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KILLING VECTOR FIELDS OF A SPACETIME

Tominosuke Otsuki
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Abstract. We studied the geodesics of a spacetime with the pseudo-
Riemannian metric:

3
1 axrpTe 1
ds® = Spe — daeyde. — ————dzad
s T4T4 {bz_l ( b 1+a7‘2> R $4}

sC=

on R®x R, , where r?> = Zle zpxp and a = constant, which are plane quadratic
curves (in [12]). In this paper, we shall determine all the Killing vector fields of
this spacetime and choose special pairs out of them with interesting properties
for the case a > 0.
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§0. Introduction

We investigated the pseudo-Riemannian metric on R’} = R x R, with the
canonical coordinates (z1,... ,Zp_1,Zp):

1 1 n—2
ds? = — <—dr dr + r? Z hap du®du® — dendxn>.
T, Q a,f=1

where @ and P are functions on R — {0}, r? = 21> 4+ -+ + z,1? and

n—2
do® = Y hagdu®du’
a,f=1

is the standard metric on the unit sphere S"72: r?2 = 1 in R""!, satisfying
the Einstein condition in [9], [10] and [11]. Especially for the metric with
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204 T. OTSUKI

Q = Q(z,t) and P = P(x,t), © = r/xp, t = x,, as a system of partial
differential equations of order 2 on the components of the metric tensor the
Einstein condition is reduced to the partial differential equation on Q as

0°Q 0°Q 20°Q

(2Q — ¢)z? a——(3Q—2<p)fEt8 5 +(Q — )t 92

0

+ ((2n—4)Q — mp)aca—i2 — ((n—4)Q — (n —2)p)t—-

1/ 0Q 0Q oQ 3Q
~ (22 ) (2(Q - )2 ZE p

5 (s~ 22) (20 - 052 - @ 20052

+2(n-3)Q(1 -Q) =0,

and P = z%/(Q — ), where () is an auxiliary free integral function of
x derived from the original Einstein condition (Theorem 1 in [10]) which is

correspond to the first integrals for the ordinary differential equations. This
function ¢ becomes 1 — 22 for the Minkowski metric

n—1

1
ds®> = (Z dzrodz, — dwnd$n>
xn

For n =4 and ¢ = 1 — 22, we obtain Q = 1 4+ az? and P = 1 + at? as the
solution of the above partial differential equation ([11]) and the first metric is
written as the one in Abstract in the coordinates (x1, z2, x3,z4). If we change
the coordinates as x; — T; = y/ax;, we may consider as a = 1, but we do
not use this device in order to avoid miscalculations and for the study of the
interesting case: a < 0, for which the metric becomes Riemannian in some
place in the coming work. Since this metric has constant curvature 1 by (1.4),
it will be classified as one of de Sitter spacetimes in the theory of general
relativity.

§1. Killing vector fields

Now, we call the above metric Ot-metric in this paper which satisfies the
Einstein condition and denote it as

4
(1.1) ds® = Z 9ij dridzj,  gij = Gji,
2,7=1

where

1
:E4(II4(1 + ax4x4) ’
b,c=1,2,3,

Az,
1 +ar?

1
(1.2) gpe = — (5bc - ) v e =0, gu=—
XaT4
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from which (¢"/) = (g;;)~" is given by
9" = w4ma (6" + ampz), ¢* =0, ¢ = —zuzs(1 + azyzs).
We obtain easily the Christoffel symbols {;’,} of (1.2):

N - 1 ik 393'1: Ogkn 3gjh
{] h}_2;g (a’L‘h + (9£Ej a(IIk

as
(1.3)
c 1 .
{beC} = _axe (6[)0 - a$b$ > ) {b4c} = —M (6170 _ CZI()I > ,

1+ ar? T4 1+ ar?
1
{»4} = —x—45§, "} =0,

1+ 2ax474
€ = 0, 4 = -
{4 4} {4 4} (II4(1 + ax4x4)

The components Rjihk of the curvature tensor:

Rjihk _ 8{3’%} . aé];:} + ;{lih}{jlk} o ;{lik}{jlh}

oxp,

are computed by (1.3) as

Raebc = 5ggac - 5§gaba Ra4bc =0,
R4ebc = 0, R44bc = 05 Rbe4c = 03 Rb440 = Gbc»
Ri®4e = —guadf, Ri'4c =0,

which are written simply as
(1.4) Ri'nk = 04k — 01.9jn-

We obtain the Ricci curvature Ry, = lelk and the scalar curvature R =
Dk 9% Ry, as

(1.5) Rjy =3¢, and R=12,
which shows that the metric (1.1) satisfies the Einstein condition:

R
Rij = - 9ij-
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Now, let V =Y, v*9/0z" be a Killing field which satisfies the condition:

0v; ov; k
Vinj + 0 = %; T 2;& jtve =0.

By means of (1.2) and (1.3) this condition can be written as

10 e + e+ 20 0~ 55 ) D
)
0 0 2
(1.7) 8—{2 a—;’; o =0,
and
(1.8) vy 1+ 2az424 oy = 0.

8—274 274(1 + (12741‘4)
Integrating (1.8), we obtain easily

f
VY = ——F————,
4 274\/1 + ar4z4

Substituting this relation into (1.7) we obtain

61),, 2 1 6f
— t vt
0x4 T4 14\ 1 + axsxy 0Ty

from which we obtain

(1.9) [ = f(z1,22,23).

=0,

i(w zavy) = o ® Of
014 At = V14 azszs Oxy

and integrating this relation we obtain

V1+azrszy 3_f

T4T4Vp = — + for  fo = fo(w1, w2, 73),
a oxy
i.e.
1
(1.10) oy = —YAitoezz Of | Jo

arsxs  OTy,  TaTa

From (1.10) we obtain
Ouy, V14 azyzy 0 f N 1 9fy

0z, ax4xy  O0Tp0T.  T4T4 OT.
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and substituting these relations into (1.6) we obtain the following conditions
regarding integral free functions f(z1,z2,z3) and fy(x1, 22, 23):

_2\/1 +aryszy 82f " afp n 0fec

(L.11) a Orpr. Oz, Oxyp
axTpTe of _
+2<5bc 1+ar2> {\/1+a$4$4(f e &Eeme) —i—azezfeme}—o,

bc=1,2,3.

If we can find f, f; satisfying (1.11), then we obtain the solution v; satisfying
(1.6)-(1.8). Noticing the independency of variables, (1.11) can be replaced by

0% f aTpLe af
(112) a(IIb(IIC = a(ébc - 1+ Cl’l"2> (f - . amexe>a

ofy , Ofc aTyTe _
(1.13) oo o + 2a (5,,0 o ar?) ;fexe =0.

We see that f and f,, b=1,2,3, can be treated separately.

§2. Solutions of the differential equations (1.12) and (1.13)

Supposing f(z1,x2,x3) is analytic on z1, z2, x3, we put

(2.1) f = Punl(x1,z2,13),
m=0

where P, is a homogeneous polynomial of order m in z, 2, 3. Substituting
this expression into (1.12), we obtain
2. 9P,

oo
G, = a((1 + ar®)dp. — azpzc) (PO - mZQ(m - 1)Pm>,

which we rewrite in considering the arrangement as

(2.2) i 0" Ly —i—aTZi 0" Py = adpe | Po — i(m—l)P
' — 0z, 0z, — Oxydr. oe\"? mn

m=2

+ a?(r2 0y, — Tpe) (PO — i:: (m — 1)Pm>.

m=2
Using the equalities
(927“2m

0xzp0x,

(2.3) = 2mr?™ 4 (26 + 2(m — Dapz), m=1,2,3,...,
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we obtain P, in turn up to m = 10 as follows:

Py=SPy?, Py=0, Py=—"PRy', Ps=0, P;=—Py,
2 ) 16
5a* 7a®
P=0 P _ P8 Py =0 Pin = — P10
7 ) 8 198 07, 9 ) 10= 956" 0

Through the arguments determinimg these P,,, we see that we can put
Poypy1 =0, m=1,23,...
and

f:P1+(,0(X), X:’rQ'

Wl

Denoting the derivative of ¢ with respect to X by , we have

of  opP

or, Oz
0% f

0xp0x,

+ 2()0,‘,1;03

= 290,6110 + 490”551751;0’

and

0
f—= Z 31{3:56 =p— 290,7"2-

Substituting these into (1.12), we obtain

a2

14+aX

(2.4) (2¢" — ap + 2a¢' X)dpe + <4<,0" + (p— 2(,0'X)>:1:bmc =0.

Contracting this equality with ¢ by multiplying with z., we obtain

2

(2¢" — ap + 2ap' X))z, + (40" + . —faX (0 — 2¢' X)r?ay, =0,
and hence
a2
2¢" — ap + 2a¢' X +X<4<p" + 3 +aX((‘0 - 2<p'X)> =0.

Substituting this expression into (2.4), we obtain

a2

1+aX

{490" + (¢ — 290’X)}(X5bc — zpzc) = 0.
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Hence it must hold
2

1+aX
(2.6) 2¢' —ap + 2a9p' X = 0.

(2.5) 49" +

(¢ —2¢'X) =0,

From (2.6) we obtain by integration

(2.7) o =PyWV1+aX = Pyv1+ar?.

We can easily see that this ¢ satisfies (2.5). Thus we see that the general
solution of (1.12) is given by

(28) f(:El,IQ,Ig) =Mz + Xoxzo + A3z3 + Ppv1+ arQ,

where A1, A2, A3 and P, are integral constants.
Next, we shall treat (1.13). First, we put

(2.9) fo="_ Pom,
m=0

where Py, is a homogeneous polynomial of order m in z1, zo, 3. Substituting
this expression into (1.13) and using the notation

(210) Qm+1 = Z Pepxe

for simplicity, we obtain

o0 o0
0Py, OP., ATpLc
2 — =
Z ( 01 * Dy ) * a(ébc 1+ a7“2> %Qmﬂ 0

m=0

which we rewrite as, considering the arrangement,

o o
0Py, 0P, 9 0Py, 0P,
2.11
1) 3 (TG Tt ) s 3 (e O

m=1

+ 2adp, Z Qm + 2a2(7“25bC — TpTe) Z Qm =0.

m=1 m=1

From the terms of O'-order, we obtain

Py 9P _

(2.12) oz, | Oz
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From the terms of order 1 we obtain the relation:

0Py 0P
8:1:0 * 895(,

+ 20,(5ch1 =0

and, multiplying by z. and contracting with respect to c,

0
Py + Qs + 2azpQ1 =0
a(L‘b

and using the same way for b
a
Qs = —57"2621-
Going back to the previous equality we obtain
a
Py = 5(7“2131)0 — 21Q1).

We see easily that the above expression satisfies the first one.
Next, from the terms of order 2 we obtain the relation:

0Py3 +3Pc3 o[ 0P +3Pcl
0z, oxy, 0z, Oy

) + 2adpcQ2 =0,

which becomes
O0Py3 n 0P,
0%, oxyp

by means of (2.12) and Q2 = >, Pyizy = 0. We obtain easily from these
relations

=0

Py3=0 and Q4 =0.
We obtain Py, in turn up to m = 8 by analogous arguments as follows:
Py = —%GZTZ(TZPbo —45,Q1), Py =0,
Py = 1—2@37"4(7“213170 —62,Q1), Py =0,

5
Py = ———a*rS(r2Pyy — 8z,Q1).
b8 128@7"(7" 0 — 8TpQ1)

Through the arguments determining these P, for an positive integer m we
suppose that
Pog = Pys = -+ = Pyamy1) =0,

(2.13) P — (1) R 22 (2P 9 —19
b(?n)—( ) n@ T (7" Pro nrp@1), n=123,...,m.
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From the terms of order 2m + 2 of (2.11), we obtain

OPyom+3)  OPcamy3) o (OPsomy1)  OPcamyr)
0z, * Oxy, ar ( 0z, * Oxy, )

+ 2a05cQam 2 + 20°(1*0pe — ) Qam = 0,
which become by (2.13)

OPy(2m+3) N OP:(2m+3)
3276 895(,

Multiplying this expression by z. and contracting with respect to ¢, we obtain

8C>22m+4

(2m + 2) Pyamq3) + 9,

=0,

which implies Qom+4 = 0 and Pypp,13) = 0. Next, from the terms of order
2m + 1, we obtain

aPb(2m—|—2) aPc(?m-i—?) 2 aPb(2m) aPc(?m)
0%, + oxyp +ar ( 0z, + oxyp )

+ 2005 Qam 11 + 207 (r*6pe — 2pTe) Qam—1 = 0.
By means of (2.13) we obtain

OPy2m)
0z,

= (—1)m_1kmamrzm_42m{r2(Pbowc — Poxyp)
— (7’251)0 +2(m — 1):1cb$c) Ql}
and

Q?m—l—l = (_l)m(2m - l)kmam’l"Qlea
Qom—1 = (=1)" 1 (2m = 3)kpn—1a™ 1 r?"2Q;.

Substituting these into the above expression, we obtain

OPy2m+2) N OP:(2m+2)
0%, oxyp
—(2m — 3)km_1)r25bc + (4m(m — Dk + (2m — 3)km_1)xbxc}Q1 =0.

+ (—1)m2am+17’2m_2{((4m — Dk

Multiplying this expression by z. and contracting with respect to ¢, we obtain

8C>22m+3

+ (=1)™2a™ 2™ (4m? — 1)k Qy = 0,
oxy

(2m + 1) Pygmy2) +
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from which we obtain by the same way

mal 4m? — 1

= (-1 m+1,.2m+2
and
0 4m? — 1
7%232% = (1) Sy hma™ T (P 20m + 1) @a).

Using these equalities, we obtain finally

2m —1

Pyom+2) = (—1)mkmmam+lr2m (r*Pyo — 2(m + 1)zQ1)
and so we can put
I _ 2m -1

Thus, we have verified that (2.13) holds for all integers m > 0 and

(2m—3)(2m—5)---1k (2m — 3)!

Fom = 1= PALT N

2m-2(m—1)---4
for m > 1, since k; = % Thus, we obtain the formulas:

(2.14)  Pyom) = (1) “om

a"r?™ 2 (r? Pyy — 2mapQn),
m=2,3,...
and

a
Py = E(TQP()O —2z,Q1), Q1= gPeoxe-

Arranging the results in this section, we have the following theorem.

Theorem 1. For the spacetime on RY = R3 x R, with the metric (1.1) and
(1.2) with a > 0, any Killing field V = Y",v'0/0x; is given by the formula:

1 1
(215) ()= {—V T Ty - (% 2)
44
1 NN ~
—W(povlJramera(p'x))w},

1
e — )\-~ 1 2 , 2: N-N,
vy T ((A-2) +poV1+ar?), r°=(z- i)
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_ Al P1 f1
where v; = Y1 gijv) and A = (X |, p = [p2 |, p = |p2), & =
A3 D3 w3

Z1

zo |, considered as vectors in R with the standard Euclidean metric: ds®> =

T3
Yoy dapdry and “ -7 and “x” denote the inner product and the outer prod-
uct of two vectors. Therefore V' depends on 10 real constants pg, Ay, Db, b,
b=1,2,3.

Proof. We have from (2.14)
Jo =Py + Py + 5 (7" Pyo — 2Q1)

(2m — 3)!!
+ Z )" 1 (2m =3 a™r?" 2 (r? Py — 2ma, Q1)

2mqm)!

a = (2m — 3)!
= Py + (1 + 57"2 + Z (—l)mfli. amr2m> Py

_ (a + Z m—1 2m27z7’(_ 3)!1!)!am,r,2m—2>be1‘

Since we have

1 1 - m 1(2m_3)
(1+t)z:1+§t+22( 1) i
m=
and
1 s (2m—3)”
1+¢)"2=1 —1)m-! gm=1
( + ) 2 +ng( ) ( _1)!2m 1 ?
we obtain

fo = Py + (1 4 ar? )ZPbO—a (1+ ar?) -3 (ZP80$8>

The 3 x 3-matrix (%) is skew by (2.12), we denote it as

0Py, 0 K3 M2
a - — M3 0 H1 )
L
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then we have (Py) = —(u X Z). Setting Pyy = pp, we obtain

a

V1+ar?

53

(fs) = —(px2) +V1+ar?p— (p- )

and
f:)\'j—i-p() 1+ar2, p():PO.
Finally from (1.10) and the above equalities we obtain

(1) ) _ V14 AL AT 4 < + apo i‘)
’ OT4T4 V1+ ar?
1 a
+—9-(pxz)+Vitarip—- ——p-% }
s b p-3)
1 { V14 azaza
a

LaZyg

8

A+ V1+ar?p — (p X I)

— ﬁ@m/l + azqzy +alp - :Z“)):i}

and

1
— . 2
U= e ((A-2) +povV1+ar?).

Q.E.D.

Now we compute the norm of Killing field V' given by (2.15):
4 . . 4 ..
(2.16) N(V) = Z gijv'? = Z g v;v;.
ij=1 ij=1
Using the notations in Theorem 1 and setting © = (v,), we have
3

N(V) = z414 Z (6% + azpx.)vpve — Taza (1 + azazs)v404
b,c=1

and so

= 4wy {(7-9) + a(@- )} — (A - &) + poV/1 + ar?)’
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1 1+aac4x4 2
A A 1 .
{0 e

+ ((px ) - (p x &) + (pm/l +azsrs +alp - :Jc))

1+
21 + azxazaV'1 + ar? 21 + axsx4 .
— - Aep)+ = (A xp)-2)
21+ axgxy . N
4+ —(poV14+axgzs +alp-2))(A- T
a\/m (po 4T 4 (p ))( )

—2V1+4ar?((p x p) - &) —2(p0\/1—i—amm—i—a(p-i))(p-i)}
ez

A-z2)+Vi+ar?(p-I)
TyT4 a

’f'2

2
—m(pm/l—i—amm—{—a(p :Jc))} —(()\-:Tc)—i—pO\/l—i—ar?)2

which is arranged as follows

(2.17)
2N () = NN (1 ar?) (o p) + )
D B a4 YO g

- 21+ azxyx ~
—2pov 1+ azszy (px) + T“((A X /1,) :E)

2v1 vl
_9 1+ar2((pxu)-:ﬁ)— + ar + axs14

" (A-p)
+ po’(r* — z4z4).

Example 1. Case pyp =0, p =0.
5 1 V14 arszy
v = (Ub) = —

XaT4 a
1 241
+5<A-@>2+7ﬂw(<xxmﬂ}

V1+axszy
T4Ty4
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which implies that N (V') > 0 and N(V) = 0 is equivalent to

- \/1+ax4x4
M X T = —
a

and this relation implies (A-p) = 0. Hence, if (A-p) # 0, everywhere N (V') > 0,
and so V is spacelike.

Example 2. Case pyp #0, A\=p =0.

- 1 - \/14‘(1]74]74 -
U:(Ub):@ —(uxx)—ﬁpox )

i PoV 1+ ar?
N :L‘4\/1 + ar4T4 ’
N(V) =|(u x B) + po?(r? — zawa),
which shows that if r > z4, V' is spacelike.

Example 3. Case pg #0, A\=p=pu=0.

poy/l+6l$4(1)4x v poV'1 + ar?
- /= 4b 4 = — 7/
TazaV'1 + ar? T4V 1 + axgzy

Vp =

and

vt = —poV1+ar?V1 +azgzsx;, i=1,...,4,

P02
N(V) = £aZq (7”2 - $4$4)-

In the following sections, we shall investigate Killing fields of the spacetime
with the Ot-metric (1.1) and (1.2), mainly noticing the Killing fields of the
above examples and special pairs of two ones which construct a Lie algebra of
dimension 2.

83. Special Killing fields
We say a Killing field V' given by (2.15) is static, if the Pfaff equation

Z vidxi =0

is complete, that is, it admits locally a hypersurface satisfying this equation.
As is well known, it is necessary and sufficient that the following equality holds

4 4
Z v;dx; N d(z ’Ujd[L‘j) =0.

i=1 j=1
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Now, we denote the Killing field V' of Example 3 in §2 with pgp = —1 by ¢
that is

(3.1) & =1+ ar2V1 + axgzs 7.
Theorem 2. Killing field & is static.

Proof. We have

4
V14 azszy V1+ar?
= gy, = YT AT Ejd e da,
£ §idx; xpdxy — P S T4

which is expressed only by r and x4, since ) xpdz, = rdr. Hence, d¢ can be
written as

2424V 1 + ar?

dé = ¢(ryxyq) dr A dxy,
which implies the equality & A d¢ = 0. Q.E.D.

Then, we take another Killing field V' given by (2.15) and put
0 .= Z vpdTp + VadT4.
b

We search for the condition that the system of Pfaff equations:
E=0 and 60=0

is complete, that is, it admits locally a surface satisfying both equations. As
is well known, it is necessary and sufficient that the following equalities hold:

EAONE=0 and EAOAID=0.

From Theorem 2, the first equality holds. Regarding the second, we shall
compute the three-form 0 A df. For simplicity we use the notations

dzro N dzs
L:=1+ ar2, M :=1+4ax4ry and doZ := | drs Adzy |,
dz1 N\ dzo

then 6 can be written as

LY i)+ VE - di) — ((n x 5) - d5)

T4T4 a

— %(po\/ﬂ—l— a(p-z))rdr| +

(3.2) 0=

:1:4\;]\_4 ((A-2) + poVL )das.
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from which we have

o — 18(\/1\_/1

a 0%y

L
>(>\-di)/\dm4+d£/\(p-d:%)
T4T4

T dpovM+a(p - T)

TaZy

Adr

9 .
+ de A ((u x 7) - di) — VI T4Ty

1 - apor > 2 .
4+ ——((A-dx) + dr ) Ndry — ——(u - dox
T4V M <( ) VL ! x4x4(u 27)

B 2vVM 1 o 2VL, 2 e
At * /a0 G~ -

r (_ap VM 2alp-%)\
*@(mm @)?  (w)? )d

+ﬁ<@-d;ﬁ) 50_Tdr>}/\dx4+x4x4\/—d7"/\(p dz)

2 ~
(/L ’ d2$)7
TyT4

and since we have
d((p x &) - dz) = 2(u - doF)

which is arranged as

(3.3) %de_{— Lo dm)—i—@(p d5) — ~((u x &) - d3)

arsV.M T4
r Pbo - - .
— +a(p-x) |dr ¢ Ndzx —|——d7"/\ -dz) — (- do).
(Lo alpe) Jar f s+ et )~ G o)
Then, we obtain from (3.2) and (3.3)

VM

a

($§)59/\d9: [— (A-dz) + VL (p-di) — ((u x &) - di)

r

77

(poVM + a(p - z))

(N~ %) +p0\/f)dx4]

\/M
/\H a\/IM (\-dz) + VL (p-di) — ((u x &) - d)
i o —l—a(p-:%))dr)}/\dac4+a\;:%1dr/\(p-d:%)]

VI \VM
— (24)°0 A (- do ),
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which is arranged by using the relations:

(ux &) -dZ) A(p-dot) =0, (X-dZ) A (p-daZ) = (X~ p)dzy Adza A ds,
(p-dz) A (p-daz) = (p-p)dry Adxe Ndzs, rdrA(u-doZ) =
(k- Z)dzy Adzo Adzs,  (A-di) A (p-dz) = (A X p) - daZ)

after a little cumbersome computation as follows.

(3.4)

T 3
( ;) 0/\d9:{—%(A-di)/\(p-da})jtﬁ()\-di)/\((ij)-dg})

+ %((p-:ﬁ)()\ dz) — (A 2)(p-di) — po(p x %) - di)) /\dr} A dxy

+x4r/f{m()\-da~c)/\(p.d;%)—a(p-d;%)/\((ux:%)-d:%)}/\dr

+I%{@(/\-u)—\/f(p-u)+%(po\/l\_/-”ra(iﬂ'9?))(%95)}“3331/\dﬂ”?/\d:’““3

ﬁ (()\ . 57) —i—pg\/Z)(,u . dg:i‘) A dxy.

Next, since we have

&= VM rdr VL

————dz
$4x4\/z T4V M !

by Theorem 1, we obtain from (3.4) the equality

1
5(334)55 NCANL

Vi VI
—ﬁrdr/\{—ﬁ()\-dm)/\(p-dx)
1 ~ ~ 4\/— r
+ﬁ(>\ dz) A ((pxx)-d:z:)}/\dx4— \/Md4/\x4\/_
{(VM(\-dz) A (p-dz) —alp-di) A ((u x &) - dz)} Adr

‘/\/%_4(;5 dz) A \/;_4 (X&) +poVL) (- do) A dazy

+%{@(A-u) —\/f(p-u)+%(po\/ﬂ+a(p-:%))(u-:i‘)}

dri N\ -+ Ndxy
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:{ﬁ(xd@)/\((ux:ﬁ)-d@_m
a 1

CEO ) = )+ B A2 = =0 ) |

(p'di)/\((uxaﬁ)-daﬁ)}/\dr/\dac4

which is reduced to
(3.5)

2 [ (-p) (p- 1)
ANOAdO = B e A e A A
‘ ($4)5{a\/1 +ar2  V1+azgzy r1 Ndrog Ndrs \doy

From this equality, we obtain the following theorem.

Theorem 3. For the Killing field 6 given by (3.2), Pfaffian equation 6 = 0
forms a complete system with £ = 0, if its constants A, p, u and pg satisfy the
following conditions: py # 0 and

(1)) p=0, or (ii)pn#0and (X-p)=(p-p) =0,
different from A = = p = 0 which gives § = £.

In the following we consider ¢ and 6 with pg # 0 and p = 0. Here we
denote ¢, 6 as contravariant vector fields by X = >> X*9/0z;, Y = . Y'0/0x;
respectively. By Example 3 and (2.15) we have

= VLVM z;

and
yb = Z g"ve = T4 Z((Sbc + axpze)v
C C
vM
= Z((Sbc + ambmc){—TAC +VILp. —
C

vM
= —T)\b + \/pr —

(VT +afp )|
%(pomvl—a(p L E))

ar?
+ {—\/]\_J(A:i) +aVL(p- i) — ﬁ(pO\/MwLa(p-:i))}mb

- —@Ab +VLpy — VM (poVL + (X - %))z,

(0\/_-1-( 7)) = —VM (poVL + (\ - 7)) 4

Y4 = g441)4 = —:E4(II4M
zaV M
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From these expressions we compute the components of [X,Y]:

[X,Y]i:Z(XjaY Yz%)
I Ox; Ox;

First we have

[va]b =
\/zm;xc{%pb _ m(% i >\C>mb VM (pVT + (- @))a,,c}

_Z{_@Aﬁ-\/fpc—\/M(pox/fvl—()\-:%)mc}\/_(?/xf \/—5bc>

+\/_\/_w4{ \/—A \a/x—4(170\/_+(>\ 95))331)}

+ VM (poVL + (X ;%))m%awa,

which is arranged as follows:
VL N
[X,Y]" = ka — VM (py + alp - )zp).
Next, we have
X, Y= —VIVM zc\/M<ap0$c + >\C>:1:
[X,Y] zc: N7 4
vM
— Z{—TAC + \/.ch —VvVM (po\/z + ()\ . j))$c} v M af/c;Ll
C

VIVM (VI + (- ) (m+ j‘%)

ax4x4>

VM (poVE + (A-i))m\/f(\/MvL e

which is arranged as follows:

(X, Y] = —aVM (p- &)
From these expressions we obtain the relations
VL +VM N
YR v — ap) + VT (0= ap) - 7).

[X’Y]b ~-Y? _pOXb =
+ VM (A - ap) - &) .

(3.6)
X, Y] — ¥ —poxt =
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Theorem 4. For the Killing fields X = Y,VIVM x;0/0%; and Y =
3. Y10/0z; as

Yl = (VM — \/E)pb +aVM(p-&)zy, Y*=aVM(p-7)z4
we have the equality: [X,Y] =Y.

Proof. If we put A = ap in (3.6) and replace Y 4+ ppX by —Y, then we obtain
[X,Y] =Y. Since py is constant, —Y — pgX is also a Killing field and its
components become above. Q.E.D.

From Theorem 4 two vectors X and Y generate a Lie group of motion of
dimension 2. We denote this new Killing field Y by 7 in the following.

§4. Integral submanifolds related with ¢ and 7
By the definition of £ and 7 in §3, we have

VM WL i .
fb—mxba 54__$4\/M’ f—\/Z\/sz

and

ny = x:ﬂ{(ﬁ— VIL)p, + %(p : fi)fﬂb}, N = _x4\6;M (p-2),

"= (VM —VL)p,+aVM(p-B)zy, n'=aVM(p-F)zs.

First, regarding Theorem 2, we integrate the Pfaff equation:

vM L
Z &dr, = ——— Z zpdzy — VL dzry =0,
i (II4£E4\/E b T4V M

which is written as

V14 arsz, J V1 + ar?

From the above equality, we get
dlog(1 + ar?) = dlog(1 + az4z4)
and hence

(4.1) 1+ azgzy = (1 + ar?)
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where ¢ > 0 is an integral constant. We denote this hypersurface by ..
Second, regarding Theorem 3, we integrate the Pfaff equations:

(4.2) Z &dr; =0 and Z nidx; = 0.

From the first one we have (4.1) and ¢r dr = z4dz4. Using this we obtain

Zmdwi: L {(\/M—\/E)(p-d:%)—i-i(p-:%)rdr}— ¢ (p-Z)dzy

TAT4 VL zavV M
- — H(c— DV (p-di) + (- :%)rdr} - :%)rdr]
_ (Z;i) [\/E (p-d) — %(p-i)rdr] =0,

from which we obtain ¢ =1 or

VL (p-dz) — %(p-:i)rdr:().

Integrating the above equation, we obtain (p- %)% = (1 4+ ar?) x const. Setting

p=p/\/(p-p),

we write the above equality as

(4.3) 14 ar® =c*(p- i),

where ¢ is an integral constant such that ¢; > \/a, since this equality can be
written as

2 2

(i’ —a)u® —av’ =1, u=(p-i), r’=u’+0%

and which is the equation of a rotating hyperbolic surface of order 2 with its
center at the origin of R? and its axis is the line on p. We denote this surface
in R? by II.,. Hence, the solution of the Pfaff equation (4.2) is the intersection
surface:

(4.4) T(c,c1) = £, N (I, x R).
For any point z € I1., {#} x RN X, is given by
el (p-£)° =1+ azqzs.

In order to get the value x4, it is necessary and sufficient

1

" . 7 > —
(P - )| -
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which means that Z lies outside of the closed domain between the two planes:

1
5.i) = +—.
(p-2) -

Third, regarding Theorem 4, we shall set up the surface generated by the
tangent vector fields X = Y. £'0/0x; and Y = Y. n'0/0z;. We see easily that
the integral curves of X are straight half lines starting the origin of R® x R,.
Since Y is written as

Y =avM (p- &)z + (VM — VL) (g),

we see that the integral surface through z is the upper half plane E,? through
the half straight line joining the point x and the origin and including the vector

p.

Theorem 5. The integral curve of the vector field Y = ), n'0/0x; is an
algebraic plane curve of order 4 on the plane EyQ.

Proof. On the plane Ey2 through a fixed point y we denote any point = € Ey2
as

T =ANp+ Ay
and consider (A1, A2) as Descartes coordinate on EyQ. Then we have

L+ar® = 1+ a(MA [p” +2X02a(p - §) + Xeda(5 - §)) = LA, A2),
1+ azgzy = 1+ alodoyays = M(A2),
1 oL

.1) = 2 L) = — —
(p-z) =AM pl” + X2(p-9) 50 9,

and

n=NM-VL)p+aVM(p-3)z = (VM - VL) ((1)> +@§—i (i‘»

Hence the differential equation

becomes

A 1, ~0L dx 1 0L
%— M—\/E+§)\1 Ma—)\l, %—5)\2 M8—>\1,
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form which we obtain

d | OMdx, 1 (OLdn  OL d
£WM_¢Q:_____l___(__;+___%

oV OXy dt 2L \O\ dt | OX; dt
_ Q}M(r VI+1 Alrgfl)
+ (T om - 7T )M
B 4\1F<A aL“ZgALz) Mg—ALI
+%M4—U§% 2;_giﬁf_ VL)
- (VAT - V) T
and hence
log(vf__ VL) = §§1 é%logAg.

Integrating the above equation, we obtain
\/E — VM = CQ)\Q,

where co is an integral constant. Then, we have

L—-—M L—-—M
VL +VM = =
VL — M C2 A2

and

L-M L — M — (c2)2)?
2VM = - 02>\2 = (62 2)
C2A2 C2 A2

from which we obtain
AM (e3X2)? = (L — M)? — 2(L — M)(c2X2)? + (c2Xa)*,
which is also written as
(L — M)?* = 2(L + M)(car2)? + (c2X2)* = 0
that is

(45) a®(Md |2 + 220 (- 9) + Mada(y | 1) + (e2)0)*
— 20,()\1)\1 |p|2 + 2)\1)\2(]) . ﬂ) + )\2)\2(y . y)) (CQ)\Q)Q — 4(02)\2)2 =0,
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where we used the notations

Wly) = usth—vava, (y-y) =D ysth + yays.
b b

This expression shows the integral curve of the Killing field 7 is an algebraic
plane curve of order 4 on EyQ. Q.E.D.

Note. If we put A\; =0, Ao = 1 in (4.5), we obtain
(4.6) (e2)" = 2(aly - y) +2)(c2)* + a*(y | y)* = 0.
As a quadratic equation of (c2)?, its discriminant becomes
4(aly-y) +2)” —4a(y | 9)* = 4a*{(y - v)* — (y | v)*} + 16a(y - y) + 16
= 16{a’(j - §)yaya +aly - y) + 1} > 0.

Hence, (4.6) gives two positive roots (c2)?. We see that there exist four solution
curves through the print y.

§5. Another pair of Killing fields
Now, we consider the second case in Theorem 3, the € given by (3.2) satisfies
(5.1) po#0, p#0 and (A-p)=(p-pu)=0.
Then, by (3.5) we have
ENONdO =0
and hence the pair of Pfaff equations:
(5.2) &E=0 and 0=0

is completely integrable.
We consider the contravariant vector fields X and Y corresponding to ¢
and 0, respectively. By (3.1) we have

X' = VIVM z
and by (3.2) we have
1 VM N 1 N
O = poved R X+ VIpy — (ux &) — ﬁ(povMJra(P'x))ﬂEb ;
1 N
6, = ((A-&) +poVL),
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and

Yl = Z §"°0, = z414 Z(ébc + azpre)0,
_vM L
a VL
2
+ awb{—@(k 7))+ VL(p- &) — %(pom—l— a(p - :%))}
—gkly +VLpy,— (kX Z)p — VM (po\/EJF (A j))xb’
Y= —VM (poVL + (\- 7)) z4.

= Mo+ VIpy— (X &)y — —=(poVM +a(p - ) s

If we use the notations

=) =) - (M)

then we have
(5.3)
X = VIVHa, Y == M5 VL VRV + (- 9)o — (3.

We shall compute [X, Y] as follows. Since we have the equalities:
[z,\] = =\, (z-VL)=2ar? (z-VM)=2az4zy,
[z, (n x &)] =0,
we obtain
[X,Y]
= L [VIVM VI A| + [VIVM 2, V5] ~ VIV 2, VM (- )]
- [\/Z\/MIL‘, (1% Z)]

_VIMg “f(x.v(\/zm)x_ VIVM (G35 - LV 5

a a

~ VL (p- V(VIVM) )z + VIVM (z- VL )p
+{(VM(\-#)s- V(VIVM)) = (VIVM 2V (VM (A-8)) ) }o
+ ((px 2 - V(VIVM) )z
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{‘/—M ‘/—( VM)} {L\/]\_i—g(m VL)}

a 2a
‘ {@(x.v(ﬁm)) - VE (5 V(VIVT))
+VM (- 3) (2 V(VIVM)) = VIVM (2 V(VM (- 7))
+ ((u X i)AV(\/E\/M»}w

zgx_mﬁ
M . . aMr? - .
—l—{ﬁ()\-x) —avVM (p-7) + 77 (\- ) —\/EM(A-m)}ac
= gﬂ—mﬁ—am(p-:i)m,
that is
(5.4) [X,Y] = gﬁ\ —VMp—aVM (p-Z)z.

This expression shows that even though if we suppose that A = ap, X and Y
could not generate a Lie algebra, then in fact we have

= (\/Z - \/M)ﬁ -VM (Po\/z—i- a(p- i))x —(px &),
(X,Y]= (VL -VM)p—aVM (p- 7)z,
from which we obtain the identity
(5.4%) [X,Y]-Y —poX = (u x &) with A = ap.

Now, we shall solve the Pfaff equations (5.2). We already knew that the
solution of £ = 0 is given by

(5.5) 14 azqzy = (1 +ar?) or M =L,
where ¢ (> 0) is an integral constant. Using this relation, the equation

—@(A-d:i)wL\/f(p-di)

TyT4 a

0= Oydzy + Osdzy =
b

- %(pom-i—a(p -Z))rdr — ((u % ) - dZ)
1
+x4\/ﬂ ((A

i‘) —I—pox/f)dm =0
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can be replaced by

1
VI
— ((n x &) - di) +

—gx/f(k-dﬁc)Jr\/Z(p-d:%) (pocV'L + a(p - &))rdr

C\}E (X - &) + poVL)zadwy = 0.

We suppose here that A and p are independent as vectors of R3, that is A x p #
0. Then, by (5.1) we can put

(5.6) p=po(Axp), po#0,
and so we have

) = po((A x p) x &) =po{(X-Z)p— (p- F)A}
) - dz) = po{(N-T)(p-dz) — (p- &)(\- di)}

Then, the above equation becomes

VL ((p - di) — E(A : d:%)) - %(pom/f—i- a(p-&))rdr

— po{ (X~ &)(p- di) — (p-&)(\-di)} +

C

i (()\ﬁ) —i—po\/Z)TdT =0,

which is written as
VE(Q_ ) (00509,

For simplicity we set

then the above equality becomes
(5.7) w = VL (du — dv) — (u — v) dV'L — apo(v du — udv) = 0.

Since the Pfaff equation (5.2) is completely integrable, we take an integral
multiplier ®, that is ®w is exact. Considering ® as function of u, v and
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z = V/L, then we have

d(dw) = d® A w + Pdw = (g—q)d +g—q)d +—d\/—> Aw + ®dw
v
0P
= {—( - a,uou) ( — apgv) B0 + 2a,u0<1>}du A dv
0P 0P
+ {—(u - U)% - (\/E— a,uov)a - 2@}du AdV'L
+ {—(u - U)g—f + (\/E - a,uou)aa—(f + 2@}031) AdVL.

Hence, ®(u, v, z) must satisfy the following equalities:

0P 0P
(z — auaﬂ)% +(z - auov)% — 2ap0® =0,

0P 0P
5.8 N 0% _
(5.8) (u—v) 7 + (z — apgv) P +2® =0,
0P 0P
—(u — U)% + (2 — augu)a +29 =0.

In order to solve (5.8) with respect to @, here we take a change of variables
u, v and z to

u' =apgu —z, v =aupv—z, 2z"=z,

then we have
0o 0o 0o 0o 0 0 0 0

"M 0 T 9, T Taw ovr | o

and
1
u—v=—(u"—0%).
apo
(5.8) turns into respectively
9D, 0 o,
u =
dur " 9ot
LOB L 0d LD
“ o T Bor Yo T
0P 0P L 0P
* + 29 =0
“ B v dv* Dz* ’
which are equivalent to
9® 96, 9b

= —-29.

= d *
pye 0 and wu pe + v 90"
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Hence, we obtain the general solution of (5.8) given by

C1 C2 C3

d =
(’U,*)2 + (1)*)2 + urv*

C1 4 Co C3
(apou— 22 (apov — 22 (apou — ) apov — 2)

where c¢1, ¢ and c¢3 are integral constant. Since we have

w = z(du — dv) — (u — v)dz — apo(v du — u dv)
= (z — apov)du — (z — apou)dv — (u — v)dz
Ldu® +dz* LJAv'+d2t o our—ot . —utdut +utdo®
v +u — dz" = ,
ajio afio ao apto

which implies the relations

1 1 v* 1 1 u*
w=—d[ ), w=——d[L),
(u*)? apo  \ u* (v*)? apo  \ v

,U*

1
w=——dlog —.
u*ru* atho u*

Thus, we obtain the general solution of (5.7) as follows. Setting F =
F($17$27$376) by

o v*  apov — 2z apo(p-T)/c— V1 +ar?
Cout apou—z po(A-Z) — V1 +ar?

(5.7) is equivalent to
d(ciF —c3/F + c3log F) = 0.
We reach the following conclusion:
Theorem 6. The solutions of the pair of Pfaff equations
E=0 and 0=0
with po 0, A X p #0 and p = po(A X p), po # 0 are given by

1+ azyzy = (1 + ar?),

apo(p- ) — V1 +ar? = ¢1 (mo(A - ) — V1 + ar?),

where ¢ > 0 and c; are integral constants.

(5.9)
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Finally, we investigate the rest case: A X p = 0 in the previous argument,
that is

(5.10) po#0, p#0 and (A-p)=(p-p)=0,(Axp)=0.

Choosing suitable coordinates (z1, 2, z3) in R?, we may put

A P 0
A=10]), p=10]), pu=|p with p # 0.
0 0 0

Then, by (3.2) 6 is expressed as

1 vM
0 = —— |———\dz; + VLpdz; — p(xsdr) — z1dxs)
T4T4 a

1 1
- — M + apxi)rdr| + ———
VL PoVM +apz) i

In order to solve the Pfaff equations (5.2), we can put

()\:L‘l + po\/f)dm.

M = cQL, L=1+ ar2, M =1+ axszy, r? = z121 + ToTo + T323

and so @ = 0 turns into

A
(—% —i—p)\/ZdﬂUl — p(z3dr) — z1dx3) — CPO\/E+QP$1)TdT

L(
VL
+ %(Awl —i—pg\/z)rdr =0,
that is

1 1
5.11) —=(c)\ — ap)VLdx, — p(z3dr, — z1dxs) + ——(c\ — ap)zyrdr = 0.
( ) a( ) 1 — p(z3dry 1dz3) \/f( P)T1

For simplicity we set
A=c\—ap and

A A
w = —E\/Edwl — p(zsdry — r1dxs) + —=xq 7 dr,

VI
A 45 A A A
= —22 - VL — pz3 |do, + —z120d79 + T + —x3 |dz
(\/51 a M3>1\/Z122 1(# \/Z3>3
then we obtain
Ar Ar
dw = ——=dr Ndx1 — 2udzs Ndri + —=dx1 A dr
\/f 1 K axs 1 \/TJ 1

2A A
= —xodr1 Ndzo — 2 + —z3 |drs ANdxy.
\/f 201 2 (M \/f 3) 3 1
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Now, let ®(x1,x9,x3) be an integral multiplier for w = 0. Then, we obtain
from the above expressions

d(@w)—g—ldazl /\w+§2d:1:2/\w+g—3d$3/\w+<1>dw

fIffIf X X X X X X

0d A, A
Pl (e = 2VL — pwy Vda A d
+35E2{ (\/fwl a\/_ MS) i

+ ( + A >d Ad }
X — T T T
1\ M \/f 3 2 3

+ g—Z{ (%xﬁ — é\/f — /wc3> drs N dx1 — %wlmgd:ﬂg A d(IIg}

2A A
+ & —xodxy Ndxo — 2| p + —=x3 |dxs ANdzxy ¢,
{\/f 2021 2 (,U NG 3> 3 1}

from which we see that ® must satisfy the following equalities:

( LA A ) 0P A 0o 0
— —x119— =0,
: \/_ dry L O3

A 0 A 5 A o®
- (,u—i— —$3>— + <—$1 - —\/Z—,twg)—
(5.12) VL o VL “ o3

A 0P A , A )a@ 24
—T1To— — | —==x ——\/f— 3 | — + —22® = 0.
\/f 126301 <\/f 1 a Hnr3 7o 2

Since we have

A 5, A A (1 A
—x ——\/f— r3=——=|—+T22x9 | — T +—x
\/f 1 p Hnr3 \/f(a 22) 3(M 3)

the above equalities turns into respectively

(5.127)

( A ) 0P _ 0

—F= )

VL ) oz, \/_ >0y

(11-i )( +ma—¢+2¢>> i(111—:1cac>8—(1)—0
H VL 3 38:1:3 VL \a 2%2 o3 )
A 0P 8¢'+2(I> LA A A 0®
—\/f H) xl—xl 362—6362 o \/— a\/_ —6902 =
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Now, using the notations:
w=Azs +puvVL, A=ch—ap, B=ap®— A

we change the variables (z1,z2,z3) to the new ones (z1*,22*,u*) by
2 2
* * u *
1 =21, X2 —IE2IE2+§, U= T2%2 — o

where we suppose B # 0. Then, we have

ou ap ou ap ou n ap
—=—x —=—x — = —=
dr, VL'V 01 VLY Omy N
and
0P 2u apy 2u apxy 2auu
e+ 2 o, . — = B =B o f (B — D
om T B VLY T B VL “JFB\/Z"“( rr = Pu),
0P
8—M:2$2(1+%>¢I2*+2$2<1—;%)@u*,
o0®  2u ap
— = A D — Dy
axg B( +\/E >( X2 u)’

where we consider ® as a function of (z1*, z2*, u*) and denote its partial deriva-
tives with respect to the new variables as @, «, ®,,«, ®,+. The first equality
of (5.12’) becomes

o0d o0d
u 6362 2 afL‘g

apu apu
= 2ux 1+ — D, «+ (1 — D, -
{ (1 557 )2+ (1- 50 ) e}

2Azou ap

_ apu A ﬂ
= 2uxo [{l—i— BVL B(A \/Exg;)}@m*
a A ap
+9l—-——+ 54+ —~= Dy
U s (e )
A? ap
=2ux9 |41l — — + —=(u — Axs) ; Dy~

B BVL
B + A? ap
A% ap ap? al
—2ux2[{1—§+ B }CI)M*—F{ +B\/_( \/E)}@u

= 411,:52(1)352* = 0,
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which implies
(5.13) D, = 0P/ =0
Using this equality, we have

0P 2apux, o ap
— =P, s — ———— P« — =2 1——)P,,«
8[1)1 T1 B\/E u* a$2 $2< B\/Z u*

0P 2u ap
— =—— A+ —=123 | Dy~
Oz B ( " \/fm?’) b

Hence the second equality of (5.12’) becomes

8271 8 8 €3
2apu
=uxri| Ppx — ——=x1 Dy~
1 2u ap
— Al = — A+ —= Dy + 2ud
<u:1:3+ <a+$2x2>>B< +\/E:1:3> + 2u
= ux1 Py«
{Qauu 24 2u (uw —I—A(l—l—xw))(a T —I—A\/E)}(I)
B\/_ BVL 3 272 B3 u
+ 2ud
=0,

which is equivalent to
(5.14) 21 @y » — 2Ho®y« + 20 = 0,

where we set

Hy = ﬁ{auuxlz + (uwg + A( + $2$2>> (apzs + AVL) }

The third equality of (5.12’) becomes

o o A P
Axo| 21— 0 + 90— 0 420 | + | uxs + 0
ox 1 ox HD) 8152

2 A
_ Aayas <q> - Micp) T (A Fuzs + 5)2@ (1 - L) 3,

BVL BVL
+ 2A19®
apAuxy A apu
= AfL‘lfL‘Q@xl* — 2.’,52{B7\/E (A.’,EQ + urs + > (B\/— 1) }@u*
+ 2A19®

=0,
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which is equivalent to
(5.15) 21" Py« —2H3Dy- + 20 =0,

where we set

1 uxry 1
H = 2 2 - - - B .
3 NG7 {auuml + (272 + + ) (a,uu \/_l,)}

From (5.14) and (5.15) we obtain the equality
(Hy — H;3)®yr = 0.

Since we have

BVL (Hy — H3) = (u:L‘g + A(é + x2x2>> (apzs + AVT)
- (@2 + =2+ é) (apu— BVL)

and

1
(:1:22 + % + E) (auu —B\/z)

= % (uxg + A(% + x2x2>> (apAzs + ap’ VL — B\/f)
1
= (’LLI;), + A(a + $2$2>> (a,umg + A\/Z),

we obtain Hy = Hj. Therefore (5.14) and (5.15) are identical.
Now we shall express Ho by 1%, zo® and u*. We have

Hy = — |apuzi® + apuzs® + (Au(l + azs?) + AuvV'L)x
Wil puzs” + (Ap( 2”) )3
+7(1—|—am2)\/f
I 2 2 2
= —— |apux1” + apuxs” + 1+ ax —I—ux/f u — \/E
B\/E_M 1 puas® + (o 2”) ) (u—pvVL)
A2

+ = +ax22)\/f]

= 57T _a,uu:mZ + apuzs? + pu(l + azs?) — pu(l + az1? + azo? + axs?)
A2

+ {u2 — (14 azs?) + —(1 + axQZ)}\/E]
a

1 A2 1 1 1
=5 (- T )t | = gt Lt = L



KILLING VECTOR FIELDS 237

Thus, the equality (5.14) turns into

1
(5.14%) 1 Py« + 2(— + u*) Dy +20 =0.
a

If we take v = (/u* + é in place of u*, then we have
2(1 + u*) Dy = 21)2(1)@; =vd,
a 2y/u* +1/a
and hence (5.14’) can be replaced by
(5.14”) 1 Py« + 0Py + 2P =0,

whose solution is given by

b =

c c c 1 U
! _|__2_|__2’ U:\/_+:L'2:L'2——, ’LLZAIL‘:J,"—N\/E,
1T vV TV a B
where c¢1, c2 and c3 are integral constants.
Finally we shall integrate the Pfaff equation
w=0.

Since we have

1 A d:I?l I3 1 A1
=——VL—— —d —d ——7rd
$1$1w a\/—xﬂ ,u<x12 T — $3> + \/_ xlr T

d—+,u<ac3d— —dx3>+——d\/_ d(A\/_ +p— )
x1 1

I

" W/L

the solution of the above Pfaff equation is given by

A
VL +pzs =z or A*(1+4 ar?) = a®(c1z1 — pas)?,
a

which is given by the original coordinates z; by

(c|>\|—a|p|) (1+a7‘ |>\|2{cl (A-2) (()\xu).i)}Q,

where A is supposed A # 0 and ¢; is an integral constant.
Theorem 7. The solutions of the pair of Pfaff equations
E=0 and 0=0
with pg # 0, p # 0, X # 0, p #0, A xp) =0, (A-p) = (p-p) =0 and
2 2 .

aluf? £ (Al = alpl )%, are given by
1+ azyzy = (1 + ar?),

2 - 12
AP (cA —alp|) (1 +ar?) =a*{ci(A- %) — (A x p) - 3)}".
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