Functiones et Approximatio XXXIX.2 (2008), 179–189

ON THE CLASS NUMBER OF A COMPOSITUM OF REAL QUADRATIC FIELDS: AN APPROACH VIA CIRCULAR UNITS

RADAN KUČERA

Dedicated to Professor Władysław Narkiewicz at the occasion of his seventieth birthday

Abstract: For a compositum k of quadratic number fields new explicit units are constructed by taking power-of-two roots of circular units. These units are used to obtain a result concerning the divisibility of the class number of k by a power of 2.

Keywords: compositum of real quadratic fields, class number, group of circular units.

1. Introduction

Let k be a compositum of quadratic number fields and let -1 not be a square in the genus field K of k in the narrow sense. This paper resumes the study of the group E of all units of k that started in [3], where a group of circular units C of k, slightly bigger than the Sinnott's one defined in [4], has been introduced and an explicit basis of C has been found. Using this basis, the index [E:C] has been computed as a product of several factors, one of them being the class number h^+ of the maximal real subfield k^+ of k. This index formula has been used to get some divisibility relations for h^+ (see [3], [2], [1]). The aim of this paper is to try to improve results of [3] in the following direction: a new group of units $C_1 \subseteq K$ is defined by means of explicit generators. If K is real and $k \neq K$ then $C \subsetneq C_1 \subseteq E$, but in general (i.e., if K is imaginary) there are cases where C_1 is not a subgroup of E. Nevertheless C_1 still can be used to obtain divisibility relations for h^+ that are stronger than what is given by genus theory (if both $[k:\mathbb{Q}] > 2$ and [K:k] > 2). It seems to be interesting that the index $(E:C_1)$ is much easier to compute than [E:C] (compare the index formulae given by Theorem 3.1 and by [3, Theorem 1]). The main results of this paper (see Theorems 3.2 and 4.1) can be summarized as follows:

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R20, Secondary 11R27, 11R29 The author was supported under the project 201/07/0191 of the Czech Science Foundation and the project MSM0021622409 of the Ministry of Education of the Czech Republic.

Theorem 1.1. If k is a compositum of real quadratic fields such that -1 is not a square in the genus field K of k in the narrow sense then the class number h of k is divisible by the following power of 2:

$$\frac{[k:\mathbb{Q}]}{2}\cdot\left(\frac{[K:k]}{4}\right)^{([k:\mathbb{Q}]/2)-1} \, \Big| \, h$$

Moreover, if K is real then even

$$2 \cdot [k:\mathbb{Q}] \cdot \left(\frac{[K:k]}{4}\right)^{[k:\mathbb{Q}]/2} \mid h$$

To compare the strength of this result, let us notice that genus theory gives only $\frac{[K:k]}{2} \mid h$ and $[K:k] \mid h$, respectively.

2. Definitions and basic results

Recall that k is a compositum of quadratic fields such that -1 is not a square in the genus field K of k in the narrow sense (so k can be both real and imaginary). This condition can be written equivalently as follows: either 2 does not ramify in k and $k = \mathbb{Q}(\sqrt{d_1}, \ldots, \sqrt{d_s})$, where d_1, \ldots, d_s with $s \ge 1$ are square-free integers all congruent to 1 modulo 4, or 2 ramifies in k and there is uniquely determined $x \in$ $\{2, -2\}$ such that $k = \mathbb{Q}(\sqrt{d_1}, \ldots, \sqrt{d_s})$, where d_1, \ldots, d_s with $s \ge 1$ are squarefree integers such that $d_i \equiv 1 \pmod{4}$ or $d_i \equiv x \pmod{8}$ for each $i \in \{1, \ldots, s\}$. In the former case, let

 $J = \{ p \in \mathbb{Z}; \ p \equiv 1 \pmod{4}, \ |p| \text{ is a prime ramifying in } k \},\$

and, in the latter case, let

 $J = \{x\} \cup \{p \in \mathbb{Z}; p \equiv 1 \pmod{4}, |p| \text{ is a prime ramifying in } k\}.$

For any $p \in J$, let

$$n_{\{p\}} = \begin{cases} |p| & \text{if } p \text{ is odd,} \\ 8 & \text{if } p \text{ is even.} \end{cases}$$

For any $S \subseteq J$ let (by convention, an empty product is 1)

$$n_S = \prod_{p \in S} n_{\{p\}}, \quad \zeta_S = e^{2\pi i/n_S}, \quad \mathbb{Q}^S = \mathbb{Q}(\zeta_S), \quad K_S = \mathbb{Q}(\sqrt{p}; \, p \in S).$$

It is easy to see that $K_J = K$ and that n_J is the conductor of k. Let us define

$$\varepsilon_S = \begin{cases} 1 & \text{if } S = \emptyset, \\ \frac{1}{\sqrt{p}} \operatorname{N}_{\mathbb{Q}^S/K_S}(1-\zeta_S) & \text{if } S = \{p\}, \\ \operatorname{N}_{\mathbb{Q}^S/K_S}(1-\zeta_S) & \text{if } \#S > 1, \end{cases}$$

 $k_S = k \cap K_S$ and $\eta_S = N_{K_S/k_S}(\varepsilon_S)$ for any $S \subseteq J$. It is easy to see that ε_S and η_S are units in K_S and k_S , respectively. For any $p \in J$ let σ_p be the non-trivial automorphism in $\operatorname{Gal}(K_J/K_{J\setminus\{p\}})$. Then $G = \operatorname{Gal}(K_J/\mathbb{Q})$ can be considered as a (multiplicative) vector space over \mathbb{F}_2 with \mathbb{F}_2 -basis $\{\sigma_p; p \in J\}$. Let W be the group of roots of unity in k (it is easy to see that #W is 2 or 6). The paper [3] was devoted to the study of the group C generated by $W \cup \{\eta_S^{\sigma}; S \subseteq J, \sigma \in G\}$. The aim of this paper is to show that some power-of-two roots of the generators of C lie in K and to study the group C_1 of units generated by these roots. We shall be more specific in a moment. For any $S \subseteq J$ let D_S be the group generated by $\{\varepsilon_T; T \subseteq S\}$.

Lemma 2.1. For any $S \subseteq J$ and any $\sigma \in G$ we have $\varepsilon_S^{1+\sigma} = \pm \prod_{T \subseteq S} \varepsilon_T^{2a_T}$ for suitable $a_T \in \mathbb{Z}$.

Proof. This is a direct consequence of [3, Lemma 2], because $\varepsilon_S^{1+\sigma} = \varepsilon_S^2 / \varepsilon_S^{1-\sigma}$.

Since -1 is not a square in K, the only power-of-two roots of unity in K are ± 1 . Therefore the following proposition well defines $\varkappa_S \in K_S$ up to sign.

Proposition 2.1. For any $S \subseteq J$ there is $\varkappa_S \in D_S$ such that $\varkappa_S^{[K_S:k_S]} = \pm \eta_S$.

Proof. It is easy to see that $\operatorname{Gal}(K_S/k_S)$ is a subspace of the (multiplicative) vector space $\operatorname{Gal}(K_S/\mathbb{Q})$ over \mathbb{F}_2 . Let $\alpha_1, \ldots, \alpha_r$ be a basis of $\operatorname{Gal}(K_S/k_S)$, then $\eta_S = \operatorname{N}_{K_S/k_S}(\varepsilon_S) = \varepsilon_S^{(1+\alpha_1)\cdots(1+\alpha_r)}$ and $[K_S:k_S] = 2^r$. The proposition follows by means of induction with respect to r using Lemma 2.1.

Let C_1 be the group generated by $W \cup \{\varkappa_S^{\sigma}; S \subseteq J, \sigma \in G\}$.

Lemma 2.2. For any $S \subseteq J$ and any $\sigma \in G$ we have $\varkappa_S^{1-\sigma} = \pm \prod_{T \subseteq S} \varkappa_T^{2a_T}$ for suitable $a_T \in \mathbb{Z}$.

Proof. In the proof of [3, Lemma 3] we have derived the following formula

$$\eta_S^{1-\sigma} = \pm \prod_{T \subseteq S} \eta_T^{2a_T[K_S:k_SK_T]} ,$$

where $a_T \in \mathbb{Z}$. Therefore

$$(\varkappa_{S}^{1-\sigma})^{[K_{S}:k_{S}]} = \pm \prod_{T \subseteq S} \varkappa_{T}^{2a_{T}[K_{S}:k_{S}K_{T}][K_{T}:k_{T}]} \,.$$

We have $k_S \cap K_T = k \cap K_S \cap K_T = k \cap K_T = k_T$ and so $[K_T : k_T] = [k_S K_T : k_S]$. The lemma follows as the only power-of-two roots of unity in K are ± 1 .

Let k^+ be the maximal real subfield of k and let

$$X = \{\xi \in \widehat{G}; \, \xi(\sigma) = 1 \text{ for all } \sigma \in \operatorname{Gal}(K_J/k^+)\} \,,$$

where \widehat{G} is the character group of G. Then X can be viewed also as the group of all Dirichlet characters corresponding to k^+ . For any $\chi \in X$ let

$$S_{\chi} = \{ p \in J; \, \chi(\sigma_p) = -1 \} \,$$

hence $n_{S_{\chi}}$ is the conductor of χ .

Theorem 2.1. The set $B = \{ \varkappa_{S_{\chi}}; \chi \in X, \chi \neq 1 \}$ is a \mathbb{Z} -basis of C_1 .

Proof. Lemma 2.2 implies that C_1 is generated by $W \cup \{\varkappa_S; S \subseteq J\}$. Let us suppose that $S \subseteq J$ and that $S \neq S_{\chi}$ for all $\chi \in X$. In the proof of [3, Lemma 5] we have derived the following formula for such a set S; here $T \subseteq J$ and $\rho \in W$:

$$\rho \eta_S^2 = \prod_{p \in S \cap T} (\mathcal{N}_{k_S/k_{S \setminus \{p\}}}(\eta_S))^{[K_S:k_S K_{S \setminus \{p\}}] \prod_{q \in S \cap T, q < p} (-\sigma_q)}$$

Due to [3, Lemma 4] we have

$$\mathbf{N}_{k_S/k_{S\backslash\{p\}}}(\eta_S) = \pm \eta_{S\backslash\{p\}}^{1-\operatorname{Frob}(|p|,k_{S\backslash\{p\}})}$$

where $\operatorname{Frob}(|p|, k_{S \setminus \{p\}})$ is the Frobenius automorphism of |p| in $k_{S \setminus \{p\}}$ and so

$$\rho \varkappa_S^{2[K_S:k_S]} = \pm \prod_{p \in S \cap T} (\varkappa_{S \setminus \{p\}}^{1 - \operatorname{Frob}(|p|, k_S \setminus \{p\})})^{[K_{S \setminus \{p\}}: k_S \setminus \{p\}][K_S: k_S K_S \setminus \{p\}]} \prod_{q \in S \cap T, q < p} (-\sigma_q)$$

We have $[K_{S\setminus\{p\}}: k_{S\setminus\{p\}}][K_S: k_SK_{S\setminus\{p\}}] = [K_S: k_S]$ and Lemma 2.2 implies that

$$\rho \varkappa_S^{2[K_S:k_S]} = \pm \left(\prod_{T \subsetneq S} \varkappa_T^{2a_T}\right)^{[K_S:k_S]}$$

for suitable $a_T \in \mathbb{Z}$. Therefore

$$\rho_1 = \varkappa_S \prod_{T \subsetneq S} \varkappa_T^{-a_T}$$

is a root of unity in K such that $\rho_1^{2[K_S:k_S]} = \pm \rho^{-1} \in W$. This gives that $\rho_1 \in W$ because #W is 2 or 6 and -1 is not a square in K. Hence $B \cup W$ is a system of generators of C_1 . The definition of C_1 implies that C_1 and C have the same \mathbb{Z} -rank. Moreover, [3, Theorem 1] states that the \mathbb{Z} -rank of C equals (#X) - 1and the theorem follows.

Corollary 2.1. The index of C in C_1 is equal to $[C_1 : C] = \prod_{\chi \in X} [K_{S_{\chi}} : k_{S_{\chi}}].$

Proof. [3, Theorem 1 and Lemma 5] gives that $\{\eta_{S_{\chi}}; \chi \in X, \chi \neq 1\}$ is a \mathbb{Z} -basis of C. Proposition 2.1 implies that the transition matrix is the diagonal matrix diag $([K_{S_{\chi}}: k_{S_{\chi}}])_{\chi \in X, \chi \neq 1}$. The corollary follows as the torsion subgroups of C and C_1 coincide.

On the class number of a compositum of real quadratic fields: an approach via circular units 183

3. The index of $(E:C_1)$

The index [E:C] is computed in [3, Theorem 1] by means of the class number h^+ of k^+ . To get a lower bound for the divisibility of h^+ by a power of 2, it is enough to obtain a lower bound for the divisibility of the index [E:C]. Unfortunately this lower bound is not the index $[C_1:C]$ because C_1 is not a subgroup of E in general. So we shall consider the intersection $C_1 \cap E = C_1 \cap k$.

Lemma 3.1. For any $\varepsilon \in C_1$ and any $\sigma \in Gal(K/k)$ let $\chi_{\varepsilon}(\sigma) = \varepsilon^{1-\sigma}$. Then $\chi_{\varepsilon} : Gal(K/k) \to \{1, -1\}$ is a homomorphism. Moreover,

$$\tilde{\chi}: C_1 \to \widehat{Gal(K/k)}$$
,

where $\tilde{\chi}(\varepsilon) = \chi_{\varepsilon}$, is a homomorphism whose kernel ker $\tilde{\chi} = C_1 \cap E$.

Proof. For any $S \subseteq J$ we have $[K_S : k_S] = [kK_S : k] | [K : k]$ and so $\varepsilon^{[K:k]} \in C \subseteq k$. Thus $(\chi_{\varepsilon}(\sigma))^{[K:k]} = 1$ for any $\sigma \in \operatorname{Gal}(K/k)$ and so $\chi_{\varepsilon}(\sigma)$ is a power-of-two root of unity in K, i.e. ± 1 . The lemma follows from the identities $\varepsilon^{1-\sigma\tau} = \varepsilon^{1-\sigma} \cdot (\varepsilon^{1-\tau})^{\sigma}$ and $(\varepsilon\rho)^{1-\sigma} = \varepsilon^{1-\sigma} \cdot \rho^{1-\sigma}$.

Corollary 3.1. For any $S \subseteq J$ we have $\varkappa_S^2 \in E$ and so $[C_1 : C_1 \cap E] \mid 2^{[k^+:\mathbb{Q}]-1}$. Moreover the index $[C_1 : C_1 \cap E]$ divides the degree [K : k], too.

Proof. This follows from $\operatorname{rank}_{\mathbb{Z}}C_1 = [k^+ : \mathbb{Q}] - 1$ and $\#\operatorname{Gal}(\widehat{K/k}) = [K : k]$.

The following theorem computes the generalized index $(E : C_1) = \frac{[E:C]}{[C_1:C]}$. (The definition of the generalized index can be found in [4, page 187].) Let K' be the genus field in narrow sense of k^+ . We shall start with a lemma:

Lemma 3.2. We have

$$\prod_{\chi \in X} [K_{S_{\chi}} : \mathbb{Q}] = [K' : \mathbb{Q}]^{[k^+ : \mathbb{Q}]/2}$$

Proof. If χ is the trivial character then $K_{S_{\chi}} = \mathbb{Q}$. Let $\chi \in X$ be a nontrivial character. Then $[K_{S_{\chi}}:\mathbb{Q}] = \#\text{Gal}(K_{S_{\chi}}/\mathbb{Q})$ and $\dim_{\mathbb{F}_2} \text{Gal}(K_{S_{\chi}}/\mathbb{Q}) = \#S_{\chi}$ equals the number of primes dividing the conductor $n_{S_{\chi}}$ of χ , which is equal to the number of primes that ramify in the quadratic field corresponding to χ . If χ runs over all nontrivial characters in X then the corresponding field runs over all quadratic subfields of k^+ . For any prime q ramifying in k^+/\mathbb{Q} , let M_q be the inertia subfield of k^+/\mathbb{Q} corresponding to q, i.e. the fixed field of the inertia subgroup of $\text{Gal}(k^+/\mathbb{Q})$ corresponding to q. Then the prime q does not ramify in a quadratic subfield L of k^+ if and only if L is a subfield of M_q . The ramifying index of q in k^+/\mathbb{Q} equals 2 and so the degree $[M_q:\mathbb{Q}] = [k^+:\mathbb{Q}]/2$. Hence the inertia field M_q has exactly $([k^+:\mathbb{Q}]/2) - 1$ quadratic subfields. Therefore q ramifies in exactly $[k^+:\mathbb{Q}]/2$

quadratic subfields of k^+ . As $\dim_{\mathbb{F}_2} \operatorname{Gal}(K'/\mathbb{Q})$ is equal to the number of primes q that ramify in k^+ , we have

$$\prod_{\chi \in X} [K_{S_{\chi}} : \mathbb{Q}] = 2^{\sum_{q} [k^+ : \mathbb{Q}]/2} = [K' : \mathbb{Q}]^{[k^+ : \mathbb{Q}]/2},$$

where the sum is taken over all primes q ramifying in k^+/\mathbb{Q} .

Theorem 3.1. The generalized index $(E : C_1)$ is given by the formula

$$(E:C_1) = \left(\frac{[K':k^+]}{4}\right)^{-[k^+:\mathbb{Q}]/2} \cdot \frac{Qh^+}{2 \cdot [k^+:\mathbb{Q}]} ,$$

where h^+ is the class number of k^+ and $Q = [E : W(E \cap k^+)]$ is the Hasse unit index of k (so $Q \in \{1, 2\}$ and Q = 1 if k is real).

Proof. [3, Theorem 1] gives

$$[E:C] = \left(\prod_{\chi \in X, \, \chi \neq 1} \frac{2 \cdot [k:k_{S_{\chi}}]}{[k:k^+]}\right) \cdot (\#X)^{-(\#X)/2} \cdot Qh^+ \, .$$

Using Corollary 2.1 and $\#X = [k^+ : \mathbb{Q}]$ we obtain

$$\begin{aligned} (E:C_1) &= [E:C]/[C_1:C] \\ &= \left(\prod_{\chi \in X, \ \chi \neq 1} \frac{2 \cdot [k:k_{S_\chi}]}{[k:k^+] \cdot [K_{S_\chi}:k_{S_\chi}]}\right) \cdot [k^+:\mathbb{Q}]^{-[k^+:\mathbb{Q}]/2} \cdot Qh^+ \\ &= \left(\prod_{\chi \in X} \frac{2 \cdot [k^+:\mathbb{Q}]}{[K_{S_\chi}:\mathbb{Q}]}\right) \cdot [k^+:\mathbb{Q}]^{-[k^+:\mathbb{Q}]/2} \cdot \frac{Qh^+}{2 \cdot [k^+:\mathbb{Q}]} \end{aligned}$$

and Lemma 3.2 gives the theorem.

Corollary 3.2. Let C_2 be the group generated by $W \cup \{\varkappa_S^{2\sigma}; S \subseteq J, \sigma \in G\}$. Then C_2 is a subgroup of E of index

$$[E:C_2] = \left(\frac{[K':k^+]}{16}\right)^{-[k^+:\mathbb{Q}]/2} \cdot \frac{Qh^+}{4\cdot[k^+:\mathbb{Q}]} \cdot \frac{Qh^+}{4\cdot[k^+:\mathbb{Q}]}$$

Proof. Corollary 3.1 gives $C_2 \subseteq E$. The index formula is given by Theorem 3.1 and the obvious equality $[C_1 : C_2] = 2^{[k^+:\mathbb{Q}]-1}$.

Theorem 3.2. If k is real then the class number h of k is divisible by the following powers of 2:

$$\frac{[k:\mathbb{Q}]}{2} \cdot \left(\frac{[K:k]}{4}\right)^{([k:\mathbb{Q}]/2)-1} \mid h$$

and

$$4 \cdot [k:\mathbb{Q}] \cdot \left(\frac{[K:k]}{16}\right)^{[k:\mathbb{Q}]/2} \mid h.$$

On the class number of a compositum of real quadratic fields: an approach via circular units 185

Proof. Theorem 3.1 gives

$$h = 2 \cdot [k : \mathbb{Q}] \cdot (E : C_1) \cdot \left(\frac{[K:k]}{4}\right)^{[k:\mathbb{Q}]/2}$$
$$= \frac{2 \cdot [k:\mathbb{Q}]}{[K:k]} \cdot [E : C_1 \cap E] \cdot \frac{[K:k]}{[C_1 : C_1 \cap E]} \cdot \left(\frac{[K:k]}{4}\right)^{[k:\mathbb{Q}]/2}$$

and Corollary 3.1 implies the former divisibility relation. The latter one is given by Corollary 3.2.

The following example shows that C_1 is not a subgroup of E in general: **Example 3.1.** Let $k = \mathbb{Q}(\sqrt{21})$. Then $J = \{-3, -7\}, K = \mathbb{Q}(i\sqrt{3}, i\sqrt{7}),$

$$\varepsilon_J = (1 - \zeta_J)(1 - \zeta_J^4)(1 - \zeta_J^{16}) = \frac{i\sqrt{3} - i\sqrt{7}}{2},$$

$$\eta_J = \varepsilon_J^{1 + \sigma_{-3}\sigma_{-7}} = \varepsilon_J \cdot \overline{\varepsilon_J} = -\varepsilon_J^2,$$

$$\varkappa_J = \pm \varepsilon_J.$$

Hence we have $C_1 = \langle -1, \varkappa_J \rangle$, $C = \langle -1, \eta_J \rangle$ and $[C_1 : C] = 2$ for this specific k. Theorem 3.1 gives $(E:C_1) = \frac{h}{2}$. It is easy to compute that h = 1 which implies E = C.

4. The case of real K

The rest of this paper is devoted to a special case of K being real. Our aim is to show that under this assumption we have $C_1 \subseteq E$. It is easy to see that K is real if and only if each $p \in J$ is positive.

We shall need the equivalence relation \sim defined on the group of all units of K as follows: For any units x, y of K we write $x \sim y$ if and only if x/y is the square of a totally positive unit of K.

Lemma 4.1. If K is real then we have:

- (a) if $x \sim y$ and $u \sim v$ are units of K then $xu \sim yv$;
- (b) if $x \sim y$ are units of K then $x^{\sigma} \sim y^{\sigma}$ for any $\sigma \in G$;
- (c) $e^4 \sim 1$ for any unit e of K;

- $\begin{array}{ll} \text{(d)} & \varepsilon_{\{p\}}^2 \not\sim 1 \text{ for any } p \in J; \\ \text{(e)} & \varepsilon_S^2 \sim 1 \text{ for any } S \subseteq J, \ \#S > 1; \\ \text{(f)} & \varepsilon_S^{1-\sigma\tau} \sim \varepsilon_S^{1-\sigma\tau} \cdot \varepsilon_S^{1-\tau} \text{ for any } S \subseteq J \text{ and any } \sigma, \tau \in G. \end{array}$

Proof. (a) The product of totally positive units is totally positive, too. (b) All conjugates of a totally positive unit are again totally positive. (c) As all conjugates of e belong to K, they are real, and so e^2 is totally positive. (d) [3, Lemma 1] gives $\varepsilon_{\{p\}}^{1+\sigma_p} = -1$ and so $\varepsilon_{\{p\}}$ is neither totally positive nor totally negative. (e) Due to its definition, ε_S is the norm of a nonzero number from an imaginary abelian field

 \mathbb{Q}^S to a real subfield K_S and so it is totally positive. (f) Using (a), this statement is equivalent to $\varepsilon_S^{(1-\sigma)(1-\tau)} \sim 1$. Due to [3, Lemma 2] we have $\varepsilon_S^{1-\sigma} = \pm \prod_{T \subseteq S} \varepsilon_T^{2a_T}$ for suitable $a_T \in \mathbb{Z}$ and, once again, [3, Lemma 2] implies

$$\left(\prod_{T\subseteq S}\varepsilon_T^{a_T}\right)^{1-\tau} = \pm\prod_{T\subseteq S}\varepsilon_T^{2b_T}$$

for suitable $b_T \in \mathbb{Z}$. Thus

$$\varepsilon_S^{(1-\sigma)(1-\tau)} = \left(\pm \prod_{T \subseteq S} \varepsilon_T^{2b_T}\right)^2$$

and (c) gives the result.

In the following lemma we shall consider the complete undirected graph on $S \subseteq J$ where for each $p, q \in S$, $p \neq q$, the edge between vertices p and q is labeled by the number $m_{(p,q)}$ which is defined by means of Legendre symbol as follows:

$$m_{(p,q)} = \frac{1 - t_{p,q}}{2}, \quad \text{where} \quad t_{p,q} = \begin{cases} \left(\frac{p}{q}\right) & \text{if } q \text{ is odd,} \\ \left(\frac{2}{p}\right) & \text{if } q = 2. \end{cases}$$

Notice that the quadratic reciprocity law implies $m_{(p,q)} = m_{(q,p)}$ as we are assuming that each $p \in J$ is positive, i.e., either p = 2 or p is a prime congruent to 1 modulo 4. If H is a Hamiltonian path from p to q in S, i.e., $H = (p, r_1, \ldots, r_{\#S-2}, q)$ such that $\{p, r_1, \ldots, r_{\#S-2}, q\} = S$, then we put $m_H = m_{(p,r_1)} \cdot m_{(r_1,r_2)} \ldots m_{(r_{\#S-2},q)}$.

Lemma 4.2. If K is real, $p \in S \subseteq J$, and #S > 1 then

$$\varepsilon_S^{1+\sigma_p} \sim \prod_{q \in S, \, q \neq p} \varepsilon_{\{q\}}^{2\sum_H m_H}$$

where the sum is taken over all Hamiltonian paths H from p to q in S.

Proof. If $S = \{p, q\}$ then [3, Lemma 1] gives

$$\varepsilon_{S}^{1+\sigma_{p}} = t_{p,q} \cdot \varepsilon_{\{q\}}^{1-\operatorname{Frob}(p,K_{\{q\}})} = \begin{cases} 1 & \text{if } t_{p,q} = 1, \\ -\varepsilon_{\{q\}}^{1-\sigma_{q}} = \varepsilon_{\{q\}}^{2} & \text{if } t_{p,q} = -1, \end{cases}$$

which we wanted to show. Let us suppose that #S > 2 and that the lemma has been proved for all $T \subsetneq S$. Then [3, Lemma 1] states

$$\varepsilon_{S}^{1+\sigma_{p}} = \varepsilon_{S \setminus \{p\}}^{1-\operatorname{Frob}(p,K_{S \setminus \{p\}})}$$

It is easy to see that ${\rm Frob}(p,K_{S\backslash\{p\}})=\prod_{q\in S\backslash\{p\}}\sigma_q^{m_{(p,q)}}$ and Lemma 4.1(f,e,b,a) implies

$$\varepsilon_{S}^{1+\sigma_{p}} \sim \prod_{q \in S \setminus \{p\}} \left(\varepsilon_{S \setminus \{p\}}^{1-\sigma_{q}} \right)^{m_{(p,q)}} \sim \prod_{q \in S \setminus \{p\}} \left(\varepsilon_{S \setminus \{p\}}^{1+\sigma_{q}} \right)^{m_{(p,q)}}$$

.

The lemma follows from the induction hypothesis for $\varepsilon_{S\setminus\{p\}}^{1+\sigma_q}$ and Lemma 4.1(a).

Recall that we have seen in Lemma 2.1 that for any $S\subseteq J$ and any $\sigma\in G$ we have $\varepsilon_S^{1+\sigma} = \pm x^2$ for suitable $x \in D_S = \langle \varepsilon_T; T \subseteq S \rangle$. The following lemma states that this x satisfies $x^{1-\sigma} = 1$. Example 3.1 shows that the assumption of K being real cannot be avoided here.

Lemma 4.3. If K is real, $S \subseteq J$, and $\sigma \in G$ then there is $x \in D_S$ such that $\varepsilon_S^{1+\sigma} = \pm x^2$ and $x^{1-\sigma} = 1$.

Proof. If $S = \emptyset$ then $\varepsilon_S = 1$ and $x = \pm 1$. If $S = \{p\}$ then ε_S^{σ} is equal to either ε_S or $\varepsilon_S^{\sigma_p}$. In the former case $x = \pm \varepsilon_S$ and $x^{1-\sigma} = \varepsilon_S^{1-\sigma} = 1$, in the latter case [3, Lemma 1] gives $\varepsilon_S^{1+\sigma} = -1$ and $x = \pm 1$. Finally, let #S > 1. There is $T \subseteq S$ such that σ acts as $\prod_{p \in T} \sigma_p$ on K_S .

Lemma 2.1 gives $x \in D_S$ such that $\varepsilon_S^{1+\sigma} = \pm x^2$ and Lemmas 4.1 and 4.2 imply

$$\pm x^2 = \varepsilon_S^{1+\prod_{p\in T}\sigma_p} \sim \varepsilon_S^{1-\prod_{p\in T}\sigma_p} \sim \prod_{p\in T} \varepsilon_S^{1-\sigma_p} \sim \prod_{p\in T} \varepsilon_S^{1+\sigma_p} \sim \prod_{p\in T} \prod_{q\in S, q\neq p} \varepsilon_{\{q\}}^{2\sum_H m_H} ,$$

where the sum is taken over all Hamiltonian paths H from p to q in S. Hence there is a totally positive unit $y \in K$ such that

$$\pm x^2 = y^2 \cdot \prod_{q \in S} \varepsilon_{\{q\}}^{2\sum_{p \in T, \ p \neq q} \sum_H m_H}$$

As -1 is not a square in K this implies

$$x = \pm y \cdot \prod_{q \in S} \varepsilon_{\{q\}}^{\sum_{p \in T, p \neq q} \sum_{H} m_{H}}$$

and so

$$x^{1-\sigma} = y^{1-\sigma} \cdot \prod_{q \in S} (\varepsilon_{\{q\}}^{1-\sigma})^{\sum_{p \in T, \ p \neq q} \sum_H m_H}$$

We have

$$\varepsilon_{\{q\}}^{1-\sigma} = \begin{cases} 1 & \text{if } q \notin T, \\ \varepsilon_{\{q\}}^{1-\sigma_q} = -\varepsilon_{\{q\}}^2 & \text{if } q \in T. \end{cases}$$

Therefore

$$x^{1-\sigma} = y^{1-\sigma} \cdot \prod_{q \in T} \left(-\varepsilon_{\{q\}}^2 \right)^{\sum_{p \in T, \ p \neq q} \sum_H m_H}$$

As $(x^{1-\sigma})^2 = (\varepsilon_S^{1+\sigma})^{1-\sigma} = 1$ we have $x^{1-\sigma} = \pm 1$. Hence to prove the lemma we need to show that $x^{1-\sigma} > 0$. Since y is totally positive, $y^{1-\sigma} > 0$; moreover $\varepsilon_{\{q\}}^2 > 0$. Hence

sgn
$$x^{1-\sigma} = \prod_{q \in T} (-1)^{\sum_{p \in T, \ p \neq q} \sum_H m_H} = (-1)^{\sum_{q \in T} \sum_{p \in T, \ p \neq q} \sum_H m_H}$$
.

We know that $m_H = m_{H^{\mathrm{op}}}$, where H^{op} is the path opposite to H. This implies that $\sum_{q \in T} \sum_{p \in T, p \neq q} \sum_H m_H = 2 \sum_{q \in T} \sum_{p \in T, p < q} \sum_H m_H$ is even and so sgn $x^{1-\sigma} = 1$ and $x^{1-\sigma} > 0$. The lemma is proved.

Proposition 4.1. If K is real then $\varkappa_S \in k_S$ for each $S \subseteq J$.

Proof. We need to show that $\varkappa_S^{1-\sigma} = 1$ for each $\sigma \in \text{Gal}(K_S/k_S)$. This is clear if $\sigma = 1$, so we can assume that $\sigma \neq 1$. Then there is a basis $\alpha_1, \ldots, \alpha_r$ of $\text{Gal}(K_S/k_S)$ such that $\alpha_r = \sigma$. Lemma 2.1 implies that

$$\varepsilon_S^{(1+\alpha_1)\cdots(1+\alpha_{r-1})} = \pm y^{2^{r-1}}$$

with $y = \prod_{T \subseteq S} \varepsilon_T^{a_T}$ for suitable $a_T \in \mathbb{Z}$. Then

$$\pm \varkappa_{S}^{2^{r}} = \eta_{S} = \varepsilon_{S}^{(1+\alpha_{1})\cdots(1+\alpha_{r-1})(1+\sigma)} = \left(\pm y^{2^{r-1}}\right)^{1+\sigma} = \left(y^{1+\sigma}\right)^{2^{r-1}}$$

As -1 is not a square in K this implies

$$\pm \varkappa_S^2 = y^{1+\sigma} = \prod_{T \subseteq S} \left(\varepsilon_T^{1+\sigma} \right)^{a_T}.$$

Lemma 4.3 states that there are $x_T \in D_T$ such that $\varepsilon_T^{1+\sigma} = \pm x_T^2$ and $x_T^{1-\sigma} = 1$. Hence

$$\pm \varkappa_S^2 = \prod_{T \subseteq S} \left(\pm x_T^2 \right)^{a_T}$$

and this implies

$$\varkappa_S = \pm \prod_{T \subseteq S} x_T^{a_T}$$

because -1 is not a square in K. Therefore

$$\varkappa_S^{1-\sigma} = \prod_{T \subseteq S} \left(x_T^{1-\sigma} \right)^{a_T} = 1 \; ,$$

which we wanted to prove.

Theorem 4.1. If K is real then the class number h of k is divisible by the following power of 2:

$$2 \cdot [k:\mathbb{Q}] \cdot \left(\frac{[K:k]}{4}\right)^{[k:\mathbb{Q}]/2} \mid h.$$

Proof. Proposition 4.1 implies that $C_1 \subseteq E$ and so $(E : C_1) = [E : C_1]$ is an integer. Theorem 3.1 gives

$$h = 2 \cdot [k : \mathbb{Q}] \cdot [E : C_1] \cdot \left(\frac{[K : k]}{4}\right)^{[k:\mathbb{Q}]/2}$$

and the theorem follows.

On the class number of a compositum of real quadratic fields: an approach via circular units 189

References

- [1] M. Bulant, On the parity of the class number of the field $Q(\sqrt{p}, \sqrt{q}, \sqrt{r})$, J. Number Theory **68** (1998), 72–86.
- [2] R. Kučera, On the parity of the class number of a biquadratic field, J. Number Theory 52 (1995), 43–52.
- [3] R. Kučera, On the Stickelberger ideal and circular units of a compositum of quadratic fields, J. Number Theory 56 (1996), 139–166.
- [4] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. math. 62 (1980), 181–234.

Address: Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Czech Republic

E-mail: kucera@math.muni.cz

Received: 23 October 2007; revised: 13 October 2008