CORRIGENDUM TO "REFINEMENTS OF GOLDBACH'S CONJECTURE, AND THE GENERALIZED RIEMANN HYPOTHESIS"

Andrew Granville

Abstract

Karin Halupczok [4] pointed out that we have stated an estimate in [3] that does not follow as easily as claimed. Although we are unable to obtain the claimed estimate, we prove a good enough estimate to (mostly) recover the theorems claimed in [3].

Keywords: Goldbach conjecture, explicit formula for the number of primes.
An explicit version of the prime number theorem states that if x is an integer and $1 \leq T \leq x$ then

$$
\begin{equation*}
\sum_{p \leq x} \log p=x-\sum_{\substack{\rho \\|\operatorname{Im} \rho| \leq T}} \frac{x^{\rho}}{\rho}+O\left(\frac{x(\log x)^{2}}{T}\right) \tag{1}
\end{equation*}
$$

where the sum is over zeros ρ of $\zeta(\rho)=0$ with $\operatorname{Re}(\rho)>0$. Let $B=\sup \{\operatorname{Re} \rho: \zeta(\rho)=$ $0\}$ (note that $1 \geq B \geq 1 / 2$). We claimed [3, (5.1)] that by partial summation with $T=x$ it is not hard to show that

$$
\sum_{2 N \leq x} G(2 N)=\sum_{p+q \leq x} \log p \log q=\frac{x^{2}}{2}-2 \sum_{\substack{\rho \\|\operatorname{Im} \rho| \leq x}} \frac{x^{1+\rho}}{\rho(1+\rho)}+O\left(x^{2 B+o(1)}\right)
$$

however we have not been able to repeat the argument and Karen Halupczok [4] pointed out the references [1,2] where this issue has been investigated in some detail for $B=\frac{1}{2}$, and nothing so strong has been proved. Here we sketch a simple argument to prove that

$$
\begin{equation*}
\sum_{2 N \leq x} G(2 N)=\sum_{p+q \leq x} \log p \log q=\frac{x^{2}}{2}-2 \sum_{\substack{\rho \\|\operatorname{Im} \rho| \leq x}} \frac{x^{1+\rho}}{\rho(1+\rho)}+O\left(x^{\frac{2+4 B}{3}}(\log x)^{2}\right) \tag{2}
\end{equation*}
$$

Note that $2 B<\frac{2+4 B}{3}<1+B$ as $B<1$, so our error term is not quite as good as was claimed in [3], but it is comfortably strong enough to recover Theorem 1 A of [3]. Using a zero-density estimate one can improve the error term to \ll $x^{2 B}(\log x)^{O(1)}$, as claimed, when $B \geq \frac{3}{4}$, and to an exponent between $2 B$ and $\frac{2+4 B}{3}$ when $\frac{1}{2} \leq B \leq \frac{3}{4}$.

This mistake is repeated in all four parts of Theorem 1 in [3], so corrections are needed throughout: Replacing $2 B$ by $\frac{2+4 B}{3}$ on the fourth line of page 171 allows us to recover Theorem 1B. Similarly replacing $2 B$ by $\frac{2+4 B}{3}$ in (1.3) allows us to recover Theorem 1D. There is a mistake in the proof of Theorem 1C, two lines above (5.5), where complex variables ρ and σ are treated as if they are real variables. If a similar correction is made there we do not quite recover Theorem 1C. Instead we can prove that if (1.2) holds then the Riemann Hypothesis for Dirichlet L-functions mod q holds; and if the Riemann Hypothesis for Dirichlet L-functions $\bmod q$ holds then we obtain (1.2) with error term $O\left(x^{\frac{4}{3}}(\log x)^{2}\right)$.

Sketch of proof of (2). What does follow from (1) by partial summation (and noting that $\left.\sum_{T<|\operatorname{Im} \rho| \leq x}\left|x^{1+\rho} / \rho(1+\rho)\right| \ll x^{2} \log T / T\right)$, is

$$
\begin{aligned}
\sum_{p+q \leq x} \log p \log q= & \frac{x^{2}}{2}-2 \sum_{\substack{\rho \\
|\operatorname{Im} \rho| \leq x}} \frac{x^{1+\rho}}{\rho(1+\rho)} \\
& +\sum_{\substack{\rho, \rho^{\prime} \\
|\operatorname{Im} \rho|,\left|\operatorname{Im} \rho^{\prime}\right| \leq T}} \frac{\Gamma(\rho) \Gamma\left(\rho^{\prime}\right)}{\Gamma\left(\rho+\rho^{\prime}\right)} \cdot \frac{x^{\rho+\rho^{\prime}}}{\rho+\rho^{\prime}}+O\left(\frac{x^{2}(\log x)^{2}}{T}\right) .
\end{aligned}
$$

Stirling's formula implies that $\left|e^{\rho} \Gamma(\rho)\right| \asymp\left|\rho^{\rho-1 / 2}\right|=|\rho|^{\operatorname{Re}(\rho)-\frac{1}{2}} e^{-\arg (\rho) \operatorname{Im}(\rho)}$ so that if $\rho=\beta+i \gamma$ with $\beta \in(0,1)$ and $|\gamma| \gg 1$ then $\left|e^{\rho} \Gamma(\rho)\right| \asymp|\gamma|^{\beta-\frac{1}{2}} e^{-\frac{\pi}{2}|\gamma|}$, since $\arg (\rho)= \pm\left(\frac{\pi}{2}+O\left(\frac{1}{|\gamma|}\right)\right)$ when $\operatorname{Im}(\rho)= \pm|\gamma|$. Let $\rho^{\prime}=\beta^{\prime}+i \gamma^{\prime}$ with $|\gamma| \geq\left|\gamma^{\prime}\right|$. Therefore if γ and γ^{\prime} have the same sign then

$$
\Gamma(\rho) \Gamma\left(\rho^{\prime}\right) /\left(\rho+\rho^{\prime}\right) \Gamma\left(\rho+\rho^{\prime}\right) \asymp|\gamma|^{\beta-\frac{1}{2}}\left|\gamma^{\prime}\right|^{\beta^{\prime}-\frac{1}{2}} /\left|\gamma+\gamma^{\prime}\right|^{\beta+\beta^{\prime}+\frac{1}{2}} \asymp\left|\gamma^{\prime}\right|^{\beta^{\prime}-\frac{1}{2}} /|\gamma|^{\beta^{\prime}+1}
$$

If γ and γ^{\prime} have opposite signs then

$$
\begin{aligned}
\Gamma(\rho) \Gamma\left(\rho^{\prime}\right) /\left(\rho+\rho^{\prime}\right) \Gamma\left(\rho+\rho^{\prime}\right) & \asymp|\gamma|^{\beta-\frac{1}{2}}\left|\gamma^{\prime}\right|^{\beta^{\prime}-\frac{1}{2}} e^{-\pi\left|\gamma^{\prime}\right|} /\left(1+\left|\gamma+\gamma^{\prime}\right|\right)^{\beta+\beta^{\prime}+\frac{1}{2}} \\
& \ll\left|\gamma^{\prime}\right|^{\beta^{\prime}-\frac{1}{2}} /|\gamma|^{\beta^{\prime}+1},
\end{aligned}
$$

since $|\gamma|^{\beta+\beta^{\prime}+\frac{1}{2}} e^{-\pi\left|\gamma^{\prime}\right|} \ll\left(1+\left|\gamma+\gamma^{\prime}\right|\right)^{\beta+\beta^{\prime}+\frac{1}{2}}$. We have $\left(\left|\gamma^{\prime}\right| /|\gamma|\right)^{\beta^{\prime}} \leq 1$ which implies that $\left|\gamma^{\prime}\right|^{\beta^{\prime}-\frac{1}{2}} /|\gamma|^{\beta^{\prime}+1} \leq 1 /\left|\gamma^{\prime}\right|^{\frac{1}{2}}|\gamma|$. Hence the final sum in the last displayed equation is $\ll x^{2 B} \sum_{\left|\gamma^{\prime}\right| \leq|\gamma| \leq T} 1 /\left|\gamma^{\prime}\right|^{\frac{1}{2}}|\gamma| \ll x^{2 B} \sum_{|\gamma| \leq T}(\log |\gamma|) /|\gamma|^{\frac{1}{2}} \ll$ $x^{2 B} T^{1 / 2}(\log T)^{2}$; and (2) follows by selecting $T=x^{\frac{4}{3}(1-B)}$.

Improvement using a zero-density estimate. In the bound above the contribution is majorized by those terms with $\beta, \beta^{\prime} \geq \frac{1}{2}$ and $\gamma, \gamma^{\prime} \geq 0$ (using the
symmetries of the zeros). By using Carlson's zero-density estimate $\#\{\rho: \zeta(\rho)=$ 0 and $\beta \geq \sigma,|\gamma| \leq T\} \ll T^{4 \sigma(1-\sigma)}(\log T)^{O(1)}$, we can improve our bound (we will select $T \leq x^{1 /(8 B-4)}$ below, which simplifies several steps, since then $\left.B \leq \frac{1}{2}+\frac{\log x}{8 \log \gamma}\right)$: throughout we sum over the zeros arranged by height, in dyadic intervals, and obtain that the final sum in the displayed equation is

$$
\begin{aligned}
& \ll \sum_{1 \leq \gamma^{\prime} \leq \gamma \leq T} \frac{\left(\gamma^{\prime}\right)^{\beta^{\prime}-\frac{1}{2}}}{\gamma^{\beta^{\prime}+1}} \cdot x^{\beta+\beta^{\prime}} \ll \mathcal{L} \sum_{\gamma \leq T} \max _{1 \leq t \leq \gamma} \int_{\sigma=1 / 2}^{B} \frac{t^{\sigma-\frac{1}{2}}}{\gamma^{\sigma+1}} \cdot x^{\beta+\sigma} t^{4 \sigma(1-\sigma)} d \sigma \\
& \ll \mathcal{L} \sum_{\gamma \leq T} \max _{1 / 2 \leq \sigma \leq B} x^{\beta+\sigma} \gamma^{4 \sigma(1-\sigma)-\frac{3}{2}} \ll \mathcal{L} \sum_{\gamma \leq T} x^{\beta+B} \gamma^{4 B(1-B)-\frac{3}{2}} \\
& \ll \mathcal{L} \max _{u \leq T} \max _{1 / 2 \leq \tau \leq B} x^{\tau+B} u^{4 B(1-B)+4 \tau(1-\tau)-\frac{3}{2}} \ll \mathcal{L}_{u \leq T} x^{2 B} u^{8 B(1-B)-\frac{3}{2}} \\
& \ll x^{2 B}\left(1+T^{8 B(1-B)-\frac{3}{2}}\right)(\log x)^{O(1)}
\end{aligned}
$$

where $\mathcal{L}=(\log x)^{O(1)}$. If $B \geq \frac{3}{4}$ then this is $\ll \mathcal{L} x^{2 B}$; selecting $T=x^{1 /(8 B-4)}$ we get an error term $\ll x^{2 B}(\log x)^{O(1)}$, which is as good as can be hoped for. If $B \leq \frac{3}{4}$ then the above error term is $\ll \mathcal{L} x^{2 B} T^{8 B(1-B)-\frac{3}{2}}$; to minimize we select $T=x^{4(1-B) /(16 B(1-B)-1)}$, which leads to an error term of $x^{\frac{2+4 B}{3}-\theta_{B}}(\log x)^{O(1)}$ where $\theta_{B}=\frac{16(1-B)(1-2 B)^{2}}{3(16 B(1-B)-1)}$.

Bibliography

[1] Gautami Bhowmik and Jan-Christoph Schlage-Puchta, Distribution of Goldbach numbers (to appear).
[2] A. Fujii, An additive problem of prime numbers, II Proc. Japan Acad 67A (1991), 248-252
[3] Andrew Granville, Refinements of Goldbach's conjecture, and the Generalized Riemann Hypothesis Functiones et Approximatio 37 (2007), 159-173
[4] Karin Halupczok, Email communication

Address: Département de Mathématiques et statistique, Université de Montréal, CP 6128 succ. Centre-Ville, Montréal QC H3C 3J7, Canada
E-mail: andrew@dms.umontreal.ca
Received: 22 October 2008

