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A MEASURE FOR THE LINEAR INDEPENDENCE OF VALUES
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FUNCTION
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Abstract: In 1873 Hermite proved the transcendence of the basis e of the natural logarithm.
In the more than 140 years since this paper was published, several quite different proofs were
given (see Transcendental Numbers by N.I. Fel’dman and Yu.V. Nesterenko, Springer 1998). One
of the best known versions goes back to Hurwitz, who used divisibility properties to show that
a certain linear form doesn’t vanish. Recently I generalized this method (see [20]), using some
results on higher congruences going back to Dedekind and Hasse. We regained a former result of
Carlson on linear independence of certain values of the function

G(x) =

∞∑
n=0

xn

Q(1) · · ·Q(n)
,

Q a certain polynomial. Here I change the method used in [20] (see Chap. 5) to give a new proof
of Galochkin’s measure for the Q–linear independence of these values.
Keywords: irrationality and Q–linear independence.

1. Introduction

Let Q ∈ Z[x] be a polynomial of degree q > 1 with integer coefficients and
without zeros at the non–negative integers. Carlson [3] investigated already in
1935 the arithmetical nature of values of the function

G(x) =
∞∑
n=0

xn

Q(1)Q(2) · · ·Q(n)
. (1)

Throughout the paper empty products (e.g. corresponding to n = 0 in the latter
series) and sums are interpreted as 1 and 0, respectively.

Carlson showed by means of a certain Padé–approximation to G that for any
distinct nonzero rationals α1, . . . , αh the numbers 1, G(α1), . . . , G(q−1)(α1), . . . ,
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G(αh), . . . , G(q−1)(αh) are linearly independent over Q . In 1979 and 1988 much
more was proved for this and more general functions by Galochkin (see [6],[7]) and
other mathematicians. One can get a first impression of the extensive research
during the last century on the arithmetic nature of the values of special func-
tions like E –functions, G–functions, hypergeometric functions in the monograph
of Fel’dman and Nesterenko [5] and one can find there a broad overview of the
literature in this area.

In this paper my aim is to show that aside the lines which Carlson or Galoch-
kin used it is possible to get their result with the method Hurwitz [11] applied to
prove the transcendence of e . Here we have to replace the divisibility properties in
the paper of Hurwitz by theorems on higher congruences going back to Dedekind
[4] and Hasse [9]. Gerst and Brillhart [8] have written a very readable paper on
this using only relatively simple algebraic considerations. In addition to the result
of Carlson, which I gained already in [20], we can get here the same measure which
Galochkin obtained for the linear independence of the values in question of G .

The theorem of Carlson with the measure of Galochkin is the following:

Theorem 1. Let α1, . . . , αh be distinct non–zero rational numbers. For any ε > 0
there exists an integer H0(ε) such that for any non–zero vector

(
s0, s

(0)
1 , . . . , s

(0)
h , . . . , s

(q−1)
1 , . . . , s

(q−1)
h

) ∈ Zh·q+1

of height H := max
16j6h

06ν6q−1

{|s(ν)
j |
}
> H0(ε) , one has

∣∣∣s0 +
h∑

j=1

q−1∑
ν=0

s
(ν)
j G(ν)(αj)

∣∣∣ > H−
(
hq+1
κ q−1

)
−ε, (2)

where κ denotes the number of different irreducible factors of Q .

Remarks
i) For a linear polynomial Q one has in comparision to Dirichlet’s approxi-

mation theorem the sharp measure H−h−ε . As in Baker [1] Chap. 10, our
method enables us to replace ε by a function ε(H) tending to zero if H
goes to infinity like c(log logH)−1 ; c a constant independent of H .

ii) G satisfies a linear differential equation of order q with coefficients which are
polynomials over Q . Therefore it is not possible to replace the order (q− 1)
of differentation in the theorem by a higher one.

iii) One can assume that the numbers αj(1 6 j 6 h) in the theorem are integers.
To show this, let us denote

αj :=
sj
tj

(1 6 j 6 h), sj , tj ∈ Z∗, a := t1 · t2 · · · th, α∗j ∈ Z,

tjα
∗
j := sja, Q

∗(x) := a ·Q(x).
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If the theorem is proved for integers αj we apply this result to the function

G∗(x) =
∞∑
n=0

1
Q(1) · · ·Q(n)

(x
a

)n
=
∞∑
n=0

xn

Q∗(1) · · ·Q∗(n)
;

for (s0, s1, . . . , sn) ∈ Zh+1\~0 it follows

s0 + s1G
∗(α∗1) + . . .+ shG

∗(α∗h) 6= 0.

The term on the left in this relation is by definition of G∗ and α∗j := αj · a
equal to

s0 + s1G(α1) + . . .+ shG(αh).

Acknowledgement. The author thanks the referee for many valuable suggestions
and for the correction of misprints.

2. The method of Hilbert–Perron–Skolem

Let

f(x) =
∞∑
n=0

knx
n, k0 = 1. (3)

One chooses a ”starting–polynomial”

P (x) := P0(x) :=
m∑
n=0

γnknx
n (4)

and derives m other polynomials from P :

Pµ(x) =
m∑
n=µ

γn kn−µ xn−µ, 1 6 µ 6 m. (5)

The approximating–polynomial P ∗ belonging to P is the following:

P ∗(x) :=
m∑
µ=0

Pµ(x). (6)

Using the relations (4) and (5) one obtains

P ∗(x) =
m∑
n=0

γn

n∑
ν=0

kνx
ν (7)
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and as f(0) = k0 = 1

P ∗(0) =
m∑
n=0

γn. (8)

Finally it follows for the ”remainder–term”

∆(x) := P ∗(x)− P ∗(0)f(x) (9)

with (7) and (8)

∆(x) =
m∑
n=0

γn

n∑
ν=0

kνx
ν −

m∑
n=0

γn

∞∑
ν=0

kνx
ν (10)

= −
m∑
n=0

γn

∞∑
ν=n+1

kνx
ν .

To prove Theorem 1 one has to show that for every non–zero vector

(s0, s
(0)
1 , . . . , s

(0)
h , . . . , s

(q−1)
1 , . . . , s

(q−1)
h ) ∈ Zhq+1 (11)

the linear form

Λ = s0 · 1 +
h∑

j=1

q−1∑
ν=0

s
(ν)
j G(ν)(αj) (12)

does not vanish.
To show this one takes the ”approximating–polynomial” P ∗ (see (6)) to

introduce the linear form

Λ∗ = s0 P
∗(0) +

h∑

j=1

q−1∑
ν=0

s
(ν)
j P ∗(ν)(αj). (13)

Using the ”remainder term” ∆(x) (see (9)) one gets the following connection
between the linear forms Λ and Λ∗

Λ∗ = P ∗(0)Λ +
q−1∑
ν=0

h∑

j=1

s
(ν)
j ∆(ν)(αj). (14)

If one chooses an appropriate ”starting–polynomial” P one can show firstly that
the linear form Λ∗ is different from zero and secondly that

∣∣∣
q−1∑
ν=0

h∑

j=1

s
(ν)
j ∆(ν)(αj)

∣∣∣ 6 1
2
|Λ∗|. (15)

In this way one gets from (14)
∣∣P ∗(0)

∣∣ · |Λ| > 1
2
|Λ∗| > 0. (16)

From this inequaliy one concludes Λ 6= 0 which means the linear independence
over Q of the values 1, G(α1) . . . , G(αh), . . . , G(q−1)(αh). To give a measure for the
linear independence of this values one has to find quantitative versions, depending
on the height H of the vector (11), for the inequalities (15) and (16).
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Remark. In the paper of Skolem [17] and in [2] one finds further applications of
the method of Hilbert–Perron–Skolem.

3. The form of the polynomials PµPµPµ in the special case of the function
GGG defined in 1

We apply now the method of Hilbert–Perron–Skolem described in Chap. 2 to the
function G defined in Chap. 1. In this case the values kn in (3) are given by

kn :=
1

Q(1)Q(2) · · ·Q(n)
. (17)

Let δ denote the operator x d
dx . The function G satisfies the linear differential

equation of order q
Q(δ)G(x) = Q(0) + xG(x). (18)

If one applies Q(δ) to Pµ one gets

Q(δ)Pµ(x) =
m∑
n=µ

γn kn−µQ(δ)xn−µ (19)

=
m∑
n=µ

γn kn−µQ(n− µ)xn−µ

= γµ + x

m∑
n=µ+1

γn kn−(µ+1) x
n−(µ+1)

= Pµ(0) + xPµ+1(x), 0 6 µ 6 m.

If the ”starting–polynomial” P0(x) := P (x) vanishes at zero with multiplicity m0 ,
it follows

Pµ(0) = γµ = 0 for µ = 0, . . . ,m0 − 1 (20)

and from (19) we have

Pµ(x) =
( 1
x
Q(δ)

)µ
◦ P (x) for 0 6 µ 6 m0. (21)

At the end of this chapter we will citate in form of two lemmata known properties
of the operators δ and D = d

dx giving with (21) the following representation of
the polynomials Pµ ,

Pµ(x) =
µ·q∑

j=0

αj,µ x
j−µ P (j)(x), µ 6 m0. (22)
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The coefficients αj,µ are integers and if Q ∈ Z[x] has the form

Q(x) = a0 + a1 x+ · · ·+ aq x
q, aq 6= 0, q > 1 (23)

one gets for the highest coefficient of Pµ

αµq,µ = aµq . (24)

Lemma 1. For δ = x d
dx and D = d

dx we have

δj =
j∑

i=0

ρi,j x
iDi, ρij ∈ Z,

ρ0,0 := 1; ρ0,j := 0, ρi,j := iρi,j−1 + ρi−1,j−1 (0 < i < j),

ρj,j := ρj−1,j−1 (0 < j), ρi,j := 0 (i = −1or i > j).

Lemma 2. For Q(x) =
q∑

`=0

a` x
` one has

i) Q(δ) =
q∑

j=0

αj x
j Di, αj :=

q∑

`=j

ρj,` a` (0 6 j 6 q)

ii)
( 1
x
Q(δ)

)µ
=

µ·q∑

j=0

αj,µx
j−µDj , α0,0 := 1, αj,1 := αj

αµq,µ = αµq,1 = αµq = (ρq,q aq)µ = aµq .

4. A survey of some results on higher congruences

Let P denote the set of prime numbers. For the proof of Theorem 1, one needs
some results on those primes p for which the congruence f(x) ≡ 0(modp) is
solvable. Here f(x) denotes a polynomial with rational integer coefficients which
is not identically zero ( mod p). Moreover results on those primes p are needed for
which the given polynomial splits completely in deg f linear factors (mod p). In
algebraic–number–theory one can find many papers in this direction going back to
Dedekind [4] and Hasse [9]. Gerst and Brillhart [8] have given an excellent more
elementary introduction to these problems. For better readability of this work I
mention here some notations, definitions, conclusions and theorems. All proofs can
be found in [8].

Definition 1. A prime p for which f(x) is not identically zero ( mod p) and for
which the congruence f(x) ≡ 0(mod p) is solvable is called a prime divisor of f .

Proposition 1. Schur [16] has shown that every nonconstant polynomial f has
an infinite number of prime divisors.
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Definition 2. Let f(x) = a
∏
fi(x)αi(a, αi,∈ Z, αi > 0, fi(x) ∈ Z[x] dinstinct,

primitive and irreducible) be the unique factorisation of f(x) into irreducible
polynomials. f(x) is said to ”split completely”( mod p), p a prime, iff each fi(x)
is congruent ( mod p) to a product of deg fi distinct linear factors and p doesn’t
divide the discriminant of g(x) =

∏
fi(x).

If f(x) ”splits completely” (mod p) then f(x) is congruent (mod p) to a
product of degf many linear factors of the form ax + b, a, b ∈ Z, p 6 |a . It is this
property which is needed to prove Theorem 1.

Theorem 5 of the work of Gerst and Brillhart [8] gives a general information
on the prime divisors of a polynomial. The following Proposition 2 is proved there
as a corollary (see [8], page 258).

Proposition 2. Every nonconstant polynomial f(x) has an infinite number of
prime divisors p for which it ”splits completely” (mod p).

Proposition 3. If n = deg f, γi (1 6 i 6 m) are the roots of f(x), K =
Q(γ1, . . . , γm) and if h(x) ∈ Z[x] is an irreducible polynomial with a primitive
element of K as a root then each fi (see Def. 2) will ”split completely”(mod p)
for almost all prime divisors p of h(x) The prime divisors in proposition 2 are
the prime divisors of h(x) which do not divide the discriminant of g(x) =

∏
fi(x)

(see [8], proof of the corollary on page 258).

To give the measure in our Theorem 1 we use Čebotarev’s theorem (see
Tschebotareff [19] or Narkiewicz [13]). The polynomial h(x) in the remark above
is irreducible and normal. Therefore after Theorem 4 of [8] the primes p for
which f ”splits completely” (mod p) belong to the trivial group {e} of the Ga-
lois group G(h) of h(x). This primes have, if

∣∣G(h)
∣∣ denotes the order of G(h), the

Dirichlet–density 1
|G(h)| . So there is (e.g. [13] pp 344) the ”prime–number–theorem”:

Proposition 4. Let πf (x) denote the number of primes p for which f ”splits
completely” (mod p) and which do not exceed x . Then

πf (x) =
( 1
|G(h)| + o(1)

) x

log x
.

5. The choice of the ”starting–polynomial” PPP and some divisibility
properties of the values P

(ρ)
µ (αj)P
(ρ)
µ (αj)P
(ρ)
µ (αj)

To prove the quantitative part of Theorem 1 it is necessary that the prime p , which
rules the ”starting–polynomial”, can be chosen independently of the coefficients
s

(ν)
j of the linear form Λ. This is in contrast to my proof of the qualitative part

in [20]. Here we choose for each sufficiently large prime p , for which Q ”splits
completely” (mod p), a new ”starting polynomial”. Then it is possible to use the
prime number theorem of Čebotarev to get the sharp measure of Galochkin.
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Without loss of generality we can assume that

gcd
(
s0, s

(0)
1 , . . . , s

(0)
h , . . . , s

(q−1)
1 , . . . , s

(q−1)
h

)
= 1. (25)

If the numbers s
(ν)
j have no common divisor then for every prime p ∈ P

there exists in the set S =
{
s0, . . . , s

(q−1)
h

}
an integer which is not divisible by p .

Let for a prime p ∈ P s0 or s(ν0)
j0

be the ”highest” term in S which is not
divisible by p . We distinguish the cases:

p6 |s0 and p | s(ν)
j (1 6 j 6 h, 0 6 ν 6 q − 1) (26α)

p6 |s(ν0)
j0

, (26β)

p | s(ν)
j , (1 6 j 6 h), (ν0 < ν 6 q − 1)

p | s(ν0)
j , (j0 < j 6 h).

In case α or β we have for the linear form Λ∗ (see (13)) the relations:

Λ∗ = s0 P
∗(0) + pA1, A1 ∈ Z (27α)

Λ∗ = s0 P
∗(0) +

h∑

j=1

ν0−1∑
ν=0

s
(ν)
j P ∗(ν)(αj) (27β)

+
j0∑

j=1

s
(ν0)
j P ∗(ν0)(αj) + pA2, A2 ∈ Z.

Let now p ∈ P be a prime number which satisfies the conditions:

i) Q ”splits completely” (mod p)

(see Definition 2 and Proposition 2 in Chap. 4)

ii) p > q(=: degQ)

(28)

Assume in case α respectively β in addition:

p6 |s0 and p 6 |aq
h∏

j=1

(αj) (29α)

p6 |s(ν0)
j0

and p 6 |aqαj0
h∏

j=1
j 6=j0

(αj0 − αj) (29β)

Define now the ”starting–polynomial” P in case α respectively β in the following
way:

P (x) := xp−1
h∏

j=1

(x− αj)p·q (30α)

P (x) := xp(x− αj0)(p−1)q+ν0

h∏

j=1
j 6=j0

(x− αj)pq (30β)
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The derivatives of P satisfy in case α resp. β the relations:

P (`)(0) =





0 ` < p− 1

(p− 1)!
h∏
j=1

(−αj)pq ` = p− 1

pA3, A3 ∈ Z ` > p

(31α)

i) P (`)(αj0) =





0, ` < (p− 1)q + ν0,

αpj0
(
(p− 1)q + ν0

)
!

h∏
j=1
j 6=j0

(αj0 − αj)pq, ` = (p− 1)q + ν0

ii) 1 6 j 6 h, j 6= j0, (31β)

P (`)(αj) =





0 ` < qp

(qp)!αpj (αj − αj0)(p−1)q+ν0
h∏
r=1
r 6=j0,j

(αj − αr)pq, ` = pq

iii) P (`)(0) =





0 ` < p

p!(−αj0)(p−1)q+ν0
h∏
j=1
j 6=j0

(−αj)pq, ` = p.

The Taylor development at x = 0 of the ”starting–polynomial” P begins in case
α resp. β with the term cxp−1 resp. c · xp, c 6= 0. Therefore one concludes from
the relation (22)

P (ρ)
µ (x) =

µ·q∑

j=0

αjµ
(
xj−µP (j)(x)

)(ρ)
, µ 6 m0, (32)

with m0 = p− 1 in case α and m0 = p in case β .
From the definition of the ”weights” γn in (4) we have

γp−1 kp−1 =
P (p−1)(0)
(p− 1)!

. (33)

Because of the form of the kn in case of the function G , given in Chap. 3 (17),
and from the definition of the ”starting polynomial” P in (30), we find with (31α)
and (33) in case α ,

Pµ(0) = 0 for µ = 0, . . . , p− 2 (34α)

Pp−1(0) = γp−1 = Q(1) · · ·Q(p− 1)
h∏

j=1

(−αj)pq.
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In case β , one gets from (31β ) and (32)

P (ρ)
µ (αj0) =

{ 0 0 6 µ < p− 1, 0 6 ρ 6 q − 1
0 for µ = p− 1, 0 6 ρ < ν0

Aν0 µ = p− 1, ρ = ν0

(34β)

Aν0 :=
(
(p− 1)q + ν0

)
!αpj0

( h∏

j=1
j 6=j0

(αj0 − αj)
)pq

α
(p−1)(q−1)
j0

· α(p−1)q,p−1 (35)

α(p−1)q,p−1 = ap−1
q .

To find such properties for µ > p , one takes the representation

P (ρ)
µ (αj) =

m∑
n=µ+ρ

γn kn−µρ!
(
n− µ
ρ

)
α
n−(µ+ρ)
j (36)

and one expresses γn · kn−µ in the following way:

γn · kn−µ = γn · kn kn−µ
kn

= γn · kn ·Q(n− µ+ 1) · · ·Q(n). (37)

For µ > p the product Q(n − µ + 1) · · ·Q(n) has at least p factors. By the
assumption (28) that the polynomial Q ”splits completely”(mod p) in q linear
factors of the form ax+ b, p 6 |a , one gets

pq
∣∣Q(n− µ+ 1) · · ·Q(n), µ > p. (38)

If one remembers that the αj , 1 6 j 6 h , could be chosen as integers one recognizes
that γn · kn is also an integer. Therefore we have from (37) and (38)

pq
∣∣ γn · kn−µ, p 6 µ 6 n 6 m. (39)

From this we conclude with (36)

pq
∣∣P (ρ)

µ (αj), p 6 µ 6 n 6 m, 0 6 ρ < q, 1 6 q, 0 6 j 6 h (α0 := 0). (40)

To show that the linear form Λ∗ doesn’t vanish one needs also the following facts:
In case α : Let q be the highest exponent with the property

pq
∥∥(Q(1)Q(2) · · ·Q(p− 1)Q(p)

)
(41)

(
pq
∥∥a denotes pq|a but pq+1 6 |a) .

Because Q ”splits completely” (mod p) we have q > q . From relation (37)
follows that we have too for µ > p

pq
∣∣γn kn−µ, p 6 µ 6 n 6 m. (42α)
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Therefore for α0 := 0 and 1 6 j 6 h

pq
∣∣P (ρ)
µ (αj), p 6 µ 6 m, 0 6 ρ < q. (43α)

We see too from (29α), (34 α) and (41) that we have for the highest power of p
dividing Pp−1(0)

pq̂
∥∥Pp−1(0); 0 6 q̂ 6 q. (44α)

In case β , we have from (29β ), (34 β ) and (35)

pq 6 |P (ν0)
p−1 (αj0)

and from (30β) and (32)

Pµ(0) = 0, µ = 0, . . . , p− 1 (45)

P (ρ)
µ (αj) = 0, j 6= j0, 1 6 j 6 h, µ < p, ρ < q.

6. Non–vanishing of the linear form Λ∗Λ∗Λ∗

P ∗ (see (6)) is defined by

P ∗(x) =
m∑
µ=0

Pµ(x)

where P is the ”starting–polynomial” (30α resp. 30β ). We have for the degree
m of P in the cases α resp. β :

m = (p− 1) + hpq (46α)

m = (p− 1)q + ν0 + (h− 1)pq + p 6 pqh+ p− 1. (46β)

From the definition of P in (30α) follows with (32) in case α

P ∗(0) =
m∑

µ=p−1

Pµ(0) =
m∑

µ=p−1

γµ, (47)

P ∗(ρ)(αj) =
m∑
µ=p

P (ρ)
µ (αj), 1 6 j 6 h, 0 6 ρ < q,

and with (30β ), (34β ), (35) and (45) in case β



P ∗(ρ)(αj) =
m∑
µ=p

P (ρ)
µ (αj), j 6= j0, ρ 6 q − 1,

P ∗(ρ)(αj0) =
m∑
µ=p

P (ρ)
µ (αj0), ρ < ν0,

P ∗(ρ)(αj0) =
m∑

µ=p−1

P (ρ)
µ (αj0), ν0 < ρ 6 q − 1,

P ∗(ν0)(αj0) = P
(ν0)
p−1 (αj0) +

m∑
µ=p

P (ν0)
µ (αj0).

(48)
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We assumed p > q and 0 6 ν0 < q . Therefore one has

pq−1
∥∥((p− 1)q + ν0

)
! (49)

From (49), (30 β ) and (32) one gets

pq
∣∣P (ρ)

p−1(αj0), ν0 < ρ < q. (50β)

If one takes the results of (43α), (44α) and (47) one gets in case α

pq̂‖P ∗(0), 0 6 q̂ 6 q; pq̂
∣∣P ∗(ρ)(αj), 1 6 j 6 h, 0 6 ρ < q, (51α)

and in case β with (40), (45) and (48)



pq 6 |P ∗(ν0)(αj0)
pq
∣∣P ∗(ρ)(αj) for (j, ρ) 6= (j0, ν0)

pq
∣∣P ∗(0).

(51β)

Case α is defined such that every s
(ν)
j in Λ∗(1 6 j 6 h, 0 6 ν < q) is

divisible by p . Therefore we have from (51 α) that

pq̂+1
∣∣(Λ∗ − s0P

∗(0)
)
. (52α)

But in case α we have by definition p6 |s0 , therefore one gets from (51 α) that

pq̂+1 6 |s0P
∗(0). (53α)

From (52 α) and (53 α) together we conclude

pq̂+1 6 |Λ∗ or Λ∗ 6= 0. (54α)

In case β we see from (51 β ) that

pq
∣∣(Λ∗ − s(ν0)

j P ∗(ν0)(αj0)
)

(55β)

and
pq 6 |s(ν0)

j P ∗(ν0)(αj0). (56β)

From (55 β ) and (56 β ) we conclude

pq 6 |Λ∗ or Λ∗ 6= 0. (57β)

7. A lower bound for Λ∗Λ∗Λ∗

Let t be a prime number and let µt denote the number

µt :=
∣∣{x ∈ Z, 0 6 x < t, Q(x) ≡ 0(mod t)

}∣∣. (58)
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(|{ }| denotes the cardinality of the set |{ }|). After Nagel [12] one has the estimate

∑

t6x
µt

log t
t

= κ log x+ O(1) (59)

(κ denotes the number of irreducible factors of Q).
In (37) we have seen that for µ > p every coefficient γn kn−µ in the repre-

sentation (36) of P (ρ)
µ (αj) contains the factor

Q(n− µ+ 1) · · ·Q(n) (p 6 µ 6 n 6 m).

In all these products the argument of Q goes at least through p consecutive
positive integers. Therefore, by the definition of µt in (58) in each one of these
products the prime number t occurs at least in order µt

[
p
t

]
. In consequence for

µ > p , every number Pµ(0) or P (ρ)
µ (αj) (1 6 j 6 h, 0 6 ρ 6 q − 1) is divisible by

a positive integer Bp with
Bp >

∏

t∈P
tµt[

p
t ]. (60)

For µ < p − 1 we have Pµ(0) = 0 and P
(ρ)
µ (αj) = 0(1 6 j 6 h, 0 6 ρ 6 q − 1).

Further we have in the cases α resp. β ,

∏

t∈P
tµt[

p−1
t ]
∣∣Pp−1(0), P (ρ)

µ (αj) = 0(µ < p, 1 6 j 6 h, 0 6 ρ < q). (61α)





(
(p− 1)q + ν0

)
!
∣∣P (ν0)

p−1 (αj0), P (ν0)
p−1 (αj0) 6= 0

P
(ρ)
p−1(αj) = 0 for 1 6 j 6 h, j 6= j0, 0 6 ρ 6 q − 1, Pp−1(0) = 0

P
(ρ)
p−1(αj0) = 0 for 0 6 ρ < ν0(
(p− 1)q + ν0

)
!p
∣∣P (ρ)
p−1(αj0) for ν0 < ρ 6 q − 1

(61β)

Let Dα denote the number

Dα :=
∏

t∈P
tµt[

p−1
t ].

From (60) and (61 α) we get in case α

Dα

∣∣P ∗(0) and Dα

∣∣P ∗(ρ)(αj) (1 6 j 6 h, 0 6 ρ < q). (62α)

In the same way one concludes from (61β) in case β that we have for

Dβ := gcd
((

(p− 1)q + ν0
)
!, Dα

)

Dβ

∣∣P ∗(0) and Dβ

∣∣P ∗(ρ)(αj) (1 6 j 6 h, 0 6 ρ < q). (62β)
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From this we get for
D := gcd

(
(p− 1)!q,Dα

)

that in both cases α and β
D|Λ∗. (63)

From the definition of µt in (58) follows µt 6 q, q := degQ . We find in this way

D > exp
(∑

t6p
t∈P

µt
log t
t

t ·
[p− 1

t

])
. (64)

Finally one gets with (59), (63) and (64), because of Λ∗ 6= 0 (see (54α) or (57β)),
the lower bound

|Λ∗| > exp
(
κ p log p+ O(p)

)
. (65)

8. An estimate of the remainder terms ∆(ν)(αj)∆(ν)(αj)∆(ν)(αj)

∆(x) was defined in (9). Since we have γn = 0 for 0 6 n < p − 1, one gets for
0 6 ν 6 q − 1

∆(ν)(x) = −
m∑

n=p−1

γn ·
∞∑

ρ=n+1

kρ ν!
(
ρ

ν

)
xρ−ν (66)

= −
m∑

n=p−1

γn · kn ν!
(
n

ν

)
xn−ν ·

∞∑
ρ=n+1

(
ρ
ν

)
(
n
ν

) kρ
kn
· xρ−n.

Because of Q ∈ Z[x] and since Q is of degree q there is an integer n0(Q)
so that

for all n > n0(Q),
∣∣Q(n)

∣∣ > nq

2
. (67)

In (66) we have ρ > n > p− 1. It follows from (67) that if p ist sufficiently large
we have ∣∣∣ kρ

kn

∣∣∣ =
1

|Q(n+ 1) · · ·Q(ρ)| 6
( 2
nq

)(ρ−n)
.

Considering only numbers x with the property

4|x|
p

<
1
2

one can get the estimate
∣∣∣
∞∑

ρ=n+1

(
ρ
ν

)
(
n
ν

) kρ
kn

xρ−n
∣∣∣ 6

∞∑
ρ=n+1

2ρ
(( 2

nq

)
|x|
)ρ−n

(68)

=
∞∑

ρ=n+1

2n
( 4
nq
|x|
)ρ−n

6 2n+3 · |x|
nq

6 2n+2|x|.
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Let P∗ denote the polynomial

P∗(x) :=
m∑

n=p−1

∣∣γn kn
∣∣xn. (69)

With (66) and (68) one gets
∣∣∆(ν)(x)

∣∣ 6 4 · 2m|x|P (ν)
∗
(|x|), 0 6 ν 6 q − 1. (70)

If p̃ and q̃ ∈ C[x] are polynomials,

p̃(x) :=
L∑

`=0

a` x
`, q̃(x) :=

L∑

`=0

b` x
`,

one writes
p̃(x)� q̃(x)⇔ |a`| 6 |b`| for ` = 0, 1, . . . , L.

From the definition of P in (4), (30α) and (30β ) it follows that there are constants
c1 > 0 and c2 > 0, which depend only on α1, . . . , αh so that we have

P∗(x)� (
c1(1 + x)

)m

and
P

(ν)
∗ (x)� cm2 (1 + x)m, 1 6 ν 6 q − 1. (71)

For a p ∈ P that satisfies

8|αj | 6 p, 1 6 j 6 h,

we get from (70) and (71)
∣∣∆(ν)(αj)

∣∣ 6 cp3, 1 6 j 6 h. (72)

Here c3 > 0 is a constant, which depends on α1, . . . , αh and Q , but not on p ∈ P .

9. A measure for the linear independence

We have to estimate for every non–zero vector
(
s0, s

(0)
1 , . . . , s

(q−1)
h

)
(73)

with the property (25), the linear form

Λ := s0G(0) +
q−1∑
ν=0

h∑

j=1

s
(ν)
j G(ν)(αj)

from below.
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The linear forms Λ and Λ∗ (see (13)) are connected (see (14)) in the following
way:

Λ∗ = P ∗(0)Λ +
q−1∑
ν=0

h∑

j=1

s
(ν)
j ∆(ν)(αj) (74)

If H denotes the height of the vector in (73),

H := max
ν,j

(|s(ν)
j |
)
,

it follows from (74) with (65) and (72)

∣∣P ∗(0)Λ
∣∣ > |Λ∗| −

q−1∑
ν=0

h∑

j=1

∣∣s(ν)
j ∆(ν)(αj)

∣∣ (75)

> exp
(
κ p log p+ O(p)

)−H exp(p · c4)

where c4 > 0 is a constant independent of p and H .
We have (see (5) – (8))

∣∣P ∗(0)
∣∣ 6

m∑
n=p−1

|γn| 6
m∑

n=p−1

1
|kn| |γn kn| 6

1
|km| · P∗(1) (76)

with
1
|km| =

∣∣Q(1) · · ·Q(m)
∣∣. (77)

There is a constant c5(Q) > 0 such that

Q(x)� c5(1 + x)q. (78)

For the degree m of the ”starting–polynomial” P (see (30)) we have in both cases
α and β (see (46))

m 6 hpq + p− 1. (79)

With (77) – (79) one gets

1
|km| 6

(
c6(1 +m)q

)m 6 exp
(
(hq2 + q)p log p+ O(p)

)
. (80)

By definition of P∗ in (69) and its connection with P one has

∣∣P∗(1)
∣∣ 6 cp7 (81)

and with (76), (80), (81) one derives

∣∣P ∗(0)
∣∣ 6 exp

(
(hq2 + q)p log p+ O(p)

)
. (82)



A measure for the linear independence of values of a certain generalization ... 355

Let QPn, n = 1, 2, . . . , be an enumeration of those prime numbers p , for which
the polynomial Q ”splits completely” (mod p). Given H , let n0 be the smallest
positive integer such that

2H exp(c4 ·Q Pn0) 6 exp(κ QPn0 log QPn0). (83)

From (75) and (83) follows for sufficiently large H
∣∣P ∗(0)Λ

∣∣ > exp
(
κ QPn0 log QPn0(1 + o(1)

))

and together with (82)

|Λ| > exp
(
− (hq2 + q) + κ+ o(1)

)
QPn0 log QPn0 . (84)

By the prime–number–theorem of Čebotarev (see [14] or [19]) one has for the
number Qπ(x) of primes QPn 6 x

Qπ(x) =
(
cQ + o(1)

) x

log x
, (85)

cQ := Čebotarev density of the sequence {QPn}N . From (85) one concludes as in
the case of the prime number theorem (see Schwarz [18], pp 106)

QPn =
1
cQ

(
1 + o(1)

)
n · log n. (86)

The definition of n0 in (83) gives

2H exp
(
c4 QPn0−1

)
> exp

(
κ QPn0−1 log QPn0−1

)
(87)

or
H−1 6 exp

(− κ+ o(1)
)
QPn0−1 log QPn0−1.

From (86) one gets: For all ε > 0 there exists n0(ε) such that for all n > n0(ε)

QPn−1 >
1

1 + ε
QPn. (88)

With (87) and (88) one has for sufficiently large H

H−1 6 exp
(− κ+ o(1)

)
QPn0 · logQ Pn0 . (89)

If one writes (84) in the form

|Λ| > exp
(
−
(hq2 + q

κ
− 1
)

+ o(1)
)
κ QPn0 · log QPn0

one derives from (87) and (89) for H > H0(ε)

|Λ| > H−
(
hq+1
κ q−1

)
−ε.
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Pures et Appliquées ( 8e série), tome IV (1921), 343–356.

[13] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. PWN
Tom 57. Warszawa 1974.

[14] J. Neukirch, Algebraische Zahlentheorie, Kap VII, § 13 Dichtigkeitssätze,
Springer–Verlag 1992.

[15] O. Perron, Irrationalzahlen, 2nd Edition, § 48. Chelsea Publishing Company
1951.

[16] I. Schur, Über die Existenz unendlich vieler Primzahlen in einigen speziellen
arithmetischen Progressionen, S.–B. Berlin. Math. Ges., 11 (1912), 40–50.

[17] Th. Skolem, Some theorems on irrationality and linear independence. Skand.
Mat. Kongr. 11, Trondheim (1949), 77–98.
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