ON THE CLASS NUMBER OF A COMPOSITUM OF REAL QUADRATIC FIELDS: AN APPROACH VIA CIRCULAR UNITS

Radan Kučera

Dedicated to Professor Władysław Narkiewicz at the occasion of his seventieth birthday

Abstract

For a compositum k of quadratic number fields new explicit units are constructed by taking power-of-two roots of circular units. These units are used to obtain a result concerning the divisibility of the class number of k by a power of 2 .

Keywords: compositum of real quadratic fields, class number, group of circular units.

1. Introduction

Let k be a compositum of quadratic number fields and let -1 not be a square in the genus field K of k in the narrow sense. This paper resumes the study of the group E of all units of k that started in [3], where a group of circular units C of k, slightly bigger than the Sinnott's one defined in [4], has been introduced and an explicit basis of C has been found. Using this basis, the index $[E: C]$ has been computed as a product of several factors, one of them being the class number h^{+} of the maximal real subfield k^{+}of k. This index formula has been used to get some divisibility relations for h^{+}(see [3], [2], [1]). The aim of this paper is to try to improve results of [3] in the following direction: a new group of units $C_{1} \subseteq K$ is defined by means of explicit generators. If K is real and $k \neq K$ then $C \subsetneq C_{1} \subseteq E$, but in general (i.e., if K is imaginary) there are cases where C_{1} is not a subgroup of E. Nevertheless C_{1} still can be used to obtain divisibility relations for h^{+}that are stronger than what is given by genus theory (if both $[k: \mathbb{Q}]>2$ and $[K: k]>2$). It seems to be interesting that the index $\left(E: C_{1}\right)$ is much easier to compute than $[E: C]$ (compare the index formulae given by Theorem 3.1 and by [3, Theorem 1]). The main results of this paper (see Theorems 3.2 and 4.1) can be summarized as follows:

[^0]Theorem 1.1. If k is a compositum of real quadratic fields such that -1 is not a square in the genus field K of k in the narrow sense then the class number h of k is divisible by the following power of 2:

$$
\left.\frac{[k: \mathbb{Q}]}{2} \cdot\left(\frac{[K: k]}{4}\right)^{([k: \mathbb{Q}] / 2)-1} \right\rvert\, h .
$$

Moreover, if K is real then even

$$
\left.2 \cdot[k: \mathbb{Q}] \cdot\left(\frac{[K: k]}{4}\right)^{[k: \mathbb{Q}] / 2} \right\rvert\, h
$$

To compare the strength of this result, let us notice that genus theory gives only $\left.\frac{[K: k]}{2} \right\rvert\, h$ and $[K: k] \mid h$, respectively.

2. Definitions and basic results

Recall that k is a compositum of quadratic fields such that -1 is not a square in the genus field K of k in the narrow sense (so k can be both real and imaginary). This condition can be written equivalently as follows: either 2 does not ramify in k and $k=\mathbb{Q}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{s}}\right)$, where d_{1}, \ldots, d_{s} with $s \geq 1$ are square-free integers all congruent to 1 modulo 4 , or 2 ramifies in k and there is uniquely determined $x \in$ $\{2,-2\}$ such that $k=\mathbb{Q}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{s}}\right)$, where d_{1}, \ldots, d_{s} with $s \geq 1$ are squarefree integers such that $d_{i} \equiv 1(\bmod 4)$ or $d_{i} \equiv x(\bmod 8)$ for each $i \in\{1, \ldots, s\}$. In the former case, let

$$
J=\{p \in \mathbb{Z} ; p \equiv 1(\bmod 4),|p| \text { is a prime ramifying in } k\},
$$

and, in the latter case, let

$$
J=\{x\} \cup\{p \in \mathbb{Z} ; p \equiv 1(\bmod 4),|p| \text { is a prime ramifying in } k\} .
$$

For any $p \in J$, let

$$
n_{\{p\}}= \begin{cases}|p| & \text { if } p \text { is odd } \\ 8 & \text { if } p \text { is even }\end{cases}
$$

For any $S \subseteq J$ let (by convention, an empty product is 1)

$$
n_{S}=\prod_{p \in S} n_{\{p\}}, \quad \zeta_{S}=e^{2 \pi i / n_{S}}, \quad \mathbb{Q}^{S}=\mathbb{Q}\left(\zeta_{S}\right), \quad K_{S}=\mathbb{Q}(\sqrt{p} ; p \in S) .
$$

It is easy to see that $K_{J}=K$ and that n_{J} is the conductor of k. Let us define

$$
\varepsilon_{S}= \begin{cases}1 & \text { if } S=\emptyset \\ \frac{1}{\sqrt{p}} \mathrm{~N}_{\mathbb{Q}^{S} / K_{S}}\left(1-\zeta_{S}\right) & \text { if } S=\{p\}, \\ \mathrm{N}_{\mathbb{Q}^{S} / K_{S}}\left(1-\zeta_{S}\right) & \text { if } \# S>1,\end{cases}
$$

$k_{S}=k \cap K_{S}$ and $\eta_{S}=\mathrm{N}_{K_{S} / k_{S}}\left(\varepsilon_{S}\right)$ for any $S \subseteq J$. It is easy to see that ε_{S} and η_{S} are units in K_{S} and k_{S}, respectively. For any $p \in J$ let σ_{p} be the non-trivial automorphism in $\operatorname{Gal}\left(K_{J} / K_{J \backslash\{p\}}\right)$. Then $G=\operatorname{Gal}\left(K_{J} / \mathbb{Q}\right)$ can be considered as a (multiplicative) vector space over \mathbb{F}_{2} with \mathbb{F}_{2}-basis $\left\{\sigma_{p} ; p \in J\right\}$. Let W be the group of roots of unity in k (it is easy to see that $\# W$ is 2 or 6). The paper [3] was devoted to the study of the group C generated by $W \cup\left\{\eta_{S}^{\sigma} ; S \subseteq J, \sigma \in G\right\}$. The aim of this paper is to show that some power-of-two roots of the generators of C lie in K and to study the group C_{1} of units generated by these roots. We shall be more specific in a moment. For any $S \subseteq J$ let D_{S} be the group generated by $\left\{\varepsilon_{T} ; T \subseteq S\right\}$.

Lemma 2.1. For any $S \subseteq J$ and any $\sigma \in G$ we have $\varepsilon_{S}^{1+\sigma}= \pm \prod_{T \subseteq S} \varepsilon_{T}^{2 a_{T}}$ for suitable $a_{T} \in \mathbb{Z}$.

Proof. This is a direct consequence of [3, Lemma 2], because $\varepsilon_{S}^{1+\sigma}=\varepsilon_{S}^{2} / \varepsilon_{S}^{1-\sigma}$.
Since -1 is not a square in K, the only power-of-two roots of unity in K are ± 1. Therefore the following proposition well defines $\varkappa_{S} \in K_{S}$ up to sign.

Proposition 2.1. For any $S \subseteq J$ there is $\varkappa_{S} \in D_{S}$ such that $\varkappa_{S}^{\left[K_{S}: k_{S}\right]}= \pm \eta_{S}$.
Proof. It is easy to see that $\operatorname{Gal}\left(K_{S} / k_{S}\right)$ is a subspace of the (multiplicative) vector space $\operatorname{Gal}\left(K_{S} / \mathbb{Q}\right)$ over \mathbb{F}_{2}. Let $\alpha_{1}, \ldots, \alpha_{r}$ be a basis of $\operatorname{Gal}\left(K_{S} / k_{S}\right)$, then $\eta_{S}=\mathrm{N}_{K_{S} / k_{S}}\left(\varepsilon_{S}\right)=\varepsilon_{S}^{\left(1+\alpha_{1}\right) \cdots\left(1+\alpha_{r}\right)}$ and $\left[K_{S}: k_{S}\right]=2^{r}$. The proposition follows by means of induction with respect to r using Lemma 2.1.

Let C_{1} be the group generated by $W \cup\left\{\varkappa_{S}^{\sigma} ; S \subseteq J, \sigma \in G\right\}$.
Lemma 2.2. For any $S \subseteq J$ and any $\sigma \in G$ we have $\varkappa_{S}^{1-\sigma}= \pm \prod_{T \subseteq S} \varkappa_{T}^{2 a_{T}}$ for suitable $a_{T} \in \mathbb{Z}$.

Proof. In the proof of [3, Lemma 3] we have derived the following formula

$$
\eta_{S}^{1-\sigma}= \pm \prod_{T \subseteq S} \eta_{T}^{2 a_{T}\left[K_{S}: k_{S} K_{T}\right]}
$$

where $a_{T} \in \mathbb{Z}$. Therefore

$$
\left(\varkappa_{S}^{1-\sigma}\right)^{\left[K_{S}: k_{S}\right]}= \pm \prod_{T \subseteq S} \varkappa_{T}^{2 a_{T}\left[K_{S}: k_{S} K_{T}\right]\left[K_{T}: k_{T}\right]} .
$$

We have $k_{S} \cap K_{T}=k \cap K_{S} \cap K_{T}=k \cap K_{T}=k_{T}$ and so $\left[K_{T}: k_{T}\right]=\left[k_{S} K_{T}: k_{S}\right]$. The lemma follows as the only power-of-two roots of unity in K are ± 1.

Let k^{+}be the maximal real subfield of k and let

$$
X=\left\{\xi \in \widehat{G} ; \xi(\sigma)=1 \text { for all } \sigma \in \operatorname{Gal}\left(K_{J} / k^{+}\right)\right\},
$$

where \widehat{G} is the character group of G. Then X can be viewed also as the group of all Dirichlet characters corresponding to k^{+}. For any $\chi \in X$ let

$$
S_{\chi}=\left\{p \in J ; \chi\left(\sigma_{p}\right)=-1\right\},
$$

hence $n_{S_{\chi}}$ is the conductor of χ.
Theorem 2.1. The set $B=\left\{\varkappa_{S_{\chi}} ; \chi \in X, \chi \neq 1\right\}$ is a \mathbb{Z}-basis of C_{1}.
Proof. Lemma 2.2 implies that C_{1} is generated by $W \cup\left\{\varkappa_{S} ; S \subseteq J\right\}$. Let us suppose that $S \subseteq J$ and that $S \neq S_{\chi}$ for all $\chi \in X$. In the proof of [3, Lemma 5] we have derived the following formula for such a set S; here $T \subseteq J$ and $\rho \in W$:

$$
\rho \eta_{S}^{2}=\prod_{p \in S \cap T}\left(\mathrm{~N}_{k_{S} / k_{S \backslash\{p\}}}\left(\eta_{S}\right)\right)^{\left[K_{S}: k_{S} K_{S \backslash\{p\}}\right]} \Pi_{q \in S \cap T, q<p}\left(-\sigma_{q}\right) .
$$

Due to [3, Lemma 4] we have

$$
\mathrm{N}_{k_{S} / k_{S \backslash\{p\}}}\left(\eta_{S}\right)= \pm \eta_{S \backslash\{p\}}^{1-\operatorname{Frob}\left(|p|, k_{S \backslash\{p\}}\right)}
$$

where $\operatorname{Frob}\left(|p|, k_{S \backslash\{p\}}\right)$ is the Frobenius automorphism of $|p|$ in $k_{S \backslash\{p\}}$ and so
$\rho \varkappa_{S}^{2\left[K_{S}: k_{S}\right]}= \pm \prod_{p \in S \cap T}\left(\varkappa_{S \backslash\{p\}}^{1-\operatorname{Frob}\left(|p|, k_{S \backslash\{p\}}\right)}\right)^{\left[K_{S \backslash\{p\}}: k_{S \backslash\{p\}}\right]\left[K_{S}: k_{S} K_{S \backslash\{p\}}\right]} \prod_{q \in S \cap T, q<p}\left(-\sigma_{q}\right)$.
We have $\left[K_{S \backslash\{p\}}: k_{S \backslash\{p\}}\right]\left[K_{S}: k_{S} K_{S \backslash\{p\}}\right]=\left[K_{S}: k_{S}\right]$ and Lemma 2.2 implies that

$$
\rho \varkappa_{S}^{2\left[K_{S}: k_{S}\right]}= \pm\left(\prod_{T \subsetneq S} \varkappa_{T}^{2 a_{T}}\right)^{\left[K_{S}: k_{S}\right]}
$$

for suitable $a_{T} \in \mathbb{Z}$. Therefore

$$
\rho_{1}=\varkappa_{S} \prod_{T \subsetneq S} \varkappa_{T}^{-a_{T}}
$$

is a root of unity in K such that $\rho_{1}^{2\left[K_{S}: k_{s}\right]}= \pm \rho^{-1} \in W$. This gives that $\rho_{1} \in W$ because $\# W$ is 2 or 6 and -1 is not a square in K. Hence $B \cup W$ is a system of generators of C_{1}. The definition of C_{1} implies that C_{1} and C have the same \mathbb{Z}-rank. Moreover, [3, Theorem 1] states that the \mathbb{Z}-rank of C equals ($\# X$) - 1 and the theorem follows.

Corollary 2.1. The index of C in C_{1} is equal to $\left[C_{1}: C\right]=\prod_{\chi \in X}\left[K_{S_{\chi}}: k_{S_{\chi}}\right]$.
Proof. [3, Theorem 1 and Lemma 5] gives that $\left\{\eta_{S_{\chi}} ; \chi \in X, \chi \neq 1\right\}$ is a \mathbb{Z}-basis of C. Proposition 2.1 implies that the transition matrix is the diagonal matrix $\operatorname{diag}\left(\left[K_{S_{\chi}}: k_{S_{\chi}}\right]\right)_{\chi \in X, \chi \neq 1}$. The corollary follows as the torsion subgroups of C and C_{1} coincide.

3. The index of $\left(E: C_{1}\right)$

The index $[E: C]$ is computed in $\left[3\right.$, Theorem 1] by means of the class number h^{+} of k^{+}. To get a lower bound for the divisibility of h^{+}by a power of 2 , it is enough to obtain a lower bound for the divisibility of the index $[E: C]$. Unfortunately this lower bound is not the index $\left[C_{1}: C\right]$ because C_{1} is not a subgroup of E in general. So we shall consider the intersection $C_{1} \cap E=C_{1} \cap k$.

Lemma 3.1. For any $\varepsilon \in C_{1}$ and any $\sigma \in \operatorname{Gal}(K / k)$ let $\chi_{\varepsilon}(\sigma)=\varepsilon^{1-\sigma}$. Then $\chi_{\varepsilon}: \operatorname{Gal}(K / k) \rightarrow\{1,-1\}$ is a homomorphism. Moreover,

$$
\tilde{\chi}: C_{1} \rightarrow \widehat{\operatorname{Gal(K/k})},
$$

where $\tilde{\chi}(\varepsilon)=\chi_{\varepsilon}$, is a homomorphism whose kernel $\operatorname{ker} \tilde{\chi}=C_{1} \cap E$.
Proof. For any $S \subseteq J$ we have $\left[K_{S}: k_{S}\right]=\left[k K_{S}: k\right] \mid[K: k]$ and so $\varepsilon^{[K: k]} \in C \subseteq$ k. Thus $\left(\chi_{\varepsilon}(\sigma)\right)^{[K: k]}=1$ for any $\sigma \in \operatorname{Gal}(K / k)$ and so $\chi_{\varepsilon}(\sigma)$ is a power-of-two root of unity in K, i.e. ± 1. The lemma follows from the identities $\varepsilon^{1-\sigma \tau}=\varepsilon^{1-\sigma} .\left(\varepsilon^{1-\tau}\right)^{\sigma}$ and $(\varepsilon \rho)^{1-\sigma}=\varepsilon^{1-\sigma} \cdot \rho^{1-\sigma}$.

Corollary 3.1. For any $S \subseteq J$ we have $\varkappa_{S}^{2} \in E$ and so $\left[C_{1}: C_{1} \cap E\right] \mid 2^{\left[k^{+}: \mathbb{Q}\right]-1}$. Moreover the index $\left[C_{1}: C_{1} \cap E\right]$ divides the degree $[K: k]$, too.

Proof. This follows from $\operatorname{rank}_{\mathbb{Z}} C_{1}=\left[k^{+}: \mathbb{Q}\right]-1$ and $\# \widehat{\operatorname{Gal}(K / k)}=[K: k]$.
The following theorem computes the generalized index $\left(E: C_{1}\right)=\frac{[E: C]}{\left[C_{1}: C\right]}$. (The definition of the generalized index can be found in [4, page 187].) Let K^{\prime} be the genus field in narrow sense of k^{+}. We shall start with a lemma:

Lemma 3.2. We have

$$
\prod_{\chi \in X}\left[K_{S_{\chi}}: \mathbb{Q}\right]=\left[K^{\prime}: \mathbb{Q}\right]^{\left[k^{+}: \mathbb{Q}\right] / 2}
$$

Proof. If χ is the trivial character then $K_{S_{\chi}}=\mathbb{Q}$. Let $\chi \in X$ be a nontrivial character. Then $\left[K_{S_{\chi}}: \mathbb{Q}\right]=\# \operatorname{Gal}\left(K_{S_{\chi}} / \mathbb{Q}\right)$ and $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Gal}\left(K_{S_{\chi}} / \mathbb{Q}\right)=\# S_{\chi}$ equals the number of primes dividing the conductor $n_{S_{\chi}}$ of χ, which is equal to the number of primes that ramify in the quadratic field corresponding to χ. If χ runs over all nontrivial characters in X then the corresponding field runs over all quadratic subfields of k^{+}. For any prime q ramifying in k^{+} / \mathbb{Q}, let M_{q} be the inertia subfield of k^{+} / \mathbb{Q} corresponding to q, i.e. the fixed field of the inertia subgroup of $\operatorname{Gal}\left(k^{+} / \mathbb{Q}\right)$ corresponding to q. Then the prime q does not ramify in a quadratic subfield L of k^{+}if and only if L is a subfield of M_{q}. The ramifying index of q in k^{+} / \mathbb{Q} equals 2 and so the degree $\left[M_{q}: \mathbb{Q}\right]=\left[k^{+}: \mathbb{Q}\right] / 2$. Hence the inertia field M_{q} has exactly $\left(\left[k^{+}: \mathbb{Q}\right] / 2\right)-1$ quadratic subfields. Therefore q ramifies in exactly $\left[k^{+}: \mathbb{Q}\right] / 2$
quadratic subfields of k^{+}. As $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Gal}\left(K^{\prime} / \mathbb{Q}\right)$ is equal to the number of primes q that ramify in k^{+}, we have

$$
\prod_{\chi \in X}\left[K_{S_{\chi}}: \mathbb{Q}\right]=2^{\sum_{q}\left[k^{+}: \mathbb{Q}\right] / 2}=\left[K^{\prime}: \mathbb{Q}\right]^{\left[k^{+}: \mathbb{Q}\right] / 2},
$$

where the sum is taken over all primes q ramifying in k^{+} / \mathbb{Q}.
Theorem 3.1. The generalized index $\left(E: C_{1}\right)$ is given by the formula

$$
\left(E: C_{1}\right)=\left(\frac{\left[K^{\prime}: k^{+}\right]}{4}\right)^{-\left[k^{+}: \mathbb{Q}\right] / 2} \cdot \frac{Q h^{+}}{2 \cdot\left[k^{+}: \mathbb{Q}\right]}
$$

where h^{+}is the class number of k^{+}and $Q=\left[E: W\left(E \cap k^{+}\right)\right]$is the Hasse unit index of k (so $Q \in\{1,2\}$ and $Q=1$ if k is real).
Proof. [3, Theorem 1] gives

$$
[E: C]=\left(\prod_{\chi \in X, \chi \neq 1} \frac{2 \cdot\left[k: k_{S_{\chi}}\right]}{\left[k: k^{+}\right]}\right) \cdot(\# X)^{-(\# X) / 2} \cdot Q h^{+} .
$$

Using Corollary 2.1 and $\# X=\left[k^{+}: \mathbb{Q}\right]$ we obtain

$$
\begin{aligned}
\left(E: C_{1}\right) & =[E: C] /\left[C_{1}: C\right] \\
& =\left(\prod_{\chi \in X, \chi \neq 1} \frac{2 \cdot\left[k: k_{S_{\chi}}\right]}{\left[k: k^{+}\right] \cdot\left[K_{S_{\chi}}: k_{S_{\chi}}\right]}\right) \cdot\left[k^{+}: \mathbb{Q}\right]^{-\left[k^{+}: \mathbb{Q}\right] / 2} \cdot Q h^{+} \\
& =\left(\prod_{\chi \in X} \frac{2 \cdot\left[k^{+}: \mathbb{Q}\right]}{\left[K_{S_{\chi}}: \mathbb{Q}\right]}\right) \cdot\left[k^{+}: \mathbb{Q}\right]^{-\left[k^{+}: \mathbb{Q}\right] / 2} \cdot \frac{Q h^{+}}{2 \cdot\left[k^{+}: \mathbb{Q}\right]}
\end{aligned}
$$

and Lemma 3.2 gives the theorem.
Corollary 3.2. Let C_{2} be the group generated by $W \cup\left\{\varkappa_{S}^{2 \sigma} ; S \subseteq J, \sigma \in G\right\}$. Then C_{2} is a subgroup of E of index

$$
\left[E: C_{2}\right]=\left(\frac{\left[K^{\prime}: k^{+}\right]}{16}\right)^{-\left[k^{+}: \mathbb{Q}\right] / 2} \cdot \frac{Q h^{+}}{4 \cdot\left[k^{+}: \mathbb{Q}\right]} .
$$

Proof. Corollary 3.1 gives $C_{2} \subseteq E$. The index formula is given by Theorem 3.1 and the obvious equality $\left[C_{1}: C_{2}\right]=2^{\left[k^{+}: \mathbb{Q}\right]-1}$.

Theorem 3.2. If k is real then the class number h of k is divisible by the following powers of 2 :

$$
\left.\frac{[k: \mathbb{Q}]}{2} \cdot\left(\frac{[K: k]}{4}\right)^{([k: \mathbb{Q}] / 2)-1} \right\rvert\, h
$$

and

$$
\left.4 \cdot[k: \mathbb{Q}] \cdot\left(\frac{[K: k]}{16}\right)^{[k: \mathbb{Q}] / 2} \right\rvert\, h
$$

Proof. Theorem 3.1 gives

$$
\begin{aligned}
h & =2 \cdot[k: \mathbb{Q}] \cdot\left(E: C_{1}\right) \cdot\left(\frac{[K: k]}{4}\right)^{[k: \mathbb{Q}] / 2} \\
& =\frac{2 \cdot[k: \mathbb{Q}]}{[K: k]} \cdot\left[E: C_{1} \cap E\right] \cdot \frac{[K: k]}{\left[C_{1}: C_{1} \cap E\right]} \cdot\left(\frac{[K: k]}{4}\right)^{[k: \mathbb{Q}] / 2}
\end{aligned}
$$

and Corollary 3.1 implies the former divisibility relation. The latter one is given by Corollary 3.2.

The following example shows that C_{1} is not a subgroup of E in general:
Example 3.1. Let $k=\mathbb{Q}(\sqrt{21})$. Then $J=\{-3,-7\}, K=\mathbb{Q}(i \sqrt{3}, i \sqrt{7})$,

$$
\begin{aligned}
& \varepsilon_{J}=\left(1-\zeta_{J}\right)\left(1-\zeta_{J}^{4}\right)\left(1-\zeta_{J}^{16}\right)=\frac{i \sqrt{3}-i \sqrt{7}}{2}, \\
& \eta_{J}=\varepsilon_{J}^{1+\sigma_{-3} \sigma_{-7}}=\varepsilon_{J} \cdot \overline{\varepsilon_{J}}=-\varepsilon_{J}^{2}, \\
& \varkappa_{J}= \pm \varepsilon_{J} .
\end{aligned}
$$

Hence we have $C_{1}=\left\langle-1, \varkappa_{J}\right\rangle, C=\left\langle-1, \eta_{J}\right\rangle$ and $\left[C_{1}: C\right]=2$ for this specific k. Theorem 3.1 gives $\left(E: C_{1}\right)=\frac{h}{2}$. It is easy to compute that $h=1$ which implies $E=C$.

4. The case of real K

The rest of this paper is devoted to a special case of K being real. Our aim is to show that under this assumption we have $C_{1} \subseteq E$. It is easy to see that K is real if and only if each $p \in J$ is positive.

We shall need the equivalence relation \sim defined on the group of all units of K as follows: For any units x, y of K we write $x \sim y$ if and only if x / y is the square of a totally positive unit of K.

Lemma 4.1. If K is real then we have:
(a) if $x \sim y$ and $u \sim v$ are units of K then $x u \sim y v$;
(b) if $x \sim y$ are units of K then $x^{\sigma} \sim y^{\sigma}$ for any $\sigma \in G$;
(c) $e^{4} \sim 1$ for any unit e of K;
(d) $\varepsilon_{\{p\}}^{2} \nsim 1$ for any $p \in J$;
(e) $\varepsilon_{S}^{2} \sim 1$ for any $S \subseteq J, \# S>1$;
(f) $\varepsilon_{S}^{1-\sigma \tau} \sim \varepsilon_{S}^{1-\sigma} \cdot \varepsilon_{S}^{1-\tau}$ for any $S \subseteq J$ and any $\sigma, \tau \in G$.

Proof. (a) The product of totally positive units is totally positive, too. (b) All conjugates of a totally positive unit are again totally positive. (c) As all conjugates of e belong to K, they are real, and so e^{2} is totally positive. (d) [3, Lemma 1] gives $\varepsilon_{\{p\}}^{1+\sigma_{p}}=-1$ and so $\varepsilon_{\{p\}}$ is neither totally positive nor totally negative. (e) Due to its definition, ε_{S} is the norm of a nonzero number from an imaginary abelian field
\mathbb{Q}^{S} to a real subfield K_{S} and so it is totally positive. (f) Using (a), this statement is equivalent to $\varepsilon_{S}^{(1-\sigma)(1-\tau)} \sim 1$. Due to [3, Lemma 2] we have $\varepsilon_{S}^{1-\sigma}= \pm \prod_{T \subseteq S} \varepsilon_{T}^{2 a_{T}}$ for suitable $a_{T} \in \mathbb{Z}$ and, once again, [3, Lemma 2] implies

$$
\left(\prod_{T \subseteq S} \varepsilon_{T}^{a_{T}}\right)^{1-\tau}= \pm \prod_{T \subseteq S} \varepsilon_{T}^{2 b_{T}}
$$

for suitable $b_{T} \in \mathbb{Z}$. Thus

$$
\varepsilon_{S}^{(1-\sigma)(1-\tau)}=\left(\pm \prod_{T \subseteq S} \varepsilon_{T}^{2 b_{T}}\right)^{2}
$$

and (c) gives the result.
In the following lemma we shall consider the complete undirected graph on $S \subseteq J$ where for each $p, q \in S, p \neq q$, the edge between vertices p and q is labeled by the number $m_{(p, q)}$ which is defined by means of Legendre symbol as follows:

$$
m_{(p, q)}=\frac{1-t_{p, q}}{2}, \quad \text { where } \quad t_{p, q}= \begin{cases}\left(\frac{p}{q}\right) & \text { if } q \text { is odd } \\ \left(\frac{2}{p}\right) & \text { if } q=2\end{cases}
$$

Notice that the quadratic reciprocity law implies $m_{(p, q)}=m_{(q, p)}$ as we are assuming that each $p \in J$ is positive, i.e., either $p=2$ or p is a prime congruent to 1 modulo 4. If H is a Hamiltonian path from p to q in S, i.e., $H=\left(p, r_{1}, \ldots, r_{\# S-2}, q\right)$ such that $\left\{p, r_{1}, \ldots, r_{\# S-2}, q\right\}=S$, then we put $m_{H}=m_{\left(p, r_{1}\right)} \cdot m_{\left(r_{1}, r_{2}\right)} \ldots$ $m_{\left(r_{\# S-2}, q\right)}$.
Lemma 4.2. If K is real, $p \in S \subseteq J$, and $\# S>1$ then

$$
\varepsilon_{S}^{1+\sigma_{p}} \sim \prod_{q \in S, q \neq p} \varepsilon_{\{q\}}^{2 \sum_{H} m_{H}},
$$

where the sum is taken over all Hamiltonian paths H from p to q in S.
Proof. If $S=\{p, q\}$ then [3, Lemma 1] gives

$$
\varepsilon_{S}^{1+\sigma_{p}}=t_{p, q} \cdot \varepsilon_{\{q\}}^{1-\operatorname{Frob}\left(p, K_{\{q\}}\right)}= \begin{cases}1 & \text { if } t_{p, q}=1, \\ -\varepsilon_{\{q\}}^{1-\sigma_{q}}=\varepsilon_{\{q\}}^{2} & \text { if } t_{p, q}=-1,\end{cases}
$$

which we wanted to show. Let us suppose that $\# S>2$ and that the lemma has been proved for all $T \subsetneq S$. Then [3, Lemma 1] states

$$
\varepsilon_{S}^{1+\sigma_{p}}=\varepsilon_{S \backslash\{p\}}^{1-\operatorname{Frob}\left(p, K_{S \backslash\{p\}}\right)}
$$

It is easy to see that $\operatorname{Frob}\left(p, K_{S \backslash\{p\}}\right)=\prod_{q \in S \backslash\{p\}} \sigma_{q}^{m_{(p, q)}}$ and Lemma 4.1(f,e,b,a) implies

$$
\varepsilon_{S}^{1+\sigma_{p}} \sim \prod_{q \in S \backslash\{p\}}\left(\varepsilon_{S \backslash\{p\}}^{1-\sigma_{q}}\right)^{m_{(p, q)}} \sim \prod_{q \in S \backslash\{p\}}\left(\varepsilon_{S \backslash\{p\}}^{1+\sigma_{q}}\right)^{m_{(p, q)}}
$$

The lemma follows from the induction hypothesis for $\varepsilon_{S \backslash\{p\}}^{1+\sigma_{q}}$ and Lemma 4.1(a).

Recall that we have seen in Lemma 2.1 that for any $S \subseteq J$ and any $\sigma \in G$ we have $\varepsilon_{S}^{1+\sigma}= \pm x^{2}$ for suitable $x \in D_{S}=\left\langle\varepsilon_{T} ; T \subseteq S\right\rangle$. The following lemma states that this x satisfies $x^{1-\sigma}=1$. Example 3.1 shows that the assumption of K being real cannot be avoided here.

Lemma 4.3. If K is real, $S \subseteq J$, and $\sigma \in G$ then there is $x \in D_{S}$ such that $\varepsilon_{S}^{1+\sigma}= \pm x^{2}$ and $x^{1-\sigma}=1$.
Proof. If $S=\emptyset$ then $\varepsilon_{S}=1$ and $x= \pm 1$. If $S=\{p\}$ then ε_{S}^{σ} is equal to either ε_{S} or $\varepsilon_{S}^{\sigma_{p}}$. In the former case $x= \pm \varepsilon_{S}$ and $x^{1-\sigma}=\varepsilon_{S}^{1-\sigma}=1$, in the latter case $[3$, Lemma 1] gives $\varepsilon_{S}^{1+\sigma}=-1$ and $x= \pm 1$.

Finally, let $\# S>1$. There is $T \subseteq S$ such that σ acts as $\prod_{p \in T} \sigma_{p}$ on K_{S}. Lemma 2.1 gives $x \in D_{S}$ such that $\varepsilon_{S}^{1+\sigma}= \pm x^{2}$ and Lemmas 4.1 and 4.2 imply
$\pm x^{2}=\varepsilon_{S}^{1+\prod_{p \in T} \sigma_{p}} \sim \varepsilon_{S}^{1-\prod_{p \in T} \sigma_{p}} \sim \prod_{p \in T} \varepsilon_{S}^{1-\sigma_{p}} \sim \prod_{p \in T} \varepsilon_{S}^{1+\sigma_{p}} \sim \prod_{p \in T} \prod_{q \in S, q \neq p} \varepsilon_{\{q\}}^{2 \sum_{H} m_{H}}$,
where the sum is taken over all Hamiltonian paths H from p to q in S. Hence there is a totally positive unit $y \in K$ such that

$$
\pm x^{2}=y^{2} \cdot \prod_{q \in S} \varepsilon_{\{q\}}^{2 \sum_{p \in T, p \neq q} \sum_{H} m_{H}} .
$$

As -1 is not a square in K this implies

$$
x= \pm y \cdot \prod_{q \in S} \varepsilon_{\{q\}}^{\sum_{p \in T, p \neq q} \sum_{H} m_{H}}
$$

and so

$$
x^{1-\sigma}=y^{1-\sigma} \cdot \prod_{q \in S}\left(\varepsilon_{\{q\}}^{1-\sigma}\right)^{\sum_{p \in T, p \neq q} \sum_{H} m_{H}} .
$$

We have

$$
\varepsilon_{\{q\}}^{1-\sigma}= \begin{cases}1 & \text { if } q \notin T, \\ \varepsilon_{\{q\}}^{1-\sigma_{q}}=-\varepsilon_{\{q\}}^{2} & \text { if } q \in T .\end{cases}
$$

Therefore

$$
x^{1-\sigma}=y^{1-\sigma} \cdot \prod_{q \in T}\left(-\varepsilon_{\{q\}}^{2}\right)^{\sum_{p \in T, p \neq q} \sum_{H} m_{H}} .
$$

As $\left(x^{1-\sigma}\right)^{2}=\left(\varepsilon_{S}^{1+\sigma}\right)^{1-\sigma}=1$ we have $x^{1-\sigma}= \pm 1$. Hence to prove the lemma we need to show that $x^{1-\sigma}>0$. Since y is totally positive, $y^{1-\sigma}>0$; moreover $\varepsilon_{\{q\}}^{2}>0$. Hence

$$
\operatorname{sgn} x^{1-\sigma}=\prod_{q \in T}(-1)^{\sum_{p \in T, p \neq q} \sum_{H} m_{H}}=(-1)^{\sum_{q \in T} \sum_{p \in T, p \neq q} \sum_{H} m_{H}} .
$$

We know that $m_{H}=m_{H^{\text {op }}}$, where $H^{\text {op }}$ is the path opposite to H. This implies that $\sum_{q \in T} \sum_{p \in T, p \neq q} \sum_{H} m_{H}=2 \sum_{q \in T} \sum_{p \in T, p<q} \sum_{H} m_{H}$ is even and so sgn $x^{1-\sigma}=$ 1 and $x^{1-\sigma}>0$. The lemma is proved.

Proposition 4.1. If K is real then $\varkappa_{S} \in k_{S}$ for each $S \subseteq J$.
Proof. We need to show that $\varkappa_{S}^{1-\sigma}=1$ for each $\sigma \in \operatorname{Gal}\left(K_{S} / k_{S}\right)$. This is clear if $\sigma=1$, so we can assume that $\sigma \neq 1$. Then there is a basis $\alpha_{1}, \ldots, \alpha_{r}$ of $\operatorname{Gal}\left(K_{S} / k_{S}\right)$ such that $\alpha_{r}=\sigma$. Lemma 2.1 implies that

$$
\varepsilon_{S}^{\left(1+\alpha_{1}\right) \cdots\left(1+\alpha_{r-1}\right)}= \pm y^{2^{r-1}}
$$

with $y=\prod_{T \subseteq S} \varepsilon_{T}^{a_{T}}$ for suitable $a_{T} \in \mathbb{Z}$. Then

$$
\pm \varkappa_{S}^{2^{r}}=\eta_{S}=\varepsilon_{S}^{\left(1+\alpha_{1}\right) \cdots\left(1+\alpha_{r-1}\right)(1+\sigma)}=\left(\pm y^{2^{r-1}}\right)^{1+\sigma}=\left(y^{1+\sigma}\right)^{2^{r-1}}
$$

As -1 is not a square in K this implies

$$
\pm \varkappa_{S}^{2}=y^{1+\sigma}=\prod_{T \subseteq S}\left(\varepsilon_{T}^{1+\sigma}\right)^{a_{T}}
$$

Lemma 4.3 states that there are $x_{T} \in D_{T}$ such that $\varepsilon_{T}^{1+\sigma}= \pm x_{T}^{2}$ and $x_{T}^{1-\sigma}=1$. Hence

$$
\pm \varkappa_{S}^{2}=\prod_{T \subseteq S}\left(\pm x_{T}^{2}\right)^{a_{T}}
$$

and this implies

$$
\varkappa_{S}= \pm \prod_{T \subseteq S} x_{T}^{a_{T}}
$$

because -1 is not a square in K. Therefore

$$
\varkappa_{S}^{1-\sigma}=\prod_{T \subseteq S}\left(x_{T}^{1-\sigma}\right)^{a_{T}}=1
$$

which we wanted to prove.
Theorem 4.1. If K is real then the class number h of k is divisible by the following power of 2:

$$
\left.2 \cdot[k: \mathbb{Q}] \cdot\left(\frac{[K: k]}{4}\right)^{[k: \mathbb{Q}] / 2} \right\rvert\, h .
$$

Proof. Proposition 4.1 implies that $C_{1} \subseteq E$ and so $\left(E: C_{1}\right)=\left[E: C_{1}\right]$ is an integer. Theorem 3.1 gives

$$
h=2 \cdot[k: \mathbb{Q}] \cdot\left[E: C_{1}\right] \cdot\left(\frac{[K: k]}{4}\right)^{[k: \mathbb{Q}] / 2}
$$

and the theorem follows.

References

[1] M. Bulant, On the parity of the class number of the field $Q(\sqrt{p}, \sqrt{q}, \sqrt{r})$, J. Number Theory 68 (1998), 72-86.
[2] R. Kučera, On the parity of the class number of a biquadratic field, J. Number Theory 52 (1995), 43-52.
[3] R. Kučera, On the Stickelberger ideal and circular units of a compositum of quadratic fields, J. Number Theory 56 (1996), 139-166.
[4] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. math. 62 (1980), 181-234.

Address: Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 61137 Brno, Czech Republic
E-mail: kucera@math.muni.cz
Received: 23 October 2007; revised: 13 October 2008

[^0]: 2000 Mathematics Subject Classification: Primary 11R20, Secondary 11R27, 11R29
 The author was supported under the project 201/07/0191 of the Czech Science Foundation and the project MSM0021622409 of the Ministry of Education of the Czech Republic.

