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NOTE ON THE SPECTRAL CONCENTRATION
FOR THE SCHRODINGER OPERATOR
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Abstract. In this paper the family of the Schrédinger operator Hy, = —d? /dx?
+q(z) + §(z — 1)/ in L2(0,00) is investigated. Roughly speaking, if ¢(z) =
o(z~?), then the spectral concentration occurs as x — 0.
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1. Introduction

We shall consider the Schrodinger operator family {H,} (x > 0):

Hou(z) = —u” () + q(x)u(z) on H(0,1) N H?(0,1) ® Hy(1,00) N H?(1,00),
d(z — 1u(x)

in L2(0,00), x > 0 (formally),
K

Hyu(z) = —u"(2) + q(z)u(z) +
where the domain of H, is determined in Section 2 and ¢ is a real-valued
continuous function on [0, 00) and ¢(z) = o(1) as z — oo.

The various results for similar types of operators can be seen in [2], the
references therein ([2, Chapter 1.3]). Formally we see that H, — Hy as k — 0.
In fact, we shall see that the convergence is the norm resolvent convergence
(Lemma 4.2). We are interested in the embedded eigenvalues of Hy and the
positive spectrum of H, as K — 0. We expect that the embedded eigenvalues
of Hy become resonances (cf. [7]). However, in this note we do not define
resonances, and we call quasi-eigenstates instead of resonances. We shall in-
vestigate the spectral concentration (Theorem 1.1) and the exponential decay
of the quasi-eigenstates of H, (Theorem 4.9).

To describe our theorem we shall give some notations. We denote the
resolvents of Hy and H,, by Ry(¢) and R, ({), for Im¢ # 0, respectively. That
is , Ro(¢) = (Hy — ¢)7, R.(¢) = (H, —¢)~!. Let 7 be an isometry operator
from L?(0,00) onto L?(1,00) such that Tu(z) = u(x — 1) for u € L*(0,00)
and Uy (t) a 1-parameter group on L?(0,00) such that Uy (t)u(z) = e'/?u(etx)
(t € R). Since 7Uy(t)7* is a l-parameter unitary group on L?(1,00), there
exists a unique self-adjoint operator A in L?(1, 00) such that 7Uy(t)7* = e'*4.
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Remark that e u(z) = e?/?u(e’(z — 1) + 1) for u € L?(1,00). Let Kj be the
Dirichlet Laplacian —d?/dz? in L?(1,00) and q(z) = ql(0,1)(%) + qlj1,00)(7) =
q1(z) + g2(z).

Assumption (A). We assume that [g2, A] is Kp-compact in the form sense
and that [[g2, A], A] is Ky-bounded in the form sense.

Theorem 1.1. Let q(z) satisfy the Assumption (A), Ay > 0 an eigenvalue of
Hy and P the orthogonal projection onto the eigenspace of H, corresponding
to Ag. Then there exists an closed interval J (k) such that J(k) — {A\o} (k — 0)
and

E.(J(k)) — P (k — 0) strongly,
where E,, is the spectral measure of H,,.

The organization of this note is as follows. In section 2 we shall define the
formal operator H, and determine the domain. In section 3 we describe the
Livsic matrix and the Mourre theory. In section 4 we shall give a proof of
Theorem 1.1 and the exponential time decay of quasi-eigenstates without the
proof.

2. Definition of H,

We shall precisely define H,. We shall use the quadratic form (cf. [5,
Chapter VI]).

Lemma 2.1. Let h,, be a sesqui-linear form on H}(0,00) such that

(2.1) helu,v] = (u',v") + (qu,v) + £~ u(1)v(1)

for u,v € H}(0,00). Then h, is a symmetric closed form and hy[u] =
h.[u,u] is bounded from below: h,[u] > mlul|? (v € HE(0,00)), where
m := inf,s¢ q(z).

Proof. Let hyq, be a sesqui-linear form on H}(0,00) such that
hmaz|u, v] = (u',v") + (qu,v)

for u,v € H}(0,00). Since g(z) is continuous on [0, 00) and g(z) — 0 as = —
00, we know that h,,.. is a closed symmetric form and bounded from below
(Rmaz[u] > m||lul|?) and that the operator associated with hy,q, is —d?/dz? +
q(x) with the Dirichlet condition at z = 0 in L2(0,00). (cf. [5, Chapter VI]).
By H}(0,00) C C(0,00) the form h,, is well-defined on Hg(0,00) and we can
write (2.1) as

B[ty 0] = Bumaz[u, v] + 67 u(1)v(1)
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for u,v € H}(0,00). Hence D(hmqez) = D(hy), hy is symmetric and h,[u] >
hunaz[u] > mllul|?>. We shall prove that h, is closed. It is easy to show that
for u € H}(0,00) and for € > 0

lu(1)? :/0 %|u(:ﬁ)|2d$ :2Re/0 u' (z)u(z)ds

1
S/ (el (2)]* + e~ u(z)[*)dz < ef|u||* + e |Jul®.
0

Hence we see that
k™ Hu' (1) < e(hmae —m + 1)[u] + C||ul/?

for some C' > 0. Since h,,q.. — m + 1 is a closed symmetric positive form, we
see by [5, Theorem VI.1.33] that h, is a closed form. [

We shall define the operator H,, and determine its domain. By Lemma 2.1
and [5, Theorems VI.2.1 and 2.6] there exists a unique self-adjoint operator
H,, associated with h,. And the domain of H, is as follows:

Proposition 2.2. u € D(H,) if and only if the following two conditions are
satisfied:

(i) u € H(0,00) and u € H?(0,1) & H*(1, 00),

(if) w(1) := w(1 £ 0), £(u'(1+0) — /(1 — 0)) = u(1).
Furthermore for u € D(H,)

Hou(z) = —u"(z) + q(z)u(z), z # 1.

Proof. Let u € D(H,). For v € C§°(0,1)®C§°(1,00)(C HE(0,00)) by Lemma
2.1 and integration by parts we have
(2.2) (Hiu,v) = hglu,v] = hpaz|u, v] = (u, —0") + (u, qv).
By using (2.2) we have (H.u — qu,v) = (u,—v"). Hence we see that u[ )

and u"| (1,00 exist in the distribution sense and that v € D(H,). Furthermore
by integration by parts we have

(Hyu,v) — (qu,v) = (—u",v).
Since C5°(0,1) ® C§°(1,00) is dense in L2(0,00), we see that u” € L?(0, ),
that u/|(g,1) and u'| (1) are absolutely continuous and that H,u(z) = —u" (z)+
q(z)u(z) for x # 1. We shall prove that x(u'(1 +0) —u’'(1 — 0)) = u(l). By
integration by parts we have for v € D(H,;) and v € HE (0, 00)
hlu,v] = (—u”" + qu,v) + £~ u(D)o(1) + (1 — 0)v(1 — 0) — /(1 + 0)v(1 + 0)
= (HH’LL,U) = (—’LL” + q’LL,U)-
Since v(1) := v(1 + 0) = v(1 — 0) attains any value, we have k(u'(1 + 0) —
uw'(1 —0)) = u(l).
Conversely, if u satisfies the conditions (i)-(ii), we can easily see that h,[u,v] =
(—u" + qu,v) for any v € H}(0,00). Thus this lemma has been proved. [
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3. Livsic Matrix and Mourre Estimate

We shall introduce the Livsic matrix and the Mourre estimate. In general,
let 1 be a Hilbert space with its inner product (-,-) and P an orthogonal
projection onto a finite dimensional subspace of H. And let T" be a closed
operator in ‘H with resolvent set p(7'). Then the Livsic matrix B(z,T) in PH
is determined by

P(T —2)"'P = (B(2,T) —2)" "

for z € p(T). In particular, if Ty and T are self-adjoint operators , A\ € o(Tp)
is of finite multiplicity and P is the orthogonal projection onto the eigenspace
of Ty corresponding to A, then the Livsic matrix B(z,T}) is the following form:

(3.1) B(z,Ty) = A+ PVP — PVP(T, — 2)"'PVP

WhereV:Tl—TO,F:I—PandTl:FTlﬁ.

Assumption (G.1). g(z) = (az+b)/(cz+d), a,b,c,d € C with ad — bc # 0.
There exists ko > 0 such that cA +d # 0 for any A € Up<y<p,0(Hy).

Assumption (AG). There exists a neighborhood I of Ay and a complex
neighborhood © of Ay such that B(g(z),g(H,)) has a continuous extension
from C\ R to I and the continuation satisfies

1B(9(2),9(Hy)) — Blg(w),g(He))| < o(1)|g(2) — g(w)] as £ = 0

for any z,w € Q.

Theorem 3.1. ([7, Theorem 4.1]) Suppose that Assumption (G.1) and (AG)
are satisfied. Then there exists a closed interval J(k) such that

lim J(x) = (Ao}, s lim B,(J(x) = P,

We shall describe the Mourre estimate [4]. Let H be the same as above and
H a self-adjoint operator in H. Let H® = {u € H;||(|H| + 1)*/%u|| < oo} for
s > 0 and H® the dual of H ™5 for s < 0.

Assumption (M). (cf. [4, Definition 2.1]). Let E € R. Let A be a self-
adjoint operator (not necessesary the same A as in Section 1) such that

(i) D(A)N D(H) is a core for H,

(ii) €4 maps D(H) to D(H), and for each u € D(H)
itA

sup || He" ul| < oo,

<1

(iii) the form i[H, A] defined on D(A) N D(H) is bounded from below and
closable. We shall denote the self-adjoint operator associated with i[H, A]*
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(form closure of i[H, A]) by the same symbol i[H, A]* and assume that D(H) C
D(i[H, A]*).

(iv) The form [[H, A]*, A] defined on D(A) N D(H) is closable and the self-
adjoint operator associated with the form closure of [[H, A]*, A] is denoted by
the same symbol [[H, A]%, A]*. And the operator [[H, A]*, A]* is extended to
a bounded operator from H? to H 2.

(v) There exist & > 0, 6 > 0 and a compact operator K on H such that

Eu(J)ilH,Al"Ex(J) > aBy(J) + Eu(J)KER(J),
where Ep is the spectral measure of H and J = (E — 6, E + 0).

Theorem 3.2. ([4, Theorem 2.2 (iii), n=2]). Let E € R and A satisfy
Assumption (M). Let I C o(H) N J be a relatively compact interval and
s > 3/2. Then for X € I the following limit exists

1%1(142 +1)72(H — N+ ie)72(A%2 +1)7°/2

and equals

%(A2 + 1) (H — X £i0) "1 (A% + 1) /2

4. Proof of Theorem 1.1

To apply Theorem 3.1 to the proof of Theorem 1.1 we need some lemmas.
Since the following fact is well-known, we omit the proof (cf. [3]).

Lemma 4.1. Let v1({;x), v2((;z) be fundamental solutions of —u'' +qu = (u

on [0, 1] such that
v1(G0) v2(G0)) _ (0 1
v1(¢;0)  v3(¢;0) 10
and w1 ((;x), wa((;z) be fundamental solutions of —u' + qu = (u on [1,00)
such that
wi((51) =0, wi(G;1) =1, we(G;1) =1, lim wy((;2) = 0.
Then the kernel of Ry((), Im( # 0, is

(| u(G 1) we(C 1)
vl(c;jl)(c.vf)(c; =) v1(Gy), 0<y<z<1,
o v1(¢: 1) w2(G51)
ko(Cz,y) = < v1(Gy) va(Cy) n(Ciz), 0<s<y<l
Ul(C,l) 1 9 ) = y=s1,
w1 (¢ y)w2(C; ), 1<y<u,
L wi(Ga)we(Cy), 1<z <uy.

For functions u,v we denote the Wronskian of u,v by W (u,v)(x).

29



30 K. WATANABE

Lemma 4.2. Let S(k,() = Rx({) — Ro(¢). Then for Im{ # 0 we have

(4.1) Sk, Qu(z) = a(r, C) (u, ¢(C;-)) (G5 ),
where a(k,() = k/(v1(¢;1) — kW (v1,w2)((; 1)) and

n(G ) 0<z<1
(4.2) qb(C;x){ VoG T T

v1(GHwa(Gr), 1<z <o0.

where we take a branch of square-root such that Imy/z > 0 for Imz # 0.

Proof. We put f(z) = S(k,{)u(x) for u € L?(0,00). Then we have, by Lemma
2.2,
—f"(x) +q()f(x) = (f(z), =#1,

and f € L?(0,00). So we can put

o b’Ul(C;x)a 0§$<]—7
J(@) = { cwa(Cix), 1<z<oo.

Using the relations
Ro(Qu(1 £0) =0, Re(Qu(l) := Re(Q)u(l +0) = Re(C)u(l —0),
(R (Q)u) (1 +0) = (Re(Qu)' (1 = 0) = —Ry(Cu(l)

we have

F(L=0) =bvi (1) = cwa(¢; 1) = f(1+0),
fI(140) = f1(1 = 0) = cwy (G5 1) — b (¢;1)

zéRn(C)u(l) —{(Ro(Q)u)"(1 +0) — (Ro(C)u)'(1 - 0)}
1

= (ReQ)u(1) ~ Ro(Q)u(1)) — {(Ro(C)u)' (1 +0) — (Ro(¢)u)(1 — 0))
= F(1) ~ {(Ro(Q)u)'(1+0) = (Ro(Cu)'(1 - 0)}

= bun (G 1) ~ {(Ro(Qu) (1 +0) — (Ro(Q)u) (1 ).
Hence we have

i v1(¢;1)
=V Gl
K

T 0 (G 1) — KW (vr, w2) (1)

= bvl (Ca 1)7

b {(Ro(Q)u) (1 +0) = (Ro(Q)w) (1 = 0)}.
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By Lemma 4.1 we know that
(Ro(Q)u)'(1+0) — (Ro(¢)u)' (1 —0)
= [Tty + [ 2D iy
1 0

Hence we get

f(x)
:{ a(5, Q) (fy v1(G)u(y)dy + [ wa (G y)uly)dy)vi(Giz), 0 <z < 1,
a(k, Q1 (G 1) (fy LB uly)dy + [ ws(Csy)uly)dy)ws((52), 1<z < oo.

Therefore ¢({;x) in (4.2) satisfies (4.1). O

Proof of Theorem 1.1. Since ¢ is continous and bounded on [0, 00), we may
assume that —1 is not the eigenvalue of Hy and H,, for 0 < k < k. Hence
we put g(z) = 1/(z + 1) and show that the Assumption (AG) is verified.
Putting S(k) = S(k,—1), a(k) = a(k,—1) and h = ¢(x;—1) we see that
S(k) = a(k)(-,h)h = a(x)V. Hence by (3.1) the Livsic matrix B(g(z),g(H,))
of g(Hy) is

(4.3) Blg(2), 9(Hy)) =g(Xo) + a(k) PV P
—a(k)’PVP(g(H,) — g(2))""PVP,

where g(H, ) = Pg(H,)P.

We see that the Lipschitz continuity of B(g(X £ i0),¢(H,)) follows from
that of the third term on the right-hand side of (4.3). Let ¢ be a normalized
eigenfunction of Hy corresponding to Ay and we shall investigate the Lipschitz
continuity of

(PVP(g(H,) — g( +i0) PV Pih, )

with respect to A in some real neighborhood I of Ay. Note that the Livsic
matrix B(g(z),g(H,)) is the operator in PL?(0,00) = {a¢)}acc-

Lemma 4.3. The following equation holds:

(44) (VPG = o)™ Vi) = (0 Tt B A

where Ao(z) = (9(Ho) — g(2))~".
Proof. Since the left-hand side of (4.4) is

(4, 7) (h, ) (P(g(Hy) — g(2) ™ Ph, h),
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we shall calculate the third factor. Remark that Pg(Hy) = g(Hy)P. Putting
(g(H,) — g(2)) "' Ph = u we calculate u in the part of PL2?(0, o).

O

Let P; be the orthogonal projection on L?(0,00) into L2(0,1) and P, =
I — P;. Then by the resolvent equation, we can easily obtain

(Ao(2)Ph, k) = — (z + 1)(Ph, ) — (2 + 1)?(Ro(2) P, Ph, )
— (2 4+ 1)%(Ry(z) Py Ph, h).

Note that PyRy(z) = Ry(z)P;. Since the operator Ry(z)P; in the second
term on the right-hand side is identical to the resolvent of —d?/dz? + q(x)
with the domain H}(0,1) N H2(0,1), the second term on the right-hand side
is continuous in some real neighborhood I of A\y. So we shall investigate the
third term on the right-hand side.

If we prove the following theorem, then Theorem 1.1 immediately follows.

Theorem 4.4. If \o > 0, then (Ro(\=£140)P>Ph, h) is Lipschitz continuous in
some real neighborhood I of \y and the Lipschitz constant is O(1) (k — 0).

To prove this theorem we shall use the Mourre estimate. We need some
lemmas.

Lemma 4.5. Let A be the generator of TUy(t)T* in Section 1 with domain
D(A). Let
D = {u € H'(0,00);zu’(z) € L?*(0,00)}.

(4.5) AMDZ%(%((E—U‘F(%_I)%)
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and A|,p is essentially self-adjoint, that is, 7D is a core for A.

Proof. Let Ag be the generator of Uy(t). If we prove that D is a core for Ay,
then we see that 7D is a core for A. To prove that D is a core for Ay we shall
verify the conditions in [6, Theorem X. 49].

It is easy to see that: (i) D is dense in L2(0,00); (ii) (d/dz)u(etz) =
etu'(etx) € L?(0,00) for u € Dj (iii) ||z(d/dx)(Uy(t)u)(z)| = ||zv’(x)| for u €
D. Hence D is a core for Ay, and by the direct computation of (d/dt)7Uy ()7 u(
for u € 7D we have (4.5). O

7)|¢=0

The following lemma is found in [1, Chapter 5].

Lemma 4.6. ([1]) Let V(z) be a real-valued continuous function and A < 0.
Let u satisfy —Au + V(z)u(x) = u(z) in {z;|z| > R} and v € L?(|z| >
R)N C(|x| > R). For any € > 0 there exist a constant C' > 0 such that

lu(z)| < Ce(—V=A+o)|z]

for |z| > R.
Proof of Theorem 4.4. Remark that D(HoP,) = H}(1,00) N H?(1,00). First,
we shall verify the conditions of Theorem 3.2 for HyP; and A in Section 1.
(1) C§°[1, 00) is core for HoPs, so is D(A) N D(HyPs).
(ii) By e'*Au(x) = et/?u(et(z — 1) + 1) for u € HJ(1,00) N H?(1, 00)
HoPye'*u(z) = (Ko + g2)eu(z)
—e?t et 20 (et (x — 1) + 1) + gy (x)u(el (z — 1) + 1).
Since g» is bounded, we see that supy; <, | HoPoe'Aul| < oo.
(iii) For u,v € C§°[1, 00)

(4.6) (i[HO,A]u,v) iAu, Hyv) — (iHou, Av)
iAu, Kov) — (iKou, Av) + (i[gz, Alu, v)
= (2Kou, v) + (i[g2, Alu, v)

= (2Hou,v) — (2q2u,v) + (i[ge2, Alu,v).

~~ ~~ o~

By Assumption (A) i[Hy, A] is closable and bounded from below, and i[Hy Ps, A]*
is self-adjoint and D(Hy) C D([H,, A]*).
(iv) By (4.6) we see that for u,v € C§°[1,00)
(¢[i[Ho, A, Alu,v) = —i(i[Hp, Alu, Av) + i(Au,i[Hy, Alv)
—i(2Hou, Av) + i(2qau, Av) — i(i[q2, Alu, Av)
+ i(Au, 2Hgv) — i(Au, 2q2v) + i(Au, i[q2, A]v)
( [H07 ]U ’U) —22([q2,A]’U, ’U)+Z([.[q2,A],A]U,U)
=4(Hou,v) — 4(q2u,v) — 2(i[g2, Alu,v) + i([i[g2, A], Alu, v).
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By Assumption (A) we see that i[i[H P, A], A] is extended to a bounded
operator from D(HyP,) to D(HyPs)*.
(v) Let § > 0 (small) satisfy [Ag—d, Ao+ 0] C (0, 00). Notice that o(HyP)N
(0,00) = 04c(HoP2). Then by (4.6)
Ew,p, (J)Z[HOPZ’ A]EHopz (J)
=2En,p,(J)HoEnyp, (J) + Enyp, (J)(ilg2, Al = 2¢2) By p, (J)
22(>‘0 - 6)EH0P2 (J) + EH0P2 (J)(Z[q23 A]a - 2q2)EH0P2 (J)

By Assumption (A) the condition (v) is satisfied. Hence we obtain

sup |- (A2 + 1)=/2(Hy P, — X +i0)~ (A2 + 1)=*/2]| < oo
xel dA

where s > 3/2 and I C J is a closed interval containing Ap. [
Lemma 4.7. (cf. [4]). Let s € R. Then F, = (A% + 1)°/2(1 + 22)~%/2(1 +
Ky)~*/? is a bounded operator on L?(1,00) and so is F.

Proof. 1t is sufficient to prove that for u € H}(1,00)
IA(L + 22) 7 2ul < C(Jlull + /|-
Since for large z

A(L %) Y2 = (@ = D((L+02) 20y + (0 = 1+ 22) 2y
=(z — 1)O(z™?)u(x) + (z — DOz (z) + Oz u(z) + O(1)u (x)
=0(1)(u(z) + v’ (2))-

By the duality and interpolation we see that both F; and F are bounded on
L?(1,00). O

We continue the proof of Theorem 4.4. By (4.1) and Lemma 4.6 we see
that for any e > 0 there exist constants C' > 0 and C’ > 0 such that |h(z)| <
Ce(=1%9)% and |0/ (z)| < C'e(=1%9)% as x — co. Hence we have (1 + 22)(1 +
Ko)P;h =wu € L?(1,0). By Lemma 4.7 we have

d o
- (Ro(A£i0) PPh, Pyh)

d

:ﬁ(F;[(fﬁ + 1) Ro(A £1i0)(A? + 1) Fyu, u)

is bounded, and (Ry(\ + i0)P,Ph, k) is the Lipschitz continuous. Thus we
have completed the proof of Theorem 4.4. [
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Corrollary 4.8. Let Ao > 0. Ifq 6_02,_q(x),q’(ac) = o(z7!) and ¢"(z) =
O(z72) as z — oo, then (Ry(\ £i0) P, Ph, h) is Lipschitz’s continuous in some
real neighborhood I of \g.

Proof. 1t is sufficient to verify Assumption (A). We calculate the commutators:
For u € H}(1,0)

(g2, iAJu(z) = 2(z — 1)g3(z)u(z)
[[g2,1A4]*, iA]u(z) = 2(z — 1)(2(x — 1)g3(x)) u(z)
= 4((z — D)ga(2) + (& — 1)%q5 (2))u(=).

Hence we see that by Sobolev’s theorem [go, A]* is a compact operator in
L?(1,00) and that [[g2, A]?, A]* is a bounded operator in L?(1,00). O

We give a theorem for the time decay of the quasi-eigenstates, but we do
not give a proof (cf. [7, Section 5]). Instead of (B(g(z), g(H,)),), we shall
simply write B(g(z),g(H,)).

Theorem 4.9. Suppose the same assumption in Theorem 1.1 and use the
same notations in the proof (Section 4). Assume further that

1 .
Llﬁ)llglﬁ)llmﬁ B(g(Xo +ig),9(Hy)) # 0.

Then we have '
[(e7"*Hr4p, 4p)| = exp(—ar®t) + o(1)

uniformly int > 0 as k — 0, where

o =Img~"(B(g(Xo +10),9(Hp)))
(T —(Xo 4+ 1)2(Ry(\o +i0) Py Ph, h)
- (1/),h)(hﬂ/)) v(—1;1)2|B(g(>\0+i0),g(Ho))|2.

Hence we see that v is the quasi-eigenstate of H.
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