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Abstract: Rational p-adic zeros of the Leopoldt–Kubota p-adic L-functions give rise to certain
sequences of generalized Bernoulli numbers tending p-adically to zero, and conversely. This
relationship takes different forms depending on whether the corresponding Iwasawa λ-invariant is
one or greater than one. To understand the relationship better it is useful to consider approximate
zeros of those functions.
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1. Introduction

For a prime p and for a nonprincipal even Dirichlet character χ whose conductor
is not divisible by p2 (or by 8, if p = 2), consider the Leopoldt–Kubota p-adic L-
function Lp(s, χ). Let θ denote the p-free component of χ. The aim of the present
article is to study a relationship between rational p-adic zeros of Lp(s, χ) and the
p-divisibility of the Bernoulli numbers Bm(θ) as m tends to infinity. As is to be
expected, this relationship depends on the Iwasawa λ-invariant attached to χ.

Let ω denote the cyclotomic character mod p when p > 2, or the unique
character with conductor 4 when p = 2. The relationship in question is a direct
consequence of the basic formula

Lp(1 −m, χ) = −(1 − χω−m(p)pm−1)
Bm(χω−m)

m
(m = 1, 2, . . . ). (1.1)

It was studied in the recent work [4] by Kellner in the case of ordinary Bernoulli
numbers Bm. The present discussion not only contains an extension to Bm(θ),
including p = 2, but also treats some new aspects and offers proofs different from
[4] that are perhaps more natural and give deeper insight into the results.
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2. Preliminaries

Fix an embedding of the field of algebraic numbers into Cp, the completion of
an algebraic closure of the p-adic field Qp. Let vp denote the p-adic exponential
valuation on Cp, normalized so that vp(p) = 1. A congruence α ≡ β(mod pz) in
Cp means that vp(α− β) ≥ z.

Let α be a rational p-adic integer, that is, α ∈ Zp. We define rn(α) ∈ Z by

rn(α) ≡ α (mod pn), 0 ≤ rn(α) < pn .

To avoid complications occurring for the prime p = 2 we assume throughout
sections 2–5 that p > 2. The case p = 2 is treated in the final section 6.

With the assumptions on χ mentioned above we fix the notation

χ = θωt, 2 ≤ t ≤ p ,

and denote by d the conductor (prime to p) of θ. The reader mainly interested in
the case θ = 1 should keep in mind that t then assumes the values 2, 4, . . . , p− 3.

We introduce the usual difference operator Δcxn = xn+c − xn and recall the
identity

Δcd = (1 + Δc)d − 1. (2.1)

The Kummer congruences for Bm(θ) state, for c divisible by ϕ(ph) =
(p− 1)ph−1, that

Δk
c (1 − θ(p)pm−1)

Bm(θ)
m

≡ 0 (mod phk) (2.2)

whenever k ≥ 0, h ≥ 1, m ≥ 1, with the additional condition m �≡ 0(mod p − 1)
for θ = 1. These congruences, first proved by Carlitz [2], are in fact crucial for the
analyticity of p-adic L-functions. Proofs based on the theory of these functions
were presented in [6] and [7].

Recall that Lp(s, χ) is defined and analytic for all s ∈ Cp satisfying vp(s) >
−1 + 1

p−1 . Moreover,
Lp(s, χ) = fχ((1 + dp)s − 1), (2.3)

where

fχ(T ) =
∞∑

i=0

ai(χ)T i ∈ Oθ[[T ]]

is the Iwasawa power series. Here Oθ is the valuation ring of the field Qp(θ)
generated by the values of θ.

By the λ-invariant attached to χ we mean

λχ = min{ i ≥ 0 | vp(ai(χ)) = 0 } ,
that is, the λ-invariant of the power series fχ. This power series defines an analytic
function on the disc DT = {T ∈ Cp | vp(T ) > 0}, and it follows from the p-adic
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Weierstrass Preparation Theorem ([9], Theorem 7.3) that fχ has λχ zeros (counting
multiplicities) in DT . Indeed, these zeros are exactly the zeros of a “distinguished”
polynomial of degree λχ belonging to Oθ[T ].

It is easy to see (e.g., [3]) that the zeros T0 of fχ(T ) satisfying vp(T0) > 1
p−1

correspond bijectively to the zeros s0 of Lp(s, χ); this correspondence is given by

T0 = (1 + dp)s0 − 1, s0 =
log(1 + T0)
log(1 + dp)

. (2.4)

In particular, s0 = 0 if and only if T0 = 0, and vp(s0) = vp(T0) − 1 otherwise.
Now consider rational p-adic zeros s0, that is, zeros s0 ∈ Qp. Trivially, s0 ∈ Qp

if and only if T0 ∈ Qp. Since the positive values of vp in Qp are ≥ 1 > 1
p−1 , we

find that the zeros s0 ∈ Qp correspond bijectively to the zeros T0 ∈ Qp, and for
those zeros one has T0 ∈ pZp, s0 ∈ Zp.

In general, the zeros T0 of fχ of course belong to an extension of Qp(θ) of degree
≤ λχ. Thus, if λχ = 1, the unique zero T0 is in Qp(θ). If θ = 1 or θ is a quadratic
character, this field is just Qp. For θ = 1, λχ has been computed for all p below
12 million (see [1]); if nonzero, it is always = 1 and so the corresponding zero T0

is in pZp.
But also in the case λχ > 1 there are numerous examples known in which fχ

has rational p-adic zeros T0; see [3].
It will also be useful to introduce approximate zeros of Lp(s, χ). Let us call

σ ∈ Zp an approximate zero of order l(≥ 1) for Lp(s, χ), if

Lp(σ, χ) ≡ 0 (mod pl) .

By [9], Theorem 5.12, rational p-adic integers σ1 and σ2 satisfy the condition

Lp(σ1, χ) ≡ Lp(σ2, χ) (mod pl) whenever σ1 ≡ σ2 (mod pl−1). (2.5)

Hence an approximate zero σ of order l is obtained by approximating a zero s0 ∈ Zp

modulo pl−1. Conversely, when does a given approximate zero σ really approxi-
mate some zero s0? This question, related to Hensel’s lemma, will play a role in
Section 4.

3. Bernoulli numbers tending p-adically to zero

Throughout the following we use the abbreviations

B̂m(θ) = Bm(θ)/m, B̃m(θ) = (1 − θ(p)pm−1)B̂m(θ) .

Theorem 3.1. (i) Let σ ∈ Zp be an approximate zero of order l ≥ 1 for Lp(s, χ)
and let

β =
1 − t− σ

p− 1
(∈ Zp) .
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Then
B̂t+(p−1)rn(β)(θ) ≡ 0 (mod pn+1) (n = 0, . . . , l − 1). (3.1)

(ii) Conversely, let β ∈ Zp and assume that the congruences (3.1) hold true.
Then σ = 1 − (t+ (p− 1)β) is an approximate zero of order l for Lp(s, χ).

Proof. For any n ≥ 0, let

wn = t+ (p− 1)rn(β) .

We have ωt−wn = 1 and σ ≡ 1 − wn(mod pn). Hence, by (1.1) and (2.5),

B̃wn(θ) = −Lp(1 − wn, χ) ≡ −Lp(σ, χ) (mod pn+1) .

This implies both parts of the theorem, with B̃ in place of B̂. The assertions then
follow, since vp(1−θ(p)pwn−1) = 0. One needs here the assumption that t ≥ 2. �

Note that the congruences (3.1) hold for all n in the range 0 ≤ n ≤ l− 1, once
this congruence holds for n = l − 1.

Theorem 3.1 implies that if Lp(s, θωt) (2 ≤ t ≤ p) has an approximate zero of
order 1, then

B̂t(θ) ≡ 0 (mod p) .

More generally, with the mere assumption that λθωt > 0, it is known that one just
has vp(B̂t(θ)) > 0 (e.g., [8]).

By letting l → ∞ in the preceding theorem we immediately get the following
theorem.

Theorem 3.2. (i) Let s0 be a rational p-adic zero of Lp(s, χ) (hence s0 ∈ Zp) and
let

β =
1 − t− s0
p− 1

.

Then
B̂t+(p−1)rn(β)(θ) ≡ 0 (mod pn+1) (n = 0, 1, . . . ). (3.2)

(ii) Conversely, let β ∈ Zp and assume that the congruences (3.2) hold true.
Then s0 = 1 − (t+ (p− 1)β) ∈ Zp is a zero of Lp(s, χ).

For part (ii) of Theorem 3.2, we can replace the moduli pn+1 in (3.2) by any
pzn , where the sequence (zn) of rational numbers tends to infinity.

A by-product from part (i) of Theorem 3.2 is that the sequence (rn(β)) tends
to infinity in Z, in other words, that β cannot be a nonnegative rational integer
(under the given assumption). This is easy to prove directly, too.

Suppose, for a moment, that the value t = p is reduced to t = 1. Then one
obtains, with β = −s0/(p− 1), the congruences

B̂1+(p−1)rn(β)(θ) ≡ 0 (mod pn+1) (n = 0, 1, . . . ) ,
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provided vp(1 − θ(p)) = 0. If vp(1 − θ(p)) > 0, these congruences are still valid
for n ≥ n0, say, where n0 is the least suffix such that rn0(β) > 0. Such an n0 of
course exists if s0 �= 0.

If t = 1 and s0 = 0, then wn = 1 for all n ≥ 0 and the reasoning above produces
nothing but the equation

(1 − θ(p))B̂1(θ) = 0, (3.3)

which is equivalent to θ(p) = 1. This is a well-known case in which λχ is “trivially”
nonzero.

Now return to the original notation 2 ≤ t ≤ p.
Example. Assume that Lp(s, χ) has the zero s0 = 0. Then β = (t− 1)

∑∞
j=0 p

j

and wn = t+ (t− 1)(pn − 1), so that the congruences in Theorem 3.2 become

B̂1+(t−1)pn

(θ) ≡ 0 (mod pn+1) (n = 0, 1, . . . ) .

In particular, if t = p, then the preceding discussion shows that θ(p) = 1. In this
case we can also derive these congruences directly by applying Kummer congru-
ences to the trivial relation (3.3).

4. Strict uniqueness

Let s1 and s2 be two rational p-adic zeros of Lp(s, χ) with the corresponding β1 and
β2, respectively, defined as in Theorem 3.2. Since s1 �= s2 if and only if β1 �= β2,
we see that the preceding correspondence between different s0 and the sequences
(rn(β)) satisfying (3.2) is bijective. In particular, if there is but one rational p-adic
zero s0 (not counting multiplicities), then the infinite sequence (rn(β)) is unique.

In the case that λχ = 1, the following stronger uniqueness result holds true.

Theorem 4.1. Assume that λχ = 1 and that Lp(s, χ) has an approximate zero σ
of order l ≥ 2 (or, alternatively, a rational p-adic zero s0). If, for some n in the
range 1 ≤ n ≤ l− 1 (or in the range n ≥ 1, respectively),

B̂t+(p−1)rn(θ) ≡ 0 (mod pn+1), 0 ≤ rn < pn ,

then rn = rn(β) with β defined in Theorem 3.1 (or Theorem 3.2, respectively).

Proof. One has to show that rn is unique mod pn. By Theorem 3.1, it is enough
to show that the congruence

Lp(σ, χ) ≡ 0 (mod pn+1)

determines σ uniquely mod pn. Passing over to the Iwasawa power series we find,
by (2.3) and (2.4), that this amounts to proving that the conditions

fχ(τ) ≡ 0 (mod pn+1), τ ≡ 0 (mod p) (4.1)

determine τ uniquely mod pn+1.
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Since λχ = 1, the derivative of fχ satisfies

vp(f ′
χ(τ)) = vp(a1(χ)) = 0 .

The assertion follows from this by the general principles of Newton’s p-adic tangent
method. Indeed, by writing

fχ(T ) = (T − τ)g(T ) + fχ(τ), g(T ) ∈ Oθ[[T ]] ,

we first have f ′
χ(τ) = g(τ). If τ0 satisfies the conditions (4.1), then τ0 ≡ τ(mod p)

and we obtain 0 = vp(f ′
χ(τ)) = vp(g(τ)) = vp(g(τ0)). The equation

fχ(τ0) = (τ0 − τ)g(τ0) + fχ(τ)

then yields τ0 ≡ τ(mod pn+1). �

As for the assumptions in Theorem 4.1, note that if Qp(θ) = Qp, then the
assumption λχ = 1 implies that Lp(s, χ) has a rational p-adic zero.

Note a by-product from the preceding proof: Assume that λχ = 1 and Lp(s, χ)
has a rational p-adic zero s0. If σ is an approximate zero of order l ≥ 2 for Lp(s, χ),
then

σ ≡ s0 (mod pl−1) .

In the case θ = 1 Theorem 4.1 is essentially due to Kellner [4]. He also used it
to compute (approximations of) zeros of Lp(s, ωt).

5. Sharper divisibility

If λχ > 1, it turns out that the congruences of Theorems 3.1 and 3.2 can be
sharpened. This is a consequence of the following “sharper Kummer congruences”.

Let δ denote the inverse of the ramification index of Qp(θ)/Qp. Note that
0 < δ ≤ 1; δ is the least positive vp-value in the field Qp(θ).

Theorem 5.1. If λχ > 1, then

Δϕ(pn)B̃
m(θ) ≡ 0 (mod pn+δ)

for all n ≥ 1 and all m ≡ t(mod p− 1).

Proof. Fix n and m as in the theorem. From λχ > 1 it follows ([8], Theorems 1
and 2) that

Δp−1(B̃m(θ)) ≡ 0 (mod p1+δ) .

By (2.1),

Δ(p−1)pn−1B̃m(θ) = pn−1Δp−1B̃
m(θ) +

pn−1∑
k=2

(
pn−1

k

)
Δk

p−1B̃
m(θ). (5.1)
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Here the first term on the right hand side is of vp-value ≥ n+ δ. So are also the
remaining terms, since for k in the range 2 ≤ k ≤ pn−1 (for n > 1) one finds,
making use of (2.2),

vp

((
pn−1

k

)
Δk

p−1B̃
m(θ)

)
= n−1−vp(k)+vp(Δk

p−1B̃
m(θ)) ≥ n−1−vp(k)+k > n .

(5.2)
�

Theorem 5.2. Assume that λχ > 1. If Lp(s, χ) has an approximate zero σ ∈ Zp

of order l ≥ 2, then

B̂t+(p−1)rn(β)(θ) ≡ 0 (mod pn+1+δ) (n = 0, . . . , l − 2) ,

where β = 1−t−σ
p−1 as before. If Lp(s, χ) has a rational p-adic zero s0, then the

same congruences hold for all n ≥ 0, with β = 1−t−s0
p−1 .

Proof. As to the former part, we see from Theorem 3.1 that B̃t+(p−1)rn+1(β)(θ)
≡ 0 (mod pn+2) for n = 0, . . . , l− 2. Theorem 5.1 then implies the assertion, first
with B̃ in place of B̂.

The latter part follows similarly from Theorem 3.2, or simply on letting l → ∞
above. �

If λχ > 1 and Lp(s, χ) has a rational p-adic zero s0, the preceding argument
also shows that

B̂t+(p−1)r(θ) ≡ 0 (mod pn+δ) (n = 1, 2, . . . )

for every r ≡ rn−1(β)(mod pn−1). This result should be compared with Theorem
4.1. Recall that δ = 1 when Qp(θ)/Qp is unramified.

To conclude, consider the case of χ mod p, that is, χ = ωt, t = 2, 4, . . . , p− 3.
In this case the last results imply the following corollary.

Corollary 5.1. If λωt > 1 and Lp(s, ωt) has an approximate zero σ of order l ≥ 2,
then

B̂t+(p−1)(rn(β)+bpn) ≡ 0 (mod pn+2) (n = 0, . . . , l − 2), (5.3)

where β is as above and b is any rational integer. In particular, for l = 2,

Bt+p−1 ≡ Bt ≡ 0 (mod p2) .

This result has a connection to the theory of cyclotomic fields. Let Ak denote
the p-part of the ideal class group of the pk+1th cyclotomic field (k ≥ 0). By
the Herbrand–Ribet theorem, the eigenspace of Ak corresponding to the character
ωp−t is nontrivial if and only if λωt > 0. This condition is equivalent to B1(ωt−1) ≡
0(mod p), or also to Bt ≡ 0(mod p). Given that this is satisfied and assuming the
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Vandiver conjecture, we know ([9], Corollary 10.17) that the eigenspace in question
is cyclic of order pk+1 provided that

B1(ωt−1) �≡ 0, B̂t �≡ B̂t+p−1 (mod p2). (5.4)

The latter incongruence fails if and only if λωt > 1. Looking at the former incon-
gruence, we first observe that

B1(ωt−1) ≡ B(t−1)p4+1 ≡ B̂(t−1)p+1 (mod p2)

(for the first step, see, e.g., [8], Lemma 1). Hence B1(ωt−1) ≡ 0(mod p2) is
equivalent to

B̂t+(p−1)(t−1) ≡ 0 (mod p2). (5.5)

By Corollary 5.1, this congruence is valid if (1o) λωt > 1 and (2o) Lp(s, ωt) has an
approximate zero σ of order 2. It follows from Theorem 3.1 that, conversely, (5.5)
implies (2o) (even without any assumption on λωt). But this can be seen directly,
too: the choice σ = 0 works, since

Lp(0, ωt) = fωt(0) = −B1(ωt−1)

(cf. Example in Section 3).
Computations have shown (see [1]) that in the case λωt > 0 the incongru-

ences (5.4) as well as the incongruence Bt �≡ 0(mod p2) always hold in the range
p < 12 · 106.

Kellner ([4], p. 412) illustrates the congruences (5.3) by a graph, comparing it
with his result corresponding to Theorem 4.1. He leaves open the question about
the maximum value of n for which the congruences (5.3) hold true. From Corollary
5.1 and Theorem 3.1 we find that this maximum is l − 2, where l is the maximal
order of the corresponding approximate zero of Lp(s, ωt). In particular, the chain
of congruences (5.3) is infinite exactly for every rational p-adic zero of Lp(s, ωt).

Since these congruences express a rather strong condition in comparison to
the one given by Kummer congruences, one may be tempted to suggest that they
never occur, in other words, that the nonzero values of λωt are always = 1, at
least in the presence of an approximate zero σ of high order. But one should be
cautios, because in the more general case χ = θωt it is well possible that λχ > 1
and Lp(s, χ) has rational p-adic zeros, even for θ satisfying Qp(θ) = Qp.

Here is one such example from [3] (p. S40). Let p = 5 and χ = θω2, where θ
is the quadratic character mod 2504. Then λχ = 2 and Lp(s, χ) has two rational
p-adic zeros, approximately s1 = 2.41303, s2 = 3.00334 (in the usual 5-adic “dec-
imal” notation). The Iwasawa power series in Z5[[T ]] is, with the accuracy given
in [3],

fχ(T ) = 0.010 + 0.00T + 1.3T 2 + 4T 3 + · · · ,

and its zeros are approximately T1 = 0.331200, T2 = 0.204143.
For the size of λωt , see also Washington’s heuristic discussion in [5], pp. 261–265.
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6. The case p = 2

In the case p = 2 we take χ = θωt with t = 2 or 3. Hence θ �= 1. The notation
below is the same as in the case p > 2, unless stated otherwise.

We will apply Kummer’s congruences modulo 2-powers in the following form:

Δk
2h(1 − ψ(2)2m−1)B̂m(ψ) ≡ 0 (mod 2(h+2)k+1) (6.1)

for all k ≥ 0, h ≥ 1, m ≥ 1, provided the conductor of ψ is not a 2-power.
These congruences, which are slightly stronger than those given in [6] (p. 239), are
obtained from [7], formula (2), by induction on h, using the formula

Δk
2h =

k∑
i=0

(
k

i

)
2k−iΔk+i

2h−1

(choose c = 2h−1, d = 2 in the identity (2.1) of the present work). Note that the
Iwasawa power series fχ is two times the power series appearing in [7].

The function L2(s, χ) is defined for v2(s) > −1 and can be expressed by means
of the Iwasawa power series in the form

L2(s, χ) = fχ((1 + 4d)s − 1) .

This time we have fχ(T ) ∈ 2Oθ[[T ]] and write

fχ(T ) = 2
∞∑

i=0

ai(χ)T i .

The λ-invariant is again defined by λχ = min{ i ≥ 0 | v2(ai(χ)) = 0 }. In the disc
DT = {T ∈ C2 | v2(T ) > 0} the function fχ has λχ zeros (counting multiplicities).
The zeros T0 satisfying v2(T0) > 1 correspond bijectively to the zeros s0 of L2(s, χ);
this correspondence is given by

T0 = (1 + 4d)s0 − 1, s0 =
log(1 + T0)
log(1 + 4d)

.

Thus, if s0 �= 0 (or, equivalently, T0 �= 0) then v2(s0) = v2(T0) − 2.
It follows that the rational 2-adic zeros s0 correspond bijectively to the zeros

T0 ∈ Q2 satisfying v2(T0) > 1, and for those zeros one has T0 ∈ 4Z2, s0 ∈ Z2.
Approximate zeros of L2(s, χ) satisfy the condition (2.5) in this case as well.

Theorem 6.1. (i) Let σ ∈ Z2 be an approximate zero of order l ≥ 4 for L2(s, χ)
and let

β =
1 − t− σ

2
=
b

2
+ β′ (0 ≤ b < 2, β′ ∈ Z2) .

Then
B̂t+b+2rn(β′)(θωb) ≡ 0 (mod 2n+4) (n = 0, . . . , l− 4). (6.2)

(ii) Conversely, let β = b
2 + β′ with 0 ≤ b < 2 and β′ ∈ Z2, and assume that

the congruences (6.2) hold true. Then σ = 1 − (t+ 2β) is an approximate zero of
order l for L2(s, χ).
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Proof. Let n ≥ 3. With wn = t + b + 2rn(β′) ∈ Z we have ωt−wn = ωb and
σ = 1 − (t+ b+ 2β′) ≡ 1 − wn(mod 2n). Hence

B̃wn(θωb) = −L2(1 − wn, χ) ≡ −L2(σ, χ) (mod 2n+1). (6.3)

The Kummer congruences (6.1) for k = 1 and h = n− 2 show that

B̃wn(θωb) ≡ B̃wn−3(θωb) (mod 2n+1) .

It follows that L2(σ, χ) ≡ 0(mod 2l) if and only if B̃wl−4(θωb) ≡ 0(mod 2l). This
proves the theorem. �

Actually, (6.3) is valid for all n ≥ 0. Thus one gets for approximate zeros of
order l = 1, 2 or 3 congruences of the form of (6.2) but modulo lower 2-powers. In
particular, if L2(s, χ) has an approximate zero σ of order l ≥ 1, we have

either B̂t(θ) ≡ 0 (mod 2q) or B̂t+1(θω) ≡ 0 (mod 2q)

with q = min(l, 4), depending on whether or not β = (1 − t − σ)/2 is integral,
respectively. A necessary and sufficient condition for this integrality is that σ ≡ 1
(mod 2) for t = 2 and σ ≡ 0(mod 2) for t = 3.

By contrast, the Kummer congruences (6.1) yield, for k = 0, that

B̂m(ψ) ≡ 0 (mod 2) (m = 2, 3, . . . ) ,

whenever ψ is a character with conductor not a 2-power.

Theorem 6.2. Theorem 6.1 holds true, when σ is replaced by a zero s0 ∈ Z2 of
L2(s, χ) and in (6.2) n assumes all values ≥ 0.

Proof. Let l → ∞ in Theorem 6.1. �

In the following, analogs of Theorems 4.1 and 5.2 are formulated for rational
2-adic zeros only; the corresponding discussion of approximate zeros is left to the
reader.

Theorem 6.3. Assume that λχ = 1, L2(s, χ) has a rational 2-adic zero s0 and
β = (1 − t− s0)/2 ∈ Z2. If, for some n ≥ 1,

B̂t+2rn(θ) ≡ 0 (mod 2n+4), 0 ≤ rn < 2n ,

then rn = rn(β).

Proof. The proof is completely analogous to the proof of Theorem 4.1. �

If λχ > 1, then
Δ2B̃

m(θ) ≡ 0 (mod 24+δ) (6.4)
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for allm ≡ t(mod 2); see [8], Theorems 1 and 2, where however the modulus is 23+δ

corresponding to a weaker version of (6.1)1. In the case that β = (1−t−s0)/2 /∈ Z2,
we use this observation to formulate the following counterpart to Theorem 6.3
(with no obvious relation to λχ, however).

Theorem 6.4. Assume that θ is a quadratic character and that v2(Δ2B̃
t+1 (θω)) =

4, L2(s, χ) has a rational 2-adic zero s0 and β = (1 − t − s0)/2 = 1
2 + β′ with

β′ ∈ Z2. If, for some n ≥ 1,

B̂t+1+2rn(θω) ≡ 0 (mod 2n+4), 0 ≤ rn < 2n ,

then rn = rn(β′).

Proof. The second assumption implies, by the Kummer congruences, that

v2(Δ2B̃
m(θω)) = 4

for all m ≡ t+ 1(mod 2).
Fix n ≥ 1. The following formulas, for all m ≡ t + 1(mod 2), correspond to

(5.1) and (5.2):

Δ2nB̃m(θω) =
2n−1∑
k=1

(
2n−1

k

)
Δk

2B̃
m(θω), (6.5)

where

v2

((
2n−1

k

)
Δk

2B̃
m(θω)

) {
= n+ 3 for k = 1,
> n+ 3 for 2 ≤ k ≤ 2n−1.

Hence
v2(Δ2nB̃m(θω)) = n+ 3 (6.6)

whenever m ≡ t+ 1(mod 2). By (6.2) and (6.1) we may write

B̃t+1+2(rn−1(β
′)+2n−1u)(θω) ≡ du2n+3 (mod 2n+4),

with v2(du) ≥ 0, for all u ≥ 0. Again by (6.1),

Δ2
2nB̃m(θω) ≡ 0 (mod 2n+4)

(even mod 22n+5) for all m ≥ 1. By taking m = t + 1 + 2(rn−1(β′) + 2n−1u) we
obtain from this that Δ2du ≡ 0(mod 2). Therefore,

du ≡ d0 + u(d1 − d0) (mod 2) (u = 0, 1, . . . ) .

Eq. (6.6) shows that d0 �≡ d1(mod 2). Hence there is a unique u = u0 ∈ {0, 1}
such that du0 ≡ 0(mod 2), that is,

B̃t+1+2(rn−1(β′)+2n−1u0)(θω) ≡ 0 (mod 2n+4) .

This congruence is equivalent to the one in which B̃ is replaced by B̂. Thus the
theorem follows from the uniqueness of u0. �

1Note an error in [8] in the statement of Theorem 2: when p = 2, the congruence
n ≡ t(mod p − 1) should read n ≡ t(mod 2).
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The method of this proof could also be used to provide an alternative proof for
Theorems 4.1 and 6.3.

The following results correspond to Theorems 5.1 and 5.2.

Theorem 6.5. If λχ > 1, then

Δ2nB̃m(θ) ≡ 0 (mod 2n+3+δ)

for all n ≥ 1 and all m ≡ t(mod 2).

Proof. Use (6.5), with θω replaced by θ, together with (6.4) and the Kummer
congruences. �

Theorem 6.6. Assume that λχ > 1. If L2(s, χ) has a rational 2-adic zero s0 and
β = (1 − t− s0)/2 ∈ Z2, then

B̂t+2rn(β)(θ) ≡ 0 (mod 2n+4+δ) (n = 0, 1, . . . ). (6.7)

Proof. Theorem 6.2 implies that B̃t+2rn+1(β)(θ) ≡ 0 (mod 2n+5). The assertion
then follows by virtue of the preceding theorem. �

To compare this result with Theorem 6.3 it is illuminating to write down a con-
sequence from (6.7) in the form

B̂t+2(rn−1(β)+2n−1b)(θ) ≡ 0 (mod 2n+3+δ) (n = 1, 2, . . . ) ,

where b is any rational integer.
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