NOTE ON THE SPECTRAL CONCENTRATION FOR THE SCHRÖDINGER OPERATOR WITH POINT INTERACTION

Kazuo Watanabe

(Received October 20, 1997; Revised January 12, 1998)

Abstract. In this paper the family of the Schrödinger operator $H_{\kappa} = -d^2/dx^2 + q(x) + \delta(x-1)/\kappa$ in $L^2(0,\infty)$ is investigated. Roughly speaking, if $q(x) = o(x^{-2})$, then the spectral concentration occurs as $\kappa \to 0$.

 $Key\ words\ and\ phrases.$ Spectral concentration, Schrödinger operators, point interaction.

1. Introduction

We shall consider the Schrödinger operator family $\{H_{\kappa}\}\ (\kappa \geq 0)$:

$$H_0u(x) = -u''(x) + q(x)u(x) \quad \text{on } H_0^1(0,1) \cap H^2(0,1) \oplus H_0^1(1,\infty) \cap H^2(1,\infty),$$

$$H_\kappa u(x) = -u''(x) + q(x)u(x) + \frac{\delta(x-1)u(x)}{\kappa} \text{ in } L^2(0,\infty), \ \kappa > 0 \text{ (formally)},$$

where the domain of H_{κ} is determined in Section 2 and q is a real-valued continuous function on $[0, \infty)$ and q(x) = o(1) as $x \to \infty$.

The various results for similar types of operators can be seen in [2], the references therein ([2, Chapter I.3]). Formally we see that $H_{\kappa} \to H_0$ as $\kappa \to 0$. In fact, we shall see that the convergence is the norm resolvent convergence (Lemma 4.2). We are interested in the embedded eigenvalues of H_0 and the positive spectrum of H_{κ} as $\kappa \to 0$. We expect that the embedded eigenvalues of H_0 become resonances (cf. [7]). However, in this note we do not define resonances, and we call quasi-eigenstates instead of resonances. We shall investigate the spectral concentration (Theorem 1.1) and the exponential decay of the quasi-eigenstates of H_{κ} (Theorem 4.9).

To describe our theorem we shall give some notations. We denote the resolvents of H_0 and H_{κ} by $R_0(\zeta)$ and $R_{\kappa}(\zeta)$, for $\text{Im}\zeta \neq 0$, respectively. That is, $R_0(\zeta) = (H_0 - \zeta)^{-1}$, $R_{\kappa}(\zeta) = (H_{\kappa} - \zeta)^{-1}$. Let τ be an isometry operator from $L^2(0,\infty)$ onto $L^2(1,\infty)$ such that $\tau u(x) = u(x-1)$ for $u \in L^2(0,\infty)$ and $U_0(t)$ a 1-parameter group on $L^2(0,\infty)$ such that $U_0(t)u(x) = e^{t/2}u(e^tx)$ $(t \in \mathbf{R})$. Since $\tau U_0(t)\tau^*$ is a 1-parameter unitary group on $L^2(1,\infty)$, there exists a unique self-adjoint operator A in $L^2(1,\infty)$ such that $\tau U_0(t)\tau^* = e^{itA}$.

Remark that $e^{itA}u(x) = e^{t/2}u(e^t(x-1)+1)$ for $u \in L^2(1,\infty)$. Let K_0 be the Dirichlet Laplacian $-d^2/dx^2$ in $L^2(1,\infty)$ and $q(x) = q|_{(0,1)}(x) + q|_{[1,\infty)}(x) \equiv q_1(x) + q_2(x)$.

Assumption (A). We assume that $[q_2, A]$ is K_0 -compact in the form sense and that $[[q_2, A], A]$ is K_0 -bounded in the form sense.

Theorem 1.1. Let q(x) satisfy the Assumption (A), $\lambda_0 > 0$ an eigenvalue of H_0 and P the orthogonal projection onto the eigenspace of H_0 corresponding to λ_0 . Then there exists an closed interval $J(\kappa)$ such that $J(\kappa) \to {\lambda_0} (\kappa \to 0)$ and

$$E_{\kappa}(J(\kappa)) \longrightarrow P \ (\kappa \to 0) \ strongly,$$

where E_{κ} is the spectral measure of H_{κ} .

The organization of this note is as follows. In section 2 we shall define the formal operator H_{κ} and determine the domain. In section 3 we describe the Livsic matrix and the Mourre theory. In section 4 we shall give a proof of Theorem 1.1 and the exponential time decay of quasi-eigenstates without the proof.

2. Definition of H_{κ}

We shall precisely define H_{κ} . We shall use the quadratic form (cf. [5, Chapter VI]).

Lemma 2.1. Let h_{κ} be a sesqui-linear form on $H_0^1(0,\infty)$ such that

(2.1)
$$h_{\kappa}[u,v] = (u',v') + (qu,v) + \kappa^{-1}u(1)\overline{v(1)}$$

for $u,v\in H^1_0(0,\infty)$. Then h_{κ} is a symmetric closed form and $h_{\kappa}[u]:=h_{\kappa}[u,u]$ is bounded from below: $h_{\kappa}[u]\geq m\|u\|^2$ $(u\in H^1_0(0,\infty))$, where $m:=\inf_{x>0}q(x)$.

Proof. Let h_{max} be a sesqui-linear form on $H_0^1(0,\infty)$ such that

$$h_{max}[u, v] = (u', v') + (qu, v)$$

for $u, v \in H_0^1(0, \infty)$. Since q(x) is continuous on $[0, \infty)$ and $q(x) \to 0$ as $x \to \infty$, we know that h_{max} is a closed symmetric form and bounded from below $(h_{max}[u] \ge m||u||^2)$ and that the operator associated with h_{max} is $-d^2/dx^2 + q(x)$ with the Dirichlet condition at x = 0 in $L^2(0, \infty)$. (cf. [5, Chapter VI]). By $H_0^1(0, \infty) \subset C(0, \infty)$ the form h_{κ} is well-defined on $H_0^1(0, \infty)$ and we can write (2.1) as

$$h_{\kappa}[u,v] = h_{max}[u,v] + \kappa^{-1}u(1)\overline{v(1)}$$

for $u, v \in H_0^1(0, \infty)$. Hence $D(h_{max}) = D(h_{\kappa})$, h_{κ} is symmetric and $h_{\kappa}[u] \ge h_{max}[u] \ge m||u||^2$. We shall prove that h_{κ} is closed. It is easy to show that for $u \in H_0^1(0, \infty)$ and for $\varepsilon > 0$

$$|u(1)|^{2} = \int_{0}^{1} \frac{d}{dx} |u(x)|^{2} dx = 2Re \int_{0}^{1} u'(x) \overline{u(x)} dx$$

$$\leq \int_{0}^{1} (\varepsilon |u'(x)|^{2} + \varepsilon^{-1} |u(x)|^{2}) dx \leq \varepsilon ||u'||^{2} + \varepsilon^{-1} ||u||^{2}.$$

Hence we see that

$$\kappa^{-1}|u'(1)|^2 < \varepsilon (h_{max} - m + 1)[u] + C||u||^2$$

for some $C \geq 0$. Since $h_{max} - m + 1$ is a closed symmetric positive form, we see by [5, Theorem VI.1.33] that h_{κ} is a closed form. \square

We shall define the operator H_{κ} and determine its domain. By Lemma 2.1 and [5, Theorems VI.2.1 and 2.6] there exists a unique self-adjoint operator H_{κ} associated with h_{κ} . And the domain of H_{κ} is as follows:

Proposition 2.2. $u \in D(H_{\kappa})$ if and only if the following two conditions are satisfied:

(i)
$$u \in H_0^1(0,\infty)$$
 and $u \in H^2(0,1) \oplus H^2(1,\infty)$,

(ii)
$$u(1) := u(1 \pm 0), \ \kappa(u'(1+0) - u'(1-0)) = u(1).$$

Furthermore for $u \in D(H_{\kappa})$

$$H_{\kappa}u(x) = -u''(x) + q(x)u(x), \ x \neq 1.$$

Proof. Let $u \in D(H_{\kappa})$. For $v \in C_0^{\infty}(0,1) \oplus C_0^{\infty}(1,\infty) (\subset H_0^1(0,\infty))$ by Lemma 2.1 and integration by parts we have

$$(2.2) (H_{\kappa}u, v) = h_{\kappa}[u, v] = h_{max}[u, v] = (u, -v'') + (u, qv).$$

By using (2.2) we have $(H_{\kappa}u - qu, v) = (u, -v'')$. Hence we see that $u''|_{(0,1)}$ and $u''|_{(1,\infty)}$ exist in the distribution sense and that $v \in D(H_{\kappa})$. Furthermore by integration by parts we have

$$(H_{\kappa}u, v) - (qu, v) = (-u'', v).$$

Since $C_0^{\infty}(0,1) \oplus C_0^{\infty}(1,\infty)$ is dense in $L^2(0,\infty)$, we see that $u'' \in L^2(0,\infty)$, that $u'|_{(0,1)}$ and $u'|_{(1,\infty)}$ are absolutely continuous and that $H_{\kappa}u(x) = -u''(x) + q(x)u(x)$ for $x \neq 1$. We shall prove that $\kappa(u'(1+0) - u'(1-0)) = u(1)$. By integration by parts we have for $u \in D(H_{\kappa})$ and $v \in H_0^1(0,\infty)$

$$h_{\kappa}[u,v] = (-u'' + qu,v) + \kappa^{-1}u(1)\overline{v(1)} + u'(1-0)\overline{v(1-0)} - u'(1+0)\overline{v(1+0)}$$
$$= (H_{\kappa}u,v) = (-u'' + qu,v).$$

Since v(1) := v(1+0) = v(1-0) attains any value, we have $\kappa(u'(1+0) - u'(1-0)) = u(1)$.

Conversely, if u satisfies the conditions (i)-(ii), we can easily see that $h_{\kappa}[u,v] = (-u'' + qu, v)$ for any $v \in H_0^1(0, \infty)$. Thus this lemma has been proved. \square

3. Livsic Matrix and Mourre Estimate

We shall introduce the Livsic matrix and the Mourre estimate. In general, let \mathcal{H} be a Hilbert space with its inner product (\cdot, \cdot) and P an orthogonal projection onto a finite dimensional subspace of \mathcal{H} . And let T be a closed operator in \mathcal{H} with resolvent set $\rho(T)$. Then the Livsic matrix B(z,T) in $P\mathcal{H}$ is determined by

$$P(T-z)^{-1}P = (B(z,T)-z)^{-1}$$

for $z \in \rho(T)$. In particular, if T_0 and T_1 are self-adjoint operators, $\lambda \in \sigma(T_0)$ is of finite multiplicity and P is the orthogonal projection onto the eigenspace of T_0 corresponding to λ , then the Livsic matrix $B(z, T_1)$ is the following form:

(3.1)
$$B(z,T_1) = \lambda + PVP - PV\overline{P}(\overline{T_1} - z)^{-1}\overline{P}VP$$

where $V = T_1 - T_0$, $\overline{P} = I - P$ and $\overline{T_1} = \overline{P}T_1\overline{P}$.

Assumption (G.1). $g(z) = (az+b)/(cz+d), \ a,b,c,\underline{d} \in \mathbf{C}$ with $ad-bc \neq 0$. There exists $\kappa_0 > 0$ such that $c\lambda + d \neq 0$ for any $\lambda \in \overline{\bigcup_{0 \leq \kappa \leq \kappa_0} \sigma(H_\kappa)}$.

Assumption (AG). There exists a neighborhood I of λ_0 and a complex neighborhood Ω of λ_0 such that $B(g(z), g(H_{\kappa}))$ has a continuous extension from $\mathbb{C} \setminus \mathbb{R}$ to I and the continuation satisfies

$$||B(g(z), g(H_{\kappa})) - B(g(w), g(H_{\kappa}))|| \le o(1)|g(z) - g(w)|$$
 as $\kappa \to 0$

for any $z, w \in \Omega$.

Theorem 3.1. ([7, Theorem 4.1]) Suppose that Assumption (G.1) and (AG) are satisfied. Then there exists a closed interval $J(\kappa)$ such that

$$\lim_{\kappa \to 0} J(\kappa) = \{\lambda_0\}, \text{ s-} \lim_{\kappa \to 0} E_{\kappa}(J(\kappa)) = P.$$

We shall describe the Mourre estimate [4]. Let \mathcal{H} be the same as above and H a self-adjoint operator in \mathcal{H} . Let $\mathcal{H}^s = \{u \in \mathcal{H}; \|(|H|+1)^{s/2}u\| < \infty\}$ for $s \geq 0$ and \mathcal{H}^s the dual of \mathcal{H}^{-s} for s < 0.

Assumption (M). (cf. [4, Definition 2.1]). Let $E \in \mathbf{R}$. Let A be a self-adjoint operator (not necessesary the same A as in Section 1) such that

- (i) $D(A) \cap D(H)$ is a core for H,
- (ii) e^{itA} maps D(H) to D(H), and for each $u \in D(H)$

$$\sup_{|t| \le 1} \|He^{itA}u\| < \infty,$$

(iii) the form i[H, A] defined on $D(A) \cap D(H)$ is bounded from below and closable. We shall denote the self-adjoint operator associated with $i[H, A]^a$

(form closure of i[H, A]) by the same symbol $i[H, A]^a$ and assume that $D(H) \subset D(i[H, A]^a)$.

- (iv) The form $[[H, A]^a, A]$ defined on $D(A) \cap D(H)$ is closable and the self-adjoint operator associated with the form closure of $[[H, A]^a, A]$ is denoted by the same symbol $[[H, A]^a, A]^a$. And the operator $[[H, A]^a, A]^a$ is extended to a bounded operator from \mathcal{H}^2 to \mathcal{H}^{-2} .
 - (v) There exist $\alpha > 0$, $\delta > 0$ and a compact operator K on \mathcal{H} such that

$$E_H(J)i[H,A]^a E_H(J) \ge \alpha E_H(J) + E_H(J)KE_H(J),$$

where E_H is the spectral measure of H and $J = (E - \delta, E + \delta)$.

Theorem 3.2. ([4, Theorem 2.2 (iii), n=2]). Let $E \in \mathbf{R}$ and A satisfy Assumption (M). Let $I \subset \sigma(H) \cap J$ be a relatively compact interval and s > 3/2. Then for $\lambda \in I$ the following limit exists

$$\lim_{\varepsilon \downarrow 0} (A^2 + 1)^{-s/2} (H - \lambda \pm i\varepsilon)^{-2} (A^2 + 1)^{-s/2}$$

and equals

$$\frac{d}{d\lambda}(A^2+1)^{-s/2}(H-\lambda\pm i0)^{-1}(A^2+1)^{-s/2}.$$

4. Proof of Theorem 1.1

To apply Theorem 3.1 to the proof of Theorem 1.1 we need some lemmas. Since the following fact is well-known, we omit the proof (cf. [3]).

Lemma 4.1. Let $v_1(\zeta; x)$, $v_2(\zeta; x)$ be fundamental solutions of $-u'' + qu = \zeta u$ on [0, 1] such that

$$\begin{pmatrix} v_1(\zeta;0) & v_2(\zeta;0) \\ v_1'(\zeta;0) & v_2'(\zeta;0) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and $w_1(\zeta; x)$, $w_2(\zeta; x)$ be fundamental solutions of $-u'' + qu = \zeta u$ on $[1, \infty)$ such that

$$w_1(\zeta;1) = 0$$
, $w'_1(\zeta;1) = 1$, $w_2(\zeta;1) = 1$, $\lim_{x \to \infty} w_2(\zeta;x) = 0$.

Then the kernel of $R_0(\zeta)$, $\text{Im}\zeta \neq 0$, is

$$k_{0}(\zeta; x, y) = \begin{cases} & \frac{\begin{vmatrix} v_{1}(\zeta; 1) & v_{2}(\zeta; 1) \\ v_{1}(\zeta; x) & v_{2}(\zeta; x) \end{vmatrix}}{v_{1}(\zeta; 1)} v_{1}(\zeta; y), & 0 \leq y \leq x \leq 1, \\ & \frac{\begin{vmatrix} v_{1}(\zeta; 1) & v_{2}(\zeta; 1) \\ v_{1}(\zeta; y) & v_{2}(\zeta; y) \end{vmatrix}}{v_{1}(\zeta; 1)} v_{1}(\zeta; x), & 0 \leq x < y \leq 1, \\ & w_{1}(\zeta; y)w_{2}(\zeta; x), & 1 \leq y \leq x, \\ & w_{1}(\zeta; x)w_{2}(\zeta; y), & 1 \leq x < y. \end{cases}$$

For functions u, v we denote the Wronskian of u, v by W(u, v)(x).

Lemma 4.2. Let $S(\kappa,\zeta) = R_{\kappa}(\zeta) - R_0(\zeta)$. Then for $\text{Im}\zeta \neq 0$ we have

(4.1)
$$S(\kappa,\zeta)u(x) = a(\kappa,\zeta)(u,\overline{\phi(\zeta;\cdot)})\phi(\zeta;x),$$

where $a(\kappa, \zeta) = \kappa/(v_1(\zeta; 1) - \kappa W(v_1, w_2)(\zeta; 1))$ and

(4.2)
$$\phi(\zeta;x) = \begin{cases} \frac{v_1(\zeta;x)}{\sqrt{v_1(\zeta;1)}}, & 0 \le x \le 1, \\ \sqrt{v_1(\zeta;1)}w_2(\zeta;x), & 1 \le x < \infty. \end{cases}$$

where we take a branch of square-root such that $\text{Im}\sqrt{z} > 0$ for $\text{Im}z \neq 0$.

Proof. We put $f(x) = S(\kappa, \zeta)u(x)$ for $u \in L^2(0, \infty)$. Then we have, by Lemma 2.2,

$$-f''(x) + q(x)f(x) = \zeta f(x), \quad x \neq 1,$$

and $f \in L^2(0, \infty)$. So we can put

$$f(x) = \begin{cases} bv_1(\zeta; x), & 0 \le x < 1, \\ cw_2(\zeta; x), & 1 < x < \infty. \end{cases}$$

Using the relations

$$R_0(\zeta)u(1\pm 0) = 0, \ R_{\kappa}(\zeta)u(1) := R_{\kappa}(\zeta)u(1+0) = R_{\kappa}(\zeta)u(1-0),$$
$$(R_{\kappa}(\zeta)u)'(1+0) - (R_{\kappa}(\zeta)u)'(1-0) = \frac{1}{\kappa}R_{\kappa}(\zeta)u(1)$$

we have

$$f(1-0) = bv_1(\zeta;1) = cw_2(\zeta;1) = f(1+0),$$

$$f'(1+0) - f'(1-0) = cw'_2(\zeta;1) - bv'_1(\zeta;1)$$

$$= \frac{1}{\kappa} R_{\kappa}(\zeta)u(1) - \{(R_0(\zeta)u)'(1+0) - (R_0(\zeta)u)'(1-0)\}$$

$$= \frac{1}{\kappa} (R_{\kappa}(\zeta)u(1) - R_0(\zeta)u(1)) - \{(R_0(\zeta)u)'(1+0) - (R_0(\zeta)u)'(1-0)\}$$

$$= \frac{1}{\kappa} f(1) - \{(R_0(\zeta)u)'(1+0) - (R_0(\zeta)u)'(1-0)\}$$

$$= \frac{1}{\kappa} bv_1(\zeta;1) - \{(R_0(\zeta)u)'(1+0) - (R_0(\zeta)u)'(1-0)\}.$$

Hence we have

$$c = b \frac{v_1(\zeta; 1)}{w_2(\zeta; 1)} = b v_1(\zeta; 1),$$

$$b = \frac{\kappa}{v_1(\zeta; 1) - \kappa W(v_1, w_2)(\zeta; 1)} \{ (R_0(\zeta)u)'(1+0) - (R_0(\zeta)u)'(1-0) \}.$$

By Lemma 4.1 we know that

$$(R_0(\zeta)u)'(1+0) - (R_0(\zeta)u)'(1-0)$$

$$= \int_1^\infty w_2(\zeta;y)u(y)dy + \int_0^1 \frac{v_1(\zeta;y)}{v_1(\zeta;1)}u(y)dy.$$

Hence we get

$$\begin{split} &f(x) \\ &= \left\{ \begin{array}{c} &a(\kappa,\zeta)(\int_0^1 v_1(\zeta;y)u(y)dy + \int_1^\infty w_2(\zeta;y)u(y)dy)v_1(\zeta;x), \ 0 \leq x < 1, \\ &a(\kappa,\zeta)v_1(\zeta;1)(\int_0^1 \frac{v_1(\zeta;y)}{v_1(\zeta;1)}u(y)dy + \int_1^\infty w_2(\zeta;y)u(y)dy)w_2(\zeta;x), \ 1 < x < \infty. \end{array} \right. \end{split}$$

Therefore $\phi(\zeta; x)$ in (4.2) satisfies (4.1). \square

Proof of Theorem 1.1. Since q is continous and bounded on $[0, \infty)$, we may assume that -1 is not the eigenvalue of H_0 and H_{κ} for $0 < \kappa \le \kappa_0$. Hence we put g(z) = 1/(z+1) and show that the Assumption (AG) is verified. Putting $S(\kappa) \equiv S(\kappa, -1)$, $a(\kappa) \equiv a(\kappa, -1)$ and $h \equiv \phi(x; -1)$ we see that $S(\kappa) = a(\kappa)(\cdot, \overline{h})h \equiv a(\kappa)V$. Hence by (3.1) the Livsic matrix $B(g(z), g(H_{\kappa}))$ of $g(H_{\kappa})$ is

$$(4.3) B(g(z), g(H_{\kappa})) = g(\lambda_0) + a(\kappa)PVP - a(\kappa)^2 PV\overline{P}(\overline{g(H_{\kappa})} - g(z))^{-1}\overline{P}VP.$$

where $\overline{g(H_{\kappa})} = \overline{P}g(H_{\kappa})\overline{P}$.

We see that the Lipschitz continuity of $B(g(\lambda \pm i0), g(H_{\kappa}))$ follows from that of the third term on the right-hand side of (4.3). Let ψ be a normalized eigenfunction of H_0 corresponding to λ_0 and we shall investigate the Lipschitz continuity of

$$(PV\overline{P}(\overline{g(H_{\kappa})} - g(\lambda \pm i0))^{-1}\overline{P}VP\psi, \psi)$$

with respect to λ in some real neighborhood I of λ_0 . Note that the Livsic matrix $B(g(z), g(H_{\kappa}))$ is the operator in $PL^2(0, \infty) = \{\alpha \psi\}_{\alpha \in \mathbf{C}}$.

Lemma 4.3. The following equation holds:

$$(4.4) \quad (V\overline{P}(\overline{g(H_{\kappa})} - g(z))^{-1}\overline{P}V\psi, \psi) = (\psi, \overline{h})(h, \psi) \frac{(A_0(z)\overline{P}h, \overline{h})}{1 + a(\kappa)(A_0(z)\overline{P}h, \overline{h})},$$

where $A_0(z) = (g(H_0) - g(z))^{-1}$.

Proof. Since the left-hand side of (4.4) is

$$(\psi, \overline{h})(h, \psi)(\overline{P}(\overline{g(H_{\kappa})} - g(z))^{-1}\overline{P}h, \overline{h}),$$

we shall calculate the third factor. Remark that $\overline{P}g(H_0) = g(H_0)\overline{P}$. Putting $(\overline{g(H_{\kappa})} - g(z))^{-1}\overline{P}h = u$ we calculate u in the part of $\overline{P}L^2(0, \infty)$.

$$\overline{P}h = (\overline{g(H_{\kappa})} - g(z))\overline{P}u = (\overline{g(H_{\kappa})} - g(H_{0}) + \overline{g(H_{0})} - g(z))\overline{P}u
= a(\kappa)\overline{P}V\overline{P}u + (g(H_{0}) - g(z))\overline{P}u
= a(\kappa)(\overline{P}u, \overline{h})\overline{P}h + (g(H_{0}) - g(z))\overline{P}u.$$

Hence we have

$$\overline{P}u = (1 - a(\kappa)(\overline{P}u, \overline{h}))A_0(z)\overline{P}h.$$

Noting that $(\overline{P}u, \overline{h}) = (1 - a(\kappa)(\overline{P}u, \overline{h}))(A_0(z)\overline{P}h, \overline{h})$, we obtain

$$(\overline{P}u,\overline{h}) = \frac{(A_0(z)\overline{P}h,\overline{h})}{1 + a(\kappa)(A_0(z)\overline{P}h,\overline{h})}.$$

Let P_1 be the orthogonal projection on $L^2(0,\infty)$ into $L^2(0,1)$ and $P_2 = I - P_1$. Then by the resolvent equation, we can easily obtain

$$(A_0(z)\overline{P}h,\overline{h}) = -(z+1)(\overline{P}h,\overline{h}) - (z+1)^2(R_0(z)P_1\overline{P}h,\overline{h}) - (z+1)^2(R_0(z)P_2\overline{P}h,\overline{h}).$$

Note that $P_1R_0(z) = R_0(z)P_1$. Since the operator $R_0(z)P_1$ in the second term on the right-hand side is identical to the resolvent of $-d^2/dx^2 + q(x)$ with the domain $H_0^1(0,1) \cap H^2(0,1)$, the second term on the right-hand side is continuous in some real neighborhood I of λ_0 . So we shall investigate the third term on the right-hand side.

If we prove the following theorem, then Theorem 1.1 immediately follows.

Theorem 4.4. If $\lambda_0 > 0$, then $(R_0(\lambda \pm i0)P_2\overline{P}h, \overline{h})$ is Lipschitz continuous in some real neighborhood I of λ_0 and the Lipschitz constant is O(1) $(\kappa \to 0)$.

To prove this theorem we shall use the Mourre estimate. We need some lemmas.

Lemma 4.5. Let A be the generator of $\tau U_0(t)\tau^*$ in Section 1 with domain D(A). Let

$$\mathcal{D} = \{ u \in H^1(0, \infty); xu'(x) \in L^2(0, \infty) \}.$$

Then

(4.5)
$$A|_{\tau \mathcal{D}} = \frac{1}{2i} \left(\frac{d}{dx} (x-1) + (x-1) \frac{d}{dx} \right)$$

and $A|_{\tau \mathcal{D}}$ is essentially self-adjoint, that is, $\tau \mathcal{D}$ is a core for A.

Proof. Let A_0 be the generator of $U_0(t)$. If we prove that \mathcal{D} is a core for A_0 , then we see that $\tau \mathcal{D}$ is a core for A. To prove that \mathcal{D} is a core for A_0 we shall verify the conditions in [6, Theorem X. 49].

It is easy to see that: (i) \mathcal{D} is dense in $L^2(0,\infty)$; (ii) $(d/dx)u(e^tx) = e^tu'(e^tx) \in L^2(0,\infty)$ for $u \in \mathcal{D}$; (iii) $||x(d/dx)(U_0(t)u)(x)|| = ||xu'(x)||$ for $u \in \mathcal{D}$. Hence \mathcal{D} is a core for A_0 , and by the direct computation of $(d/dt)\tau U_0(t)\tau^*u(x)|_{t=0}$ for $u \in \tau \mathcal{D}$ we have (4.5). \square

The following lemma is found in [1, Chapter 5].

Lemma 4.6. ([1]) Let V(x) be a real-valued continuous function and $\lambda < 0$. Let u satisfy $-\Delta u + V(x)u(x) = \lambda u(x)$ in $\{x; |x| > R\}$ and $u \in L^2(|x| > R) \cap C(|x| > R)$. For any $\varepsilon > 0$ there exist a constant C > 0 such that

$$|u(x)| \le Ce^{(-\sqrt{-\lambda}+\varepsilon)|x|}$$

for |x| > R.

Proof of Theorem 4.4. Remark that $D(H_0P_2) = H_0^1(1,\infty) \cap H^2(1,\infty)$. First, we shall verify the conditions of Theorem 3.2 for H_0P_2 and A in Section 1.

- (i) $C_0^{\infty}[1,\infty)$ is core for H_0P_2 , so is $D(A) \cap D(H_0P_2)$.
- (ii) By $e^{itA}u(x) = e^{t/2}u(e^t(x-1)+1)$ for $u \in H_0^1(1,\infty) \cap H^2(1,\infty)$

$$H_0 P_2 e^{itA} u(x) = (K_0 + q_2) e^{itA} u(x)$$

= $-e^{2t} e^{t/2} u''(e^t(x-1) + 1) + e^{t/2} q_2(x) u(e^t(x-1) + 1).$

Since q_2 is bounded, we see that $\sup_{|t| \le 1} ||H_0 P_2 e^{itA} u|| < \infty$.

(iii) For $u, v \in C_0^{\infty}[1, \infty)$

$$(4.6) (i[H_0, A]u, v) = (iAu, H_0v) - (iH_0u, Av)$$

$$= (iAu, K_0v) - (iK_0u, Av) + (i[q_2, A]u, v)$$

$$= (2K_0u, v) + (i[q_2, A]u, v)$$

$$= (2H_0u, v) - (2q_2u, v) + (i[q_2, A]u, v).$$

By Assumption (A) $i[H_0, A]$ is closable and bounded from below, and $i[H_0P_2, A]^a$ is self-adjoint and $D(H_0) \subset D([H_0, A]^a)$.

(iv) By (4.6) we see that for $u, v \in C_0^{\infty}[1, \infty)$

$$\begin{split} (i[i[H_0,A],A]u,v) &= -i(i[H_0,A]u,Av) + i(Au,i[H_0,A]v) \\ &= -i(2H_0u,Av) + i(2q_2u,Av) - i(i[q_2,A]u,Av) \\ &+ i(Au,2H_0v) - i(Au,2q_2v) + i(Au,i[q_2,A]v) \\ &= 2(i[H_0,A]u,v) - 2i([q_2,A]u,v) + i([i[q_2,A],A]u,v) \\ &= 4(H_0u,v) - 4(q_2u,v) - 2(i[q_2,A]u,v) + i([i[q_2,A],A]u,v). \end{split}$$

By Assumption (A) we see that $i[i[H_0P_2, A], A]$ is extended to a bounded operator from $D(H_0P_2)$ to $D(H_0P_2)^*$.

(v) Let $\delta > 0$ (small) satisfy $[\lambda_0 - \delta, \lambda_0 + \delta] \subset (0, \infty)$. Notice that $\sigma(H_0 P_2) \cap (0, \infty) = \sigma_{ac}(H_0 P_2)$. Then by (4.6)

$$E_{H_0P_2}(J)i[H_0P_2, A]E_{H_0P_2}(J)$$

$$=2E_{H_0P_2}(J)H_0E_{H_0P_2}(J) + E_{H_0P_2}(J)(i[q_2, A] - 2q_2)E_{H_0P_2}(J)$$

$$\geq 2(\lambda_0 - \delta)E_{H_0P_2}(J) + E_{H_0P_2}(J)(i[q_2, A]^a - 2q_2)E_{H_0P_2}(J).$$

By Assumption (A) the condition (v) is satisfied. Hence we obtain

$$\sup_{\lambda \in I} \|\frac{d}{d\lambda} (A^2 + 1)^{-s/2} (H_0 P_2 - \lambda \pm i0)^{-1} (A^2 + 1)^{-s/2} \| < \infty$$

where s > 3/2 and $I \subset J$ is a closed interval containing λ_0 . \square

Lemma 4.7. (cf. [4]). Let $s \in \mathbf{R}$. Then $F_s \equiv (A^2 + 1)^{s/2} (1 + x^2)^{-s/2} (1 + K_0)^{-s/2}$ is a bounded operator on $L^2(1, \infty)$ and so is F_s^* .

Proof. It is sufficient to prove that for $u \in H_0^1(1,\infty)$

$$||A(1+x^2)^{-1/2}u|| \le C(||u|| + ||u'||).$$

Since for large x

$$2iA(1+x^2)^{-1/2}u = (x-1)((1+x^2)^{-1/2}u)' + ((x-1)(1+x^2)^{-1/2}u)'$$

= $(x-1)O(x^{-2})u(x) + (x-1)O(x^{-1})u'(x) + O(x^{-1/2})u(x) + O(1)u'(x)$
= $O(1)(u(x) + u'(x))$.

By the duality and interpolation we see that both F_s and F_s^* are bounded on $L^2(1,\infty)$. \square

We continue the proof of Theorem 4.4. By (4.1) and Lemma 4.6 we see that for any $\varepsilon > 0$ there exist constants C > 0 and C' > 0 such that $|h(x)| \le Ce^{(-1+\varepsilon)x}$ and $|h''(x)| \le C'e^{(-1+\varepsilon)x}$ as $x \to \infty$. Hence we have $(1+x^2)(1+K_0)P_2h \equiv u \in L^2(1,\infty)$. By Lemma 4.7 we have

$$\frac{d}{d\lambda} (R_0(\lambda \pm i0) P_2 \overline{P}h, P_2 \overline{h})$$

$$= \frac{d}{d\lambda} (F_2^* [(A^2 + 1)^{-1} R_0(\lambda \pm i0) (A^2 + 1)^{-1}] F_2 u, u)$$

is bounded, and $(R_0(\lambda + i0)P_2\overline{P}h, \overline{h})$ is the Lipschitz continuous. Thus we have completed the proof of Theorem 4.4. \square

Corrollary 4.8. Let $\lambda_0 > 0$. If $q \in C^2$, $q(x), q'(x) = o(x^{-1})$ and $q''(x) = O(x^{-2})$ as $x \to \infty$, then $(R_0(\lambda \pm i0)P_2\overline{P}h, \overline{h})$ is Lipschitz's continuous in some real neighborhood I of λ_0 .

Proof. It is sufficient to verify Assumption (A). We calculate the commutators: For $u \in H_0^1(1,\infty)$

$$[q_2, iA]u(x) = 2(x-1)q_2'(x)u(x)$$

$$[[q_2, iA]^a, iA]u(x) = 2(x-1)(2(x-1)q_2'(x))'u(x)$$

$$= 4((x-1)q_2'(x) + (x-1)^2q_2''(x))u(x).$$

Hence we see that by Sobolev's theorem $[q_2, A]^a$ is a compact operator in $L^2(1, \infty)$ and that $[[q_2, A]^a, A]^a$ is a bounded operator in $L^2(1, \infty)$. \square

We give a theorem for the time decay of the quasi-eigenstates, but we do not give a proof (cf. [7, Section 5]). Instead of $(B(g(z), g(H_{\kappa}))\psi, \psi)$, we shall simply write $B(g(z), g(H_{\kappa}))$.

Theorem 4.9. Suppose the same assumption in Theorem 1.1 and use the same notations in the proof (Section 4). Assume further that

$$\lim_{\kappa \downarrow 0} \lim_{\varepsilon \downarrow 0} \operatorname{Im} \frac{1}{\kappa^2} B(g(\lambda_0 + i\varepsilon), g(H_\kappa)) \neq 0.$$

Then we have

$$|(e^{-itH_{\kappa}}\psi,\psi)| = \exp(-\alpha\kappa^2 t) + o(1)$$

uniformly in $t \geq 0$ as $\kappa \to 0$, where

$$\alpha = \operatorname{Im} g^{-1}(B(g(\lambda_0 + i0), g(H_0)))$$

$$= \operatorname{Im}(\psi, \overline{h})(h, \psi) \frac{-(\lambda_0 + 1)^2 (R_0(\lambda_0 + i0) P_2 \overline{P}h, \overline{h})}{v(-1; 1)^2 |B(g(\lambda_0 + i0), g(H_0))|^2}$$

Hence we see that ψ is the quasi-eigenstate of H_{κ} .

References

- S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations, Princeton Univ. Press, 1982.
- S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, 1988.
- E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, 1955.
- 4. A. Jensen, E. Mourre and P. A. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincare Physique Theorique 41 (1984), 207–225,.
- 5. T. Kato, Perturbation Theory for Linear Operators, 2nd ed, Springer-Verlag, 1980.

- $6. \ M. \ Reed \ and \ B. \ Simon, \ Methods \ of \ Modern \ Mathematical \ Physics \ II, \ Fourier \ Analysis, \\ Self-Adjoint \ Operators, \ Academic \ Press, \ 1975.$
- 7. K. Watanabe, Spectral concentration and resonances for unitary operators: Applications to self-adjoint Problems, Rev. Math. Phys. 7 (1995), 979-1011.

Kazuo Watanabe Department of Mathematics, Gakushuin University 1-5-1 Mejiro, Toshima-ku, Tokyo, Japan

 $E\text{-}mail\colon \verb|watanabe@math.gakushuin.ac.jp||}$