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Abstract. In this paper, firstly we shall give simplified proofs of the results on
generalized Aluthge transformation in [11][12][14] and [16]. Secondly we shall
discuss a generalization of both classes of class A(k) operators defined in [9] and
w-hyponormal operators defined in [2].
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81. Introduction

We shall consider bounded linear operators on a complex Hilbert space H.
An operator T is said to be positive (denoted by T' > 0) if (T'z,z) > 0 for
all z € H and also an operator T is said to be strictly positive (denoted by
T > 0) if T is positive and invertible.

An operator T is said to be p-hyponormal for p > 0 if (T*T)P > (T'T*)? and
an operator 1" is said to be log-hyponormal if T is invertible and log T*T >
logTT*. p-hyponormal and log-hyponormal operators are defined as exten-
sions of hyponormal one, i.e., T*T" > TT*. It is easily obtained that every
p-hyponormal operator is ¢g-hyponormal for p > ¢ > 0 by Lowner-Heinz theo-
rem “A > B > 0 ensures A% > B® for any « € [0, 1]”, and every p-hyponormal
operator is log-hyponormal since logt is an operator monotone function.

Let T be a p-hyponormal operator whose polar decomposition is T' = U|T|.
Aluthge [1] introduced the operator T = |T|%U|T|%, which is called Aluthge
transformation, and also showed the following result.
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150 M. ITO

Theorem A.1 ([1]). Let T = U|T| be the polar decomposition of a p-hypo-
normal operator for 0 < p < 1 and U be unitary. Then the following assertions
hold:

(1) T = |T|%U|T|% is (p + %)-hyponormal if 0 < p < 1.

(2) T = |T|%U|T|% is hyponormal zf% <p<Ll

As a natural generalization of Aluthge transformation, the operator Ts,t =
|T |5~U|T|t for s > 0 and ¢ > 0 can be considered. The following Theorem A.2
on Ty ; is a generalization of Theorem A.1 on T'.

Theorem A.2 ([11][12][16]). Let T = U|T| be the polar decomposition of a
p-hyponormal operator for p > 0. Then the following assertions hold:

(1) Tsy = |T|°U|T| is ’%ﬁs’t}—hyponormal for s >0 and t > 0 such that
max{s,t} > p.

(2) Ty = |T|PU|T|" is hyponormal for s > 0 and t > 0 such that max{s,t} <
p.

We remark that Theorem A.2 yields Theorem A.1 when putting s =t = %
and the proof of [11] is cited under the condition N(T') = N(T*). As a parallel
result to Theorem A.2 for log-hyponormal operators, the following Theorem
A.3 is given in [14].

Theorem A.3 ([14]). Let T = U|T| be the polar decomposition of a log-
hyponormal operator. Then Ty, = |T|PU|T|* is %ﬁ’t}—hyponormal for s >0
and t > 0.

We remark that Theorem A.3 is a parallel result to Theorem A.2. In
fact, Theorem A.3 corresponds to Theorem A.2 in the case p — 40 since p-
hyponormality of T' (i.e., (T*T)P > (T'T*)P) approaches log-hyponormality of
T (i.e., logT*T > logTT*) as p — +0.

On the other hand, an operator T belongs to class A if |T?| > |T|? and

class A(k) for k > 0 if (T*|T|2]’€T)k#+1 > |T|?>. We call an operator T class
A(k) operator briefly if T' belongs to class A(k). An operator T is class A if
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and only if 7" is class A(1). On class A(k) operators, we have the following
Theorem A.4 in [9].

Theorem A.4 ([9]).
(1) For each k > 0, every k-hyponormal operator is a class A(k) operator.
(2) Every log-hyponormal operator is a class A(k) operator for k > 0.

(3) For each k > 0, every invertible class A(k) operator is a class A(l)
operator for 1 > k.

An operator T is said to be w-hyponormal if |T| > |T| > |T*|. We remark
that w-hyponormal operator is defined by using Aluthge transformation T =
|T |%U|T|% w-hyponormal operator was defined by Aluthge and Wang [2] and
the following Theorem A.5 is shown in [2].

Theorem A.5 ([2]).
(1) If T is a p-hyponormal operator for p > 0, then T is w-hyponormal.
(2) If T is a log-hyponormal operator, then T is w-hyponormal.

(3) If T is a w-hyponormal operator, then |T2| > |T|? and |T*|? > |T*|
hold.

Theorem A.5 states that the class of w-hyponormal operators includes the
classes of p-hyponormal operators and log-hyponormal operators, and also the
class of w-hyponormal operators is included in the class of class A operators.

In this paper, firstly we shall give simplified proofs of Theorem A.2 and
Theorem A.3 in section 2.

Secondly we shall discuss a generalization of both classes of class A(k)
operators and w-hyponormal operators in section 3.

§2. Simplified proofs of Theorem A.2 and Theorem A.3

We need the following theorems and lemmas in order to give proofs of the
results in this paper.



152 M. ITO

Theorem F (Furuta inequality [6]).
If A> B >0, then for each r > 0,
ro 1

()  (BSA’B3)i > (B5BPB3)

and

(i)  (A3APA3)7 > (A3BPA%)s

(1,0) q
(01 77))

hold for p >0 and g > 1 with (14+7r)qg>p+r.
FIGURE

It is shown in [13] that the domain drawn for p, ¢ and r in the Figure is the
best possible one for Theorem F.

On the other hand, chaotic order is defined by log A > log B for positive
and invertible operators A and B. Chaotic order is weaker than usual order
A > B since logt is an operator monotone function. Ando [3] shows that
log A > log B is equivalent to that AP > (A%BpAg)% holds for all p > 0.
By using Theorem F, a generalization of Ando’s characterization is given as
follows.

Theorem B.1 ([4][5][7][15]). Let A and B be positive invertible operators.
Then the following properties are mutually equivalent:

(i) log A > log B.
(ii) A" > (AngAg)# for allp >0 and r > 0.
Very recently, by his ingenious technique, Uchiyama [15] obtains a simplified
proof of Theorem B.1 by only using Theorem F.
Lemma F ([8]). Let A >0 and B be an invertible operator. Then
(BAB*)» = BA2 (A2 B*BA?)* A2 B*
holds for any real number A.

We remark that Lemma F holds without invertibility of A and B in case
A> 1.
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Lemma 2.1. Let A > 0 and T = U|T| be the polar decomposition of T. Then
for each oo > 0 and B > 0, the following statements hold:

1) U*U(ITIPAIT))* = (IT|P AIT|?)*.

2) UU*(|T*PAIT*|P)* = (IT*|PA|T*|7)*.
3)
)

(
(
(3) (UITPAITPU*)* = U(|T P A|T|?)*U*.
(

4) (U*IT*|PA|T*|PU)> = U*(|T*|P A|T*|?)*U.

Proof of Lemma 2.1.
Proof of (1). We remark that

N(T|) = N(IT|") € N(IT|?A|T|?) = N((IT|° A|T|")*),

ie., R((|T|PA|T|%)*) C R(|T]). Since U*U is the initial projection onto R(|T),
we have U*U(|T|®A|T|%)* = (|T|PA|T|?)® for a > 0.

Proof of (2). Since T* = U*|T*| is the polar decomposition of T, we have (2)
by applying (1).

Proof of (3). Firstly we have

U|TPAITIPU? = U|TPAITPU - UT )P AT )PU

u(T)P ATy U

since U*U is the initial projection onto R(|T'|?). Similarly, by induction,
(UITPAITIPU*)m = U(ITPA|T|) = U™

holds for any natural number n and m by using (1), so that the continuity of an
operator yields (U|T|PA|T|PU*)® = U(|T|°A|T|°)*U* by attending Z — a,
so the proof is complete.

Proof of (4). Since T* = U*|T*| is the polar decomposition of T, we have (4)
by applying (3).

Hence the proof of Lemma 2.1 is complete. O

Proof of Theorem A.2.
Proof of (1). Let A = |T|? and B = |T*|*’. p-hyponormality of T ensures

A > B > 0. Applying Theorem F to A > B > 0 since (1+£)p+r§iiﬁst} >0t
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s+t

m Z ]., we have

~ ~ +min{s,t} +min{s,t}
(T2 Do) 0 = (ITfUr|TPuirh™
+min{s,t}
= (U*UT|'U*|T/=U T U U)o
+min{s,t}
= (UNTTPPT )
+min{s,t}
. — SSFT U by (4) of Lemma 2.1
21 U* T*tTZST*t y
t st ptmin{st}
= U*(B2pApB2p) s+t
p4min{s,t}
> U*B »
o U*|T*|2(p+min{s,t})U

— |T|2(p+min{s,t})‘

Again applying Theorem F to A > B > 0 since (1 + ]ﬁ))p—l—rrfii—'rj{st} > % + %
and % > 1, we have
~ ~ +min{s,t} +min{s,t}
(T T5) =550 = (TPujTP o)™
= (TPl P EE
(2.2) _ (A% B AT
p+min{s,t}
< P

— |T|2(p+min{s,t})‘

Hence (2.1) and (2.2) ensure

~ o p+min{s,t} ~ p+min{s,t}

(Ts,th,t) stE > |T|2(p+min{s,t}) > (Ts’th*,t) —
that is, j:’s,t is M—hyponormal.

s+t

Proof of (2). p-hyponormality of T' ensures

(2.3) T|* > |T**
and
(2.4) T|* > |T**

for p > max{s,t} by Lowner-Heinz theorem. By (2.3) and (2.4), we have
(25)  T3Toe = |TI'UNTPUITI > [TIUA T PUIT) = [TPEH

and
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(2.6) Ts,tj—:t = |T|5U|T|2tU*|T|s — |T|5|T*|2t|T|s < |T|2(s+t).
Hence (2.5) and (2.6) ensure
T5iTow > TP+ > T T3,

that is, j:’s,t is hyponormal.
Whence the proof of Theorem A.2 is complete. O

Proof of Theorem A.3. Suppose T is log-hyponormal, i.e.,
(2.7) log |T|* > log |T™|?.
By Theorem B.1, (2.7) is equivalent to

(2.8) T2 > (|TP|T* | |T]P)7  for all p > 0 and r > 0.
By Lemma F, (2.8) is equivalent to the following (2.9).
(2.9) (|T*["|T || T*") 7+ > |T*|*" for all p >0 and r > 0.
Then

~ ~ min{s,t} min{s,t}

(T3 Teg) = = (TI'U*|TPPUIT|") =+
* trr* 2s t *[7 min{s,t}
= (UUITI'U*|T| UITI Uru) =+
in{s,t}

(2.10) = (U TP U) B

U= (|77 17 1) 557U by (4) of Lemma 2.1
U*|T*|2m1n{st}U
_ |T|2min{s,t}

Y

and the last inequality holds by (2.9) and Lowner-Heinz theorem.
On the other hand,

min{s,t}

(T Tsy) = = (T UIT U ()
{ t}

(2.11) (| |7 *)7)*) ™

< |T|2m1n{s 2t}

and the last inequality holds by (2.8) and Lowner-Heinz theorem.
Therefore (2.10) and (2. 11) ensure

min{s,t}

n{
(T*T ) s >|T|2m1n{st}>( stT ) o

that is, Ty is M -hyponormal.

Hence the proof of Theorem A.3 is complete. a
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§3. A generalization of w-hyponormal and class A(k)

As a generalization of both class A(k) operators and w-hyponormal opera-
tors, we shall introduce a new class of operators as follows:

Definition 3.1. For each s > 0 and t > 0, an operator T belongs to class
wA(s,t) if an operator T satisfies

(3.1) (T ["| |7 7 > |
and
(3.2) IT1% > (| |T* 7))+

We remark that (3.1) is equivalent to (3.2) by Lemma F if T is invertible.
Firstly we have the following two propositions.

Proposition 3.2. Let T = U|T| be the polar decomposition of T and j’s,t =
|T|*U|T|* for s >0 and t > 0. Then T is a class wA(s,t) operator if and only
if T satisfies

(3.3) Ty 557 > [T
and
(3.4) T > |17, |55

We would like to cite the following result by Proposition 3.2 or scrutinizing
the proof of Theorem A.3.

Remark 3.3. Let T = U|T| be the polar decomposition of an operator T which

belongs to class wA(s,t) fors >0 andt > 0. Then Ty = |T|*U|T|" is %st’t}—

hyponormal, that is, Theorem A.3 on log-hyponormal remains valid for T in

wA(s,t).

Proposition 3.4. Let T = U|T| be the polar decomposition of T and j’s,t =
|TI*U|T| for s >0 and t > 0. Then the following assertions hold;

(1) T is a class wA(1,1) operator if and only if |T%| > |T|? and |T*2 > |T*’|
hold.

(2) If T is a class wA(s,1) operator, then T is class A(s). FEspecially an
invertible operator T is a class wA(s,1) operator if and only if T is a
class A(s) operator.
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(3) T is a class wA(s,s) operator if and only if |Ts,s| > |T|* > |fl~“s*,s|

(4) T is a class wA(%, %) operator if and only if T is a w-hyponormal oper-
ator.

Proposition 3.2 states that (3.1) (resp. (3.2)) can be rewritten in (3.3)
(resp. (3.4)) using generalized Aluthge transformation Ty, = |T|°U|T|*. And
also Proposition 3.4 asserts that class wA(s,t) is a generalization of both class
A(k) operators and w-hyponormal operators.

Proof of Proposition 3.2.
(a). Proof of the result that (3.1) is equivalent to (3.3). Suppose that

(3.3) Ty = (T U | TP U T 7 > (T,
(3.3) ensures the following (3.5).

t

(3.5) U(|T)tUu*|T*U|T)h) s+ U* > U|T|*U*.

And also (3.3) follows from (3.5) by (1) of Lemma 2.1. Hence (3.3) is equivalent
o (3.5), and (3.5) holds if and only if

t

(3.1) (T[T Po|T|") s+ > |

by (3) of Lemma 2.1, so that (3.1) is equivalent to (3.3).

(b). Proof of the result that (3.2) is equivalent to (3.4).

£l s

Since (|T|*|T*|2|T|*)5+ = (|T|°U|T|*U*|T|®)++ = |T;t|s2—it, it is easily
obtained.
Hence the proof of Proposition 3.2 is complete. a

Proof of Proposition 3.4.

Proof of (1). .
(a). Proof of the result that |T?| > |T'|? is equivalent to |Ty 1| > |T|?. We easily

obtain |[T?| = (T*T*TT)z = (|T|U*|T|2U|T|)2 = |T},4|, so that the proof is
complete.

(b). Proof of the result that |T*|> > |T*’| is equivalent to |T| > |T1""1| Suppose
that
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(3.6) T > |17 = (TTT°T*)> = (UIT||T* PIT|U")*.
By (3) of Lemma 2.1, (3.6) holds if and only if
(3.7) U|T|2U* > U(|T|U|T|2U*|T|)2 U™
(3.7) ensures the following (3.8) by (1) of Lemma 2.1.
* L T
(3-8) 71> > (ITIUITIPU*|T])? = |T7 4.
And also (3.7) follows from (3.8), so that the proof is complete.

Finally |Ty | > |T|? and |T|*> > |7~’1*71| hold if and only if T" is class wA(1,1)
by Proposition 3.2. Hence the proof of (1) is complete by (a) and (b).

Proof of (2). If T' is class wA(s, 1), then the following (3.9) holds.

(3.9) (T || TP T ) =T > T2,

(3.9) ensures the following (3.10).

(3.10) U (|T*||T\2 |1 ) =7 U > U*|T*2U.

And also (3.9) follows from (3.10) by (2) of Lemma 2.1. Hence (3.9) is equiv-
alent to (3.10), and (3.10) holds if and only if

1

= (U*|T*||T|*|T*|U) = > |TP,

(T[T P*T) =+
by (4) of Lemma 2.1, that is, (3.9) holds if and only if T is class A(s). Therefore
T is class A(s) if T is class wA(s, 1).

Moreover assume that 7" is invertible. Then (3.9) is equivalent to the fol-
lowing (3.11) by Lemma F.

£l

(3.11) (T > (TP |T*PIT)*) =

Consequently, if 7" is invertible and class A(s), then (3.9) and (3.11) holds,
that is, T is class wA(s, 1). Hence the proof of (2) is complete.

Proof of (3). We have only to put ¢ = s in Proposition 3.2.
Proof of (4). We have only to put s = 1 in (3).
Whence the proof of Theorem 3.4 is complete. O

We obtain the following Theorem 3.5 as an extension of Theorem A.4 and
Theorem A.5.
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Theorem 3.5.

(1) For each p > 0, every p-hyponormal operator is a class wA(s,t) operator
for s >0 and t > 0.

(2) Every log-hyponormal operator is a class wA(s,t) operator for s > 0 and
t>0.

(3) For each s > 0 and t > 0, every class wA(s,t) operator is a class
wA(«, B) operator for any o > s and 3 > t.

In fact Theorem 3.5 implies Theorem A.4 by puttingp =sandt= = 1in
Theorem 3.5 and (2) of Proposition 3.4, and also Theorem 3.5 implies Theorem
A5 by putting s =t = 1 and @ = 3 = 1 in Theorem 3.5 and (1) and (4) of
Proposition 3.4.

In order to give a proof of Theorem 3.5, we need the following Theorem
3.6.

Theorem 3.6. Let A and B be positive operators such that

(3.12) A% > (AP B AP )woim
and

B
(3.13) (B% A% B3 )woim > Boo

hold for fized ag > 0 and By > 0. Then the following inequalities hold:

(3.14) A* > (ATBPA%)=+s
and

B
(3.15) (BY A°B%)a+5 > BP

for all a > agy and 6 > By.

We remark that Theorem 3.6 does not require invertibility of A and B.
Theorem 3.6 implies the following Theorem C.1 since (3.12) (resp. (3.14)) is
equivalent to (3.13) (resp. (3.15)) by Lemma F if A and B are invertible.
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Theorem C.1 ([10]). Let A and B be positive invertible operators such that
(3.12) A% > (A B AF)moi5s

holds for fized ag > 0 and By > 0. Then the following inequality holds:

(3.14) A* > (ASBPAS) =8

for alla> ag and B> (.

Proof of Theorem 3.6.
(a). Proof of (3.14). Applying Theorem F to (3.13), we have

Bop1 Bo 7'1 147

5 (B¥ A% BF)aotho Y5y > ph(in)

(3.16)

for any p; > 1 and r; > 0. Putting p; = aoﬁ—J;ﬁO >1in (3.16), we have

14+ + Bo(l+ry)
Bo(2 r1)A BBO( rl))_o—aoJrBoJrﬁoTl > Bﬁ0(1+r1)

(3.17) (B

for any r1 > 0. Put 8= [y(1 4+ r1) > [y in (3.17). Then we have
B o B2 8
(3.18) (BEA®BT)®+ > B® for B> f.

29 ag, =0 . .
Next we show f(8) = (A= BPA= )20+5 is decreasing for 3 > ;. By
Lowner-Heinz theorem, (3.18) ensures the following (3.19).

(3.19) (BF A% B%)50 8 > BY for 0 <w < f.
Then we have
[B) = (AFBIAT)mis
(AP BOAR) R Yt
— (A B3(B54%BY)% P B A% )59 by Lemma F
> (AR BIUAR T by (3.19)
= f(B+w).

Hence f(f3) is decreasing for 3 > ;. Therefore

(3.20) A% > (AT BP AT for B> B
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holds since A% > (A% B A )75 = f(fy) > f(8) = (AL BPAT )07,

Again applying Theorem F to (3.20), we have

agry 1479

(3.21) A0O(4T2) > £ AR (A BB AT 50TE AT Yt

for any po > 1 and r9 > 0. Putting py = a‘;—tﬁ > 1in (3.21), we have

(1+r9) (1+rg)  _@o(l+ry)
0 3 = B*BAQO p) = )0‘0+3+0¢0T2

(3.22) Aco(472) > (4
for any ro > 0. Put @ = ag(1 + 72) > ap in (3.22). Then we have
(3.23) A* > (ASBPA%)a8  for all a > ag and B > S,
so that the proof of (a) is complete.

(b). Proof of (3.15). Applying Theorem F to (3.12), we have

agp3 ag 1+r3

(3.24) Aco(Hrs) > (455 (AT B AT Yaotho A™5 Y ratrs

for any p3 > 1 and r3 > 0. Putting p3 = O“’a—tﬁo >1in (3.24), we have

ao(1+r3> _ag(l+ry)

ag(l+4rgy)
S5 pho g ) @o+Bot+eors

(3.25) A0(473) > (4
for any r3 > 0. Put o = (1 4+ r3) > ap in (3.25). Then we have

(3.26) A* > (A%B’BOA%)QJ?—BO for o > .

Bo
Next we show g(a) = (B £ AR )a+50 is increasing for a > «p.
Lowner-Heinz theorem, (3.26) ensures the following (3.27).

(3.27) A" > (AT BMAS)& 5% for 0 < u < a.

Then we have
Bo
gla) = (BFA°B?)"H

Botu B

= {(B_zQAO‘BEQ) a+£ }a+38+u

Ba a a a, v« Bo _Bo

= {B2 A2(A2BMA%)a*% A2 B2 }atot* by Lemma F
B

< (B At BP)ameim by (3.27)

= gla+u).
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Hence g(«) is increasing for oo > . Therefore

(3.28) (BB_ZOAC“BBTO)ai—%O > B%  for a > o

holds since (BEA9BE)7% = g(a) > g(ay) = (BE A0 B ms% > ph.
Again applying Theorem F to (3.28), we have

1+7r4

(3.29) {3@5—4(3%1,4&3%1)53%‘33@;—4}1,—4+r4 > pho(l+ra)

for any py > 1 and r4 > 0. Putting py = %fo > 1in (3.29), we have

Bo(l+r4) Bo(i+ry) _Bal+ra)
p) 2

(3.30) (B A“B )a+Bo+hora > BPo(1+74)

for any r4 > 0. Put 8= Bo(1 +r4) > By in (3.30). Then we have
(3.31) (B3A°B%)7% > B foralla > ag and 8 > fo,
so that the proof of (b) is complete.
Whence the proof of Theorem 3.6 is complete. O
Proof of Theorem 3.5.
Proof of (1). Suppose that T' is p-hyponormal for p > 0, i.e., |T|?? > |T*|??,

and also let A = |T|* and B = |T*|?’. Applying Theorem F to A > B >0
since (1 + Z%)STJrlt >3 +§ and = > 1, we have

(3.1)  (TTPIT) T = (BB ASB) > By = |
for s > 0 and ¢t > 0. Again applying Theorem F to A > B > 0 since

(1+§)%”Z%+§and57+t21,wehave

(3.2) (1T T[T %) 75 = (A% By A%) 77 < Ab = 1|

for s > 0 and ¢t > 0. Therefore T is class wA(s,t) for s > 0 and ¢ > 0.
Proof of (2). Suppose that T is log-hyponormal, i.e.,

(2.7) log |T|*> > log |T™|?.

By Theorem B.1, (2.7) is equivalent to

(2.8) IT|? > (|TP|T*|"|T]P)7  for all p > 0 and r > 0.
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By Lemma F, (2.8) is equivalent to the following (2.9).

(2.9) (|T*|"|T || T*") 7% > |T*|*" for all p > 0 and r > 0.

Putting p = s and r =t in (2.9) and (2.8), we have

(3.1) (T[T | 7)) = > |7
and
(3.2) T2 > (|IT)*|T* T =+

Therefore T is class wA(s,t) for s > 0 and ¢ > 0.

Proof of (3). Suppose that T is class wA(s,t) for s > 0 and ¢ > 0, i.e., the
following (3.1) and (3.2) hold.

t

(3.1) (T[T |T|") 7 > T

(3.2) IT1? > (| |T*|T|*) 7.
By Theorem 3.6, we have
B o
(\T*°|T2|T*|%) 7+ > |T*% and T > (|T||T**°|T|*) 5

for any @ > s and 8 > t. Therefore T is class wA(«, 3) for any a > s and
B>t

Hence the proof of Theorem 3.5 is complete. a

§4. Concluding remark

In Theorem 3.6, for « > Oand 8 > 0, we might expect that A% >
[« o = T _B_
(A>BPA2)a+? is equivalent to (BgAO‘Bg)a% > B even if A and B are
not invertible. But it is not true by the following Example 4.1.

Example 4.1. There exists positive operators A and B such that A% >
[« o N = T _B_
(A>BPA2)a+% and (BgAaBg)aJrﬁ # B? for any a >0 and 8> 0.

1 0 0 0
A—<0 0>and B—<0 1>.

Let
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Then
o, ]_0 00 ].0
a— _ﬁ_a = — =
A% — (A2 BRAz) e (0 0> <0 0> <0 0>20
and

B B._B_ 00 00 0 O
gaga —/6: — =
(B=A%B2)« — B (0 0) (01) (0-1)20

a o _B_
for o > 0 and B > 0. Therefore A > (A2 BfA%2)5+5 and (BgAO‘Bg)aH% *
B? for any @ > 0 and 8 > 0.
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