}(\theta) \equiv 0 \pmod{p^{n+2}}$ for $n = 0, \ldots, l-2$. Theorem 5.1 then implies the assertion, first with \widetilde{B} in place of \widehat{B} .

The latter part follows similarly from Theorem 3.2, or simply on letting $l \to \infty$ above.

If $\lambda_{\chi} > 1$ and $L_p(s, \chi)$ has a rational *p*-adic zero s_0 , the preceding argument also shows that

$$\widehat{B}^{t+(p-1)r}(\theta) \equiv 0 \pmod{p^{n+\delta}} \qquad (n=1,2,\dots)$$

for every $r \equiv r_{n-1}(\beta) \pmod{p^{n-1}}$. This result should be compared with Theorem 4.1. Recall that $\delta = 1$ when $\mathbb{Q}_p(\theta)/\mathbb{Q}_p$ is unramified.

To conclude, consider the case of $\chi \mod p$, that is, $\chi = \omega^t$, $t = 2, 4, \ldots, p - 3$. In this case the last results imply the following corollary.

Corollary 5.1. If $\lambda_{\omega^t} > 1$ and $L_p(s, \omega^t)$ has an approximate zero σ of order $l \ge 2$, then

$$\widehat{B}^{t+(p-1)(r_n(\beta)+bp^n)} \equiv 0 \pmod{p^{n+2}} \qquad (n=0,\dots,l-2), \tag{5.3}$$

where β is as above and b is any rational integer. In particular, for l = 2,

$$B^{t+p-1} \equiv B^t \equiv 0 \pmod{p^2} .$$

This result has a connection to the theory of cyclotomic fields. Let A_k denote the *p*-part of the ideal class group of the p^{k+1} th cyclotomic field ($k \ge 0$). By the Herbrand–Ribet theorem, the eigenspace of A_k corresponding to the character ω^{p-t} is nontrivial if and only if $\lambda_{\omega^t} > 0$. This condition is equivalent to $B^1(\omega^{t-1}) \equiv$ $0 \pmod{p}$, or also to $B^t \equiv 0 \pmod{p}$. Given that this is satisfied and assuming the

Vandiver conjecture, we know ([9], Corollary 10.17) that the eigenspace in question is cyclic of order p^{k+1} provided that

$$B^{1}(\omega^{t-1}) \neq 0, \qquad \widehat{B}^{t} \neq \widehat{B}^{t+p-1} \pmod{p^{2}}.$$
(5.4)

The latter incongruence fails if and only if $\lambda_{\omega^t} > 1$. Looking at the former incongruence, we first observe that

$$B^{1}(\omega^{t-1}) \equiv B^{(t-1)p^{4}+1} \equiv \widehat{B}^{(t-1)p+1} \pmod{p^{2}}$$

(for the first step, see, e.g., [8], Lemma 1). Hence $B^1(\omega^{t-1}) \equiv 0 \pmod{p^2}$ is equivalent to

$$\widehat{B}^{t+(p-1)(t-1)} \equiv 0 \pmod{p^2}.$$
 (5.5)

By Corollary 5.1, this congruence is valid if $(1^o) \lambda_{\omega^t} > 1$ and $(2^o) L_p(s, \omega^t)$ has an approximate zero σ of order 2. It follows from Theorem 3.1 that, conversely, (5.5) implies (2^o) (even without any assumption on λ_{ω^t}). But this can be seen directly, too: the choice $\sigma = 0$ works, since

$$L_p(0,\omega^t) = f_{\omega^t}(0) = -B^1(\omega^{t-1})$$

(cf. Example in Section 3).

Computations have shown (see [1]) that in the case $\lambda_{\omega^t} > 0$ the incongruences (5.4) as well as the incongruence $B^t \not\equiv 0 \pmod{p^2}$ always hold in the range $p < 12 \cdot 10^6$.

Kellner ([4], p. 412) illustrates the congruences (5.3) by a graph, comparing it with his result corresponding to Theorem 4.1. He leaves open the question about the maximum value of n for which the congruences (5.3) hold true. From Corollary 5.1 and Theorem 3.1 we find that this maximum is l - 2, where l is the maximal order of the corresponding approximate zero of $L_p(s, \omega^t)$. In particular, the chain of congruences (5.3) is infinite exactly for every rational p-adic zero of $L_p(s, \omega^t)$.

Since these congruences express a rather strong condition in comparison to the one given by Kummer congruences, one may be tempted to suggest that they never occur, in other words, that the nonzero values of λ_{ω^t} are always = 1, at least in the presence of an approximate zero σ of high order. But one should be cautios, because in the more general case $\chi = \theta \omega^t$ it is well possible that $\lambda_{\chi} > 1$ and $L_p(s, \chi)$ has rational *p*-adic zeros, even for θ satisfying $\mathbb{Q}_p(\theta) = \mathbb{Q}_p$.

Here is one such example from [3] (p. S40). Let p = 5 and $\chi = \theta \omega^2$, where θ is the quadratic character mod 2504. Then $\lambda_{\chi} = 2$ and $L_p(s, \chi)$ has two rational *p*-adic zeros, approximately $s_1 = 2.41303$, $s_2 = 3.00334$ (in the usual 5-adic "decimal" notation). The Iwasawa power series in $\mathbb{Z}_5[[T]]$ is, with the accuracy given in [3],

$$f_{\chi}(T) = 0.010 + 0.00 T + 1.3 T^2 + 4 T^3 + \cdots,$$

and its zeros are approximately $T_1 = 0.331200, T_2 = 0.204143.$

For the size of λ_{ω^t} , see also Washington's heuristic discussion in [5], pp. 261–265.

6. The case p = 2

In the case p = 2 we take $\chi = \theta \omega^t$ with t = 2 or 3. Hence $\theta \neq 1$. The notation below is the same as in the case p > 2, unless stated otherwise.

We will apply Kummer's congruences modulo 2-powers in the following form:

$$\Delta_{2^h}^k (1 - \psi(2)2^{m-1})\widehat{B}^m(\psi) \equiv 0 \pmod{2^{(h+2)k+1}}$$
(6.1)

for all $k \ge 0, h \ge 1, m \ge 1$, provided the conductor of ψ is not a 2-power. These congruences, which are slightly stronger than those given in [6] (p. 239), are obtained from [7], formula (2), by induction on h, using the formula

$$\Delta_{2^{h}}^{k} = \sum_{i=0}^{k} \binom{k}{i} 2^{k-i} \Delta_{2^{h-1}}^{k+i}$$

(choose $c = 2^{h-1}$, d = 2 in the identity (2.1) of the present work). Note that the Iwasawa power series f_{χ} is two times the power series appearing in [7].

The function $L_2(s, \chi)$ is defined for $v_2(s) > -1$ and can be expressed by means of the Iwasawa power series in the form

$$L_2(s,\chi) = f_{\chi}((1+4d)^s - 1)$$
.

This time we have $f_{\chi}(T) \in 2\mathcal{O}_{\theta}[[T]]$ and write

$$f_{\chi}(T) = 2\sum_{i=0}^{\infty} a_i(\chi)T^i .$$

The λ -invariant is again defined by $\lambda_{\chi} = \min\{i \geq 0 \mid v_2(a_i(\chi)) = 0\}$. In the disc $D_T = \{T \in \mathbb{C}_2 \mid v_2(T) > 0\}$ the function f_{χ} has λ_{χ} zeros (counting multiplicities). The zeros T_0 satisfying $v_2(T_0) > 1$ correspond bijectively to the zeros s_0 of $L_2(s, \chi)$; this correspondence is given by

$$T_0 = (1+4d)^{s_0} - 1, \qquad s_0 = \frac{\log(1+T_0)}{\log(1+4d)}$$

Thus, if $s_0 \neq 0$ (or, equivalently, $T_0 \neq 0$) then $v_2(s_0) = v_2(T_0) - 2$.

It follows that the rational 2-adic zeros s_0 correspond bijectively to the zeros $T_0 \in \mathbb{Q}_2$ satisfying $v_2(T_0) > 1$, and for those zeros one has $T_0 \in 4\mathbb{Z}_2$, $s_0 \in \mathbb{Z}_2$.

Approximate zeros of $L_2(s, \chi)$ satisfy the condition (2.5) in this case as well.

Theorem 6.1. (i) Let $\sigma \in \mathbb{Z}_2$ be an approximate zero of order $l \ge 4$ for $L_2(s, \chi)$ and let

$$\beta = \frac{1 - t - \sigma}{2} = \frac{b}{2} + \beta' \qquad (0 \le b < 2, \, \beta' \in \mathbb{Z}_2) \,.$$

Then

$$\hat{B}^{t+b+2r_n(\beta')}(\theta\omega^b) \equiv 0 \pmod{2^{n+4}} \qquad (n=0,\dots,l-4).$$
 (6.2)

(ii) Conversely, let $\beta = \frac{b}{2} + \beta'$ with $0 \le b < 2$ and $\beta' \in \mathbb{Z}_2$, and assume that the congruences (6.2) hold true. Then $\sigma = 1 - (t + 2\beta)$ is an approximate zero of order l for $L_2(s, \chi)$.

Proof. Let $n \geq 3$. With $w_n = t + b + 2r_n(\beta') \in \mathbb{Z}$ we have $\omega^{t-w_n} = \omega^b$ and $\sigma = 1 - (t + b + 2\beta') \equiv 1 - w_n \pmod{2^n}$. Hence

$$\widetilde{B}^{w_n}(\theta\omega^b) = -L_2(1-w_n,\chi) \equiv -L_2(\sigma,\chi) \pmod{2^{n+1}}.$$
(6.3)

The Kummer congruences (6.1) for k = 1 and h = n - 2 show that

$$\widetilde{B}^{w_n}(\theta\omega^b) \equiv \widetilde{B}^{w_{n-3}}(\theta\omega^b) \pmod{2^{n+1}}.$$

It follows that $L_2(\sigma, \chi) \equiv 0 \pmod{2^l}$ if and only if $\widetilde{B}^{w_{l-4}}(\theta \omega^b) \equiv 0 \pmod{2^l}$. This proves the theorem.

Actually, (6.3) is valid for all $n \ge 0$. Thus one gets for approximate zeros of order l = 1, 2 or 3 congruences of the form of (6.2) but modulo lower 2-powers. In particular, if $L_2(s, \chi)$ has an approximate zero σ of order $l \ge 1$, we have

either
$$\widehat{B}^t(\theta) \equiv 0 \pmod{2^q}$$
 or $\widehat{B}^{t+1}(\theta\omega) \equiv 0 \pmod{2^q}$

with $q = \min(l, 4)$, depending on whether or not $\beta = (1 - t - \sigma)/2$ is integral, respectively. A necessary and sufficient condition for this integrality is that $\sigma \equiv 1 \pmod{2}$ for t = 2 and $\sigma \equiv 0 \pmod{2}$ for t = 3.

By contrast, the Kummer congruences (6.1) yield, for k = 0, that

$$B^m(\psi) \equiv 0 \pmod{2} \qquad (m = 2, 3, \dots) ,$$

whenever ψ is a character with conductor not a 2-power.

Theorem 6.2. Theorem 6.1 holds true, when σ is replaced by a zero $s_0 \in \mathbb{Z}_2$ of $L_2(s, \chi)$ and in (6.2) n assumes all values ≥ 0 .

Proof. Let $l \to \infty$ in Theorem 6.1.

In the following, analogs of Theorems 4.1 and 5.2 are formulated for rational 2-adic zeros only; the corresponding discussion of approximate zeros is left to the reader.

Theorem 6.3. Assume that $\lambda_{\chi} = 1$, $L_2(s, \chi)$ has a rational 2-adic zero s_0 and $\beta = (1 - t - s_0)/2 \in \mathbb{Z}_2$. If, for some $n \ge 1$,

$$\widehat{B}^{t+2r_n}(\theta) \equiv 0 \pmod{2^{n+4}}, \qquad 0 \le r_n < 2^n ,$$

then $r_n = r_n(\beta)$.

Proof. The proof is completely analogous to the proof of Theorem 4.1.

If $\lambda_{\chi} > 1$, then

$$\Delta_2 \tilde{B}^m(\theta) \equiv 0 \pmod{2^{4+\delta}} \tag{6.4}$$

for all $m \equiv t \pmod{2}$; see [8], Theorems 1 and 2, where however the modulus is $2^{3+\delta}$ corresponding to a weaker version of $(6.1)^1$. In the case that $\beta = (1-t-s_0)/2 \notin \mathbb{Z}_2$, we use this observation to formulate the following counterpart to Theorem 6.3 (with no obvious relation to λ_{χ} , however).

Theorem 6.4. Assume that θ is a quadratic character and that $v_2(\Delta_2 \widetilde{B}^{t+1}(\theta \omega)) = 4$, $L_2(s, \chi)$ has a rational 2-adic zero s_0 and $\beta = (1 - t - s_0)/2 = \frac{1}{2} + \beta'$ with $\beta' \in \mathbb{Z}_2$. If, for some $n \ge 1$,

$$\widehat{B}^{t+1+2r_n}(\theta\omega) \equiv 0 \pmod{2^{n+4}}, \qquad 0 \le r_n < 2^n$$

then $r_n = r_n(\beta')$.

Proof. The second assumption implies, by the Kummer congruences, that

$$v_2(\Delta_2 \tilde{B}^m(\theta\omega)) = 4$$

for all $m \equiv t + 1 \pmod{2}$.

Fix $n \ge 1$. The following formulas, for all $m \equiv t + 1 \pmod{2}$, correspond to (5.1) and (5.2):

$$\Delta_{2^n} \widetilde{B}^m(\theta\omega) = \sum_{k=1}^{2^{n-1}} {\binom{2^{n-1}}{k}} \Delta_2^k \widetilde{B}^m(\theta\omega), \tag{6.5}$$

where

$$v_2\left(\binom{2^{n-1}}{k}\Delta_2^k \widetilde{B}^m(\theta\omega)\right) \begin{cases} = n+3 & \text{for } k=1, \\ > n+3 & \text{for } 2 \le k \le 2^{n-1}. \end{cases}$$

Hence

$$v_2(\Delta_{2^n} \widetilde{B}^m(\theta\omega)) = n+3 \tag{6.6}$$

whenever $m \equiv t + 1 \pmod{2}$. By (6.2) and (6.1) we may write

$$\widetilde{B}^{t+1+2(r_{n-1}(\beta')+2^{n-1}u)}(\theta\omega) \equiv d_u 2^{n+3} \pmod{2^{n+4}},$$

with $v_2(d_u) \ge 0$, for all $u \ge 0$. Again by (6.1),

$$\Delta_{2^n}^2 \widetilde{B}^m(\theta\omega) \equiv 0 \pmod{2^{n+4}}$$

(even mod 2^{2n+5}) for all $m \ge 1$. By taking $m = t + 1 + 2(r_{n-1}(\beta') + 2^{n-1}u)$ we obtain from this that $\Delta^2 d_u \equiv 0 \pmod{2}$. Therefore,

$$d_u \equiv d_0 + u(d_1 - d_0) \pmod{2}$$
 $(u = 0, 1, ...)$.

Eq. (6.6) shows that $d_0 \not\equiv d_1 \pmod{2}$. Hence there is a unique $u = u_0 \in \{0, 1\}$ such that $d_{u_0} \equiv 0 \pmod{2}$, that is,

$$\widetilde{B}^{t+1+2(r_{n-1}(\beta')+2^{n-1}u_0)}(\theta\omega) \equiv 0 \pmod{2^{n+4}}.$$

This congruence is equivalent to the one in which \tilde{B} is replaced by \hat{B} . Thus the theorem follows from the uniqueness of u_0 .

¹Note an error in [8] in the statement of Theorem 2: when p = 2, the congruence $n \equiv t \pmod{p-1}$ should read $n \equiv t \pmod{2}$.

The method of this proof could also be used to provide an alternative proof for Theorems 4.1 and 6.3.

The following results correspond to Theorems 5.1 and 5.2.

Theorem 6.5. If $\lambda_{\chi} > 1$, then

$$\Delta_{2^n} \widetilde{B}^m(\theta) \equiv 0 \pmod{2^{n+3+\delta}}$$

for all $n \ge 1$ and all $m \equiv t \pmod{2}$.

Proof. Use (6.5), with $\theta\omega$ replaced by θ , together with (6.4) and the Kummer congruences.

Theorem 6.6. Assume that $\lambda_{\chi} > 1$. If $L_2(s, \chi)$ has a rational 2-adic zero s_0 and $\beta = (1 - t - s_0)/2 \in \mathbb{Z}_2$, then

$$\widehat{B}^{t+2r_n(\beta)}(\theta) \equiv 0 \pmod{2^{n+4+\delta}} \qquad (n=0,1,\dots).$$
 (6.7)

Proof. Theorem 6.2 implies that $\widetilde{B}^{t+2r_{n+1}(\beta)}(\theta) \equiv 0 \pmod{2^{n+5}}$. The assertion then follows by virtue of the preceding theorem.

To compare this result with Theorem 6.3 it is illuminating to write down a consequence from (6.7) in the form

 $\widehat{B}^{t+2(r_{n-1}(\beta)+2^{n-1}b)}(\theta) \equiv 0 \pmod{2^{n+3+\delta}} \qquad (n=1,2,\dots),$

where b is any rational integer.

References

- J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, M.A. Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (2001), 89–96.
- [2] L. Carlitz, Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew. Math. 202 (1959), 174–182.
- R. Ernvall, T. Metsänkylä, Computation of the zeros of p-adic L-functions, Math. Comp. 58 (1992), 815–830, S37–S53.
- [4] B. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007), 405–441.
- [5] S. Lang, *Cyclotomic Fields I and II*, combined 2nd ed., Springer-Verlag, New York, 1990.
- [6] H. W. Leopoldt, Eine p-adische Theorie der Zetawerte, II: Die p-adische Γ-Transformation, J. Reine Angew. Math. 274/275 (1975), 224–239.
- T. Metsänkylä, Note on certain congruences for generalized Bernoulli numbers, Arch. Math. (Basel) 30 (1978), 595–598.

- [8] T. Metsänkylä, Iwasawa invariants and Kummer congruences, J. Number Theory 10 (1978), 510–522.
- [9] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer-Verlag, New York, 1997.

Address: Department of Mathematics, University of Turku, FI-20014 Turku, Finland E-mail: taumets@utu.fi Received: 13 December 2007