Examples of 4-dimensional symplectic-Haantjes manifolds

Keiichi Kikuchi and Tsukasa Takeuchi

(Received January 24, 2020)

Abstract

Symplectic-Haantjes manifolds are constructed for several Hamiltonian systems following P. Tempesta and G. Tondo [14], which yield the complete integrability of systems.

AMS 2010 Mathematics Subject Classification. 70H06, 37J35, 53C43.
Key words and phrases. Haantjes operator, symplectic-Haantjes manifold, Hamiltonian system, Lenard-Haantjes chain, Hsiang-Lawson metric, Minkowski metric.

§1. Introduction

Recently, certain ways of characterizing integrable systems with (1,1)-tensors have been investigated (cf.[2], [4], [5], [11], [12], [13], [16], etc.). On the other hand, according to [10], [14] and [15] established new method of using $(1,1)$ tensor field for the integrable system. P. Tempesta and G. Tondo [14] introduce a concept of symplectic-Haantjes manifolds or $\omega \mathcal{H}$ manifolds and LenardHaantjes chain to treat completely integrable Hamiltonian system by means of the Haantjes tensor [3]. For a $(1,2)$-tensor field L, the Haantjes tensor \mathcal{H}_{L} is given by Definition 2.1 below. If \mathcal{H}_{L} vanishes, the tensor is called a Haantjes operator. In [14], [15], Tempesta and Tondo showed that the existence of an $\omega \mathcal{H}$ manifold is a necessary and sufficient condition for a non-degenerate Hamiltonian system to be completely integrable. They showed an algorithm for solving the inverse problem, that is, for a given set of involutive functions, a Haantjes structure of the involutive functions is constructed by using Lenard-Haantjes chains.

We consider the system with respect to the hydrodynamic type on the orbit space with Hsiang-Lawson metric in the case of the Berger sphere (as in Section 3), via S^{1}-equivariant CMC- H (constant mean curvature H) immersion and
the corresponding Lagrangian formalism [7], [8], [9]. In Section 4, we construct of symplectic-Haantjes manifold for a Hamiltonian system of Section 3.

In Section 5, we construct $\omega \mathcal{H}$ manifolds of Hamiltonian systems of geodesic flow of two-dimensional Minkowski space. [13] showed complete integrability of the geodesic flow of the Minkowski metric using a $(1,1)$ tensor, however we construct the complete integrability of two-dimensional case by obtaining different $(1,1)$ tensors from [13] in this paper. In this Section, we revise [6] and add some results.

In Sections 3 and 4, we construct a geometrical example of 4-dimensional symplectic Haantjes manifold.

§2. Haantjes operator, symplectic-Haantjes manifold, Lenard-Haantjes chain

In this Section, we recall basic concepts of Haantjes operators, symplecticHaantjes manifolds and Lenard-Haantjes chains (see for details, e.g., [14]).

Let M be a differentiable manifold and $L: T M \rightarrow T M$ be a $(1,1)$ tensor field, i.e., a field of linear operators on the tangent space at each point of M.

Definition 2.1. The Nijenhuis torsion of L is the skew-symmetric $(1,2)$ tensor field defined by

$$
\mathcal{N}_{L}(X, Y)=L^{2}[X, Y]+[L X, L Y]-L([X, L Y]+[L X, Y])
$$

and the Haantjes tensor associated with L is the $(1,2)$ tensor field defined by

$$
\mathcal{H}_{L}(X, Y)=L^{2} \mathcal{N}_{L}(X, Y)+\mathcal{N}_{L}(L X, L Y)-L\left(\mathcal{N}_{L}(X, L Y)+\mathcal{N}_{L}(L X, Y)\right)
$$

where $X, Y \in T M$ and $[$,$] denotes the commutator of two vector fields.$
In local coordinates $x=\left(x_{1}, \cdots, x_{n}\right)$, the Nijenhuis torsion and the Haantjes tensor can be written in the form

$$
\left(\mathcal{N}_{L}\right)_{j k}^{i}=\sum_{\alpha=1}^{n}\left(\frac{\partial L_{k}^{i}}{\partial x^{\alpha}} L_{j}^{\alpha}-\frac{\partial L_{j}^{i}}{\partial x^{\alpha}} L_{k}^{\alpha}+\left(\frac{\partial L_{j}^{\alpha}}{\partial x^{k}}-\frac{\partial L_{k}^{\alpha}}{\partial x^{j}}\right) L_{\alpha}^{i}\right)
$$

and

$$
\begin{equation*}
\left(\mathcal{H}_{L}\right)_{j k}^{i}=\sum_{\alpha, \beta=1}^{n}\left\{L_{\alpha}^{i}\left(L_{\beta}^{\alpha}\left(\mathcal{N}_{L}\right)_{j k}^{\beta}-\left(\mathcal{N}_{L}\right)_{\beta k}^{\alpha} L_{j}^{\beta}\right)+\left(\left(\mathcal{N}_{L}\right)_{\alpha \beta}^{i} L_{j}^{\alpha}-L_{\alpha}^{i}\left(\mathcal{N}_{L}\right)_{j \beta}^{\alpha}\right) L_{k}^{\beta}\right\}, \tag{2.1}
\end{equation*}
$$

respectively.
Tempesta and Tondo [14] remarks that the skew-symmetry of the Nijenhuis torsion implies that of the Haantjes tensor.

Definition 2.2. A (1,1)-tensor is called Haantjes operator when its Haantjes tensor vanishes.

Now they introduce a concept of symplectic-Haantjes manifold ($\omega \mathcal{H}$ manifold) in [14]. They can formulate the theory of Hamiltonian integrable systems naturally by means of symplectic-Haantjes manifolds.

Definition 2.3. An $\omega \mathcal{H}$ manifold ($M, \omega, K_{0}, K_{1}, \cdots, K_{n-1}$) is a $2 n$-dimension symplectic manifold M, endowed with n endomorphisms of TM

$$
K_{\alpha}: T M \mapsto T M, \quad \alpha=0, \cdots, n-1
$$

which satisfy the following conditions:

- $K_{0}=I$.
- Their Haantjes tensor vanishes identically, i.e.

$$
\mathcal{H}_{K_{\alpha}}(X, Y)=0, \quad \forall X, Y \in T M, \quad \alpha=0, \cdots, n-1
$$

- The endomorphisms are compatible with ω (or equivalently, with the corresponding symplectic operator $\left.\Omega:=\omega^{b}\right)$:

$$
K_{\alpha}^{T} \Omega=\Omega K_{\alpha}, \quad \alpha=0, \cdots, n-1
$$

that is, the operators ΩK_{α} are skew symmetric.

- The endomorphisms are commuting each other, i.e. they form a commutative ring \mathcal{K} :

$$
K_{\alpha} K_{\beta}=K_{\beta} K_{\alpha}, \quad \alpha=0, \cdots, n-1
$$

and also generate a module over the ring of smooth functions on M :

$$
\mathcal{H}_{\left(\sum_{\alpha=0}^{n-1} a_{\alpha}(\boldsymbol{x}) K_{\alpha}\right)}(X, Y)=0, \quad \forall X, Y \in T M
$$

where $a_{\alpha}(x)$ are arbitrary smooth functions on M.
The $(n+1)$-ple $\left(\omega, K_{0}, K_{1}, \cdots, K_{n-1}\right)$ will be called the $\omega \mathcal{H}$ structure associated with the $\omega \mathcal{H}$ manifold and \mathcal{K} the Haantjes module (ring).

By using the Haantjes operators, we can generalize the notion of integrability, which is called a Lenard-Haantjes chain.

Definition 2.4. Let $\left(M, \omega, K_{0}, K_{1}, \cdots, K_{n-1}\right)$ be a $2 n$-dimensional $\omega \mathcal{H}$ manifold and $\left\{\mathcal{H}_{j}\right\}_{1 \leq j \leq n}$ be n independent functions which satisfy the following relations:

$$
d \mathcal{H}_{j}=K_{j-1}^{T} d \mathcal{H}, \quad j=1, \cdots, n, \quad \mathcal{H}:=\mathcal{H}_{1}
$$

The functions $\left\{\mathcal{H}_{j}\right\}_{1 \leq j \leq n}$ are called a Lenard-Haantjes chain generated by the function \mathcal{H}.

Let us consider Hamiltonian systems with two degrees of freedom. In [14], Tempesta and Tondo proposed a general procedure to compute a Haantjes operator adapted to the Lenard-Haantjes chain formed by two integrals of motion in involution. Let (M, ω) be a four dimentional symplectic manifold. They searched for a Haantjes operator K whose minimal polynomial should be of degree two, namely, the maximum degree allowed by their assumptions:

$$
m_{K}(x)=x^{2}-c_{1} x-c_{2},
$$

where c_{1} and c_{2} are functions on M.
We construct the Haantjes operator K according to the conditions in [14].

$$
\begin{align*}
K^{T} \Omega & =\Omega K \tag{2.2}\\
K^{T} d \mathcal{H} & =d \mathcal{H}_{2}, \tag{2.3}\\
\left(K^{T}\right)^{2} d \mathcal{H} & =\left(c_{1} K^{T}+c_{2} I\right) d \mathcal{H}, \tag{2.4}\\
\mathcal{H}_{K}(X, Y) & =0, \quad \forall X, Y \in T M, \tag{2.5}
\end{align*}
$$

where $\Omega=\omega^{b}$ and I denotes the identity operator.

§3. Berger sphere, Hsiang-Lawson metric, Lagrangian

Let $S^{3} \subset \mathbb{C} \times \mathbb{C}$ be the unit 3 -sphere. The following metric $g_{\beta}(\beta>-1)$ on S^{3} is called to be the Berger metric:

$$
\left(g_{\beta}\right)_{z}(v, w)=\langle v, w\rangle+\beta\langle v, i z\rangle\langle w, i z\rangle,
$$

where $v=\left(v_{1}, v_{2}\right), w=\left(w_{1}, w_{2}\right) \in T_{z} S^{3}$ and $\langle v, w\rangle=\operatorname{Re}(v \bar{w})$.
Then $S_{\beta}^{3}:=\left(S^{3}, g_{\beta}\right)$ is called to be the Berger sphere $(\beta>-1) . X$ denotes the orbit space via g_{β}-isometric S^{1}-action $r_{t}: S^{3} \rightarrow S^{3}$ as follows :

$$
r_{t}(z)=\left(z_{1}, e^{i t} z_{2}\right), \quad z=\left(z_{1}, z_{2}\right) \in S^{3} .
$$

As the parameterization of X we use the following map :

$$
(\theta, \phi) \rightarrow\left(e^{i \phi} \cos \theta, \sin \theta\right), \quad 0 \leq \phi \leq 2 \pi, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

Let $X^{\circ}:=X \backslash(\partial X \cup\{$ pole $\})$. For a curve $\gamma: J \subset \mathbb{R} \rightarrow X^{\circ}$, we consider S^{1} equivariant map $\mu: N \rightarrow S_{\beta}^{3}$ such that $\gamma \circ \pi=\sigma \circ \mu$, where $N=\gamma^{-1}\left(S_{\beta}^{3}\right):=$ $\left\{(z, y) \in J \times S_{\beta}^{3} \mid \gamma(z)=\sigma(y)\right\}$ is the induced bundle, not an inverse map, $\pi: N \rightarrow J$ and $\sigma: S_{\beta}^{3} \rightarrow X^{\circ}$ are Riemannian submersions. This commutative diagram is called the pull-back construction [1], [7]. Throughout the paper, we assume that μ is an S^{1}-equivariant CMC- H (constant mean curvature H) immersion. Then the orbital metric h_{β} on X° is given by

$$
\begin{equation*}
h_{\beta}: d s^{2}=d \theta^{2}+\frac{(1+\beta) \cos ^{2} \theta}{1+\beta \sin ^{2} \theta} d \phi^{2} \tag{3.1}
\end{equation*}
$$

The volume function V of orbits and the Hsiang-Lawson metric $\hat{h}_{\beta}=V^{2} h_{\beta}$ on X° are given as follows:

$$
\begin{equation*}
V=2 \pi \sin \theta \sqrt{1+\beta \sin ^{2} \theta}, \quad \hat{h}_{\beta}=\left(\hat{h}_{\beta}\right)_{1} d \theta^{2}+\left(\hat{h}_{\beta}\right)_{2} d \phi^{2} \tag{3.2}
\end{equation*}
$$

where $\left(\hat{h}_{\beta}\right)_{1}=4 \pi^{2} \sin ^{2} \theta\left(1+\beta \sin ^{2} \theta\right),\left(\hat{h}_{\beta}\right)_{2}=4 \pi^{2}(1+\beta) \sin ^{2} \theta \cos ^{2} \theta$.
$\tau(\gamma)=\nabla_{\gamma^{\prime}} \gamma^{\prime}$ and $\hat{\tau}(\gamma)=\hat{\nabla}_{\gamma^{\prime}} \gamma^{\prime}$ stand for the tension fields of $\gamma=\gamma(s)$ with respect to the metric h_{β} and \hat{h}_{β}, respectively, where s is the arc-length parameter with respect to the orbital metric h_{β}.

On the orbit space $\left(X^{\circ}, h_{\beta}\right)$, the velocity vector field of a curve $\gamma(s)=$ $(\theta(s), \phi(s))$ is given by the following component functions :

$$
\begin{equation*}
\theta^{\prime}(s)=\cos \lambda(s), \quad \phi^{\prime}(s)=\frac{\sqrt{1+\beta \sin ^{2} \theta(s)} \sin \lambda(s)}{\sqrt{1+\beta} \cos \theta(s)} \tag{3.3}
\end{equation*}
$$

where $\lambda(s)$ stands for an auxiliary function with variable s, then (3.3) can be obtained by using $\sin ^{2} \lambda(s)+\cos ^{2} \lambda(s)=1$ and (3.1). Then, using the conformal transformation of the metric, we have the following formula:

$$
\begin{equation*}
h_{\beta}(\tau(\gamma), \eta)-\eta(\log V)=h_{\beta}(\hat{\tau}(\gamma), \eta)=2 H \tag{3.4}
\end{equation*}
$$

where η denotes the unit normal vector field to γ :

$$
\eta(s)=-\sin \lambda(s) \frac{\partial}{\partial \theta}+\frac{\sqrt{1+\beta \sin ^{2} \theta(s)} \cos \lambda(s)}{\sqrt{1+\beta} \cos \theta(s)} \frac{\partial}{\partial \phi}
$$

In the following, we consider the motion of a particle as time parameter s on the orbit space X° with the Hsiang-Lawson metric \hat{h}_{β}. In general, this motion has the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left\{\left(\hat{h}_{\beta}\right)_{1}\left(\theta^{\prime}\right)^{2}+\left(\hat{h}_{\beta}\right)_{2}\left(\phi^{\prime}\right)^{2}\right\}-G(\theta, \phi)
$$

where $G=G(\theta, \phi)$ called as a potential function is a smooth function on the configuration space and $\theta^{\prime}, \phi^{\prime}$ stand for the derivatives of $\theta=\theta(s), \phi=\phi(s)$ by s, respectively.

Then we can regard the Lagrangian \mathcal{L} as a smooth function on the tangent bundle $T X^{\circ}$ of X°.

Via the canonical momenta p_{1}, p_{2} conjugate to θ, ϕ :

$$
\begin{align*}
& p_{1}=\frac{\partial \mathcal{L}}{\partial \theta^{\prime}}=\left(\hat{h}_{\beta}\right)_{1} \theta^{\prime}=\left(\hat{h}_{\beta}\right)_{1} \cos \lambda, \tag{3.5}\\
& p_{2}=\frac{\partial \mathcal{L}}{\partial \phi^{\prime}}=\left(\hat{h}_{\beta}\right)_{2} \phi^{\prime}=\left(\hat{h}_{\beta}\right)_{2} \frac{\sqrt{1+\beta \sin ^{2} \theta}}{\sqrt{1+\beta} \cos \theta} \sin \lambda, \tag{3.6}
\end{align*}
$$

we have the Hamiltonian

$$
\mathcal{H}=\theta^{\prime} p_{1}+\phi^{\prime} p_{2}-\mathcal{L}=\frac{1}{2}\left(\hat{h}_{\beta}^{1} p_{1}^{2}+\hat{h}_{\beta}^{2} p_{2}^{2}\right)+G(\theta, \phi),
$$

where \hat{h}_{β}^{1} and \hat{h}_{β}^{2} are the inverse of $\left(\hat{h}_{\beta}\right)_{1}$ and $\left(\hat{h}_{\beta}\right)_{2}$, respectively.
On the orbit space ($X^{\circ}, \hat{h}_{\beta}$), we consider the system of hydrodynamic type as follows. Assume that smooth functions ν^{1} and ν^{2} on X° do not depend on ϕ. Moreover, let either $\nu^{1}=\nu^{1}(\theta)$ or $\nu^{2}=\nu^{2}(\theta)$ be nonzero-valued as a function of θ only. Then we can consider the functions \mathcal{H} and \mathcal{H}_{2} on the phase space :

$$
\begin{aligned}
\mathcal{H} & =\frac{1}{2}\left(\hat{h}_{\beta}^{1} p_{1}^{2}+\hat{h}_{\beta}^{2} p_{2}^{2}\right)+G(\theta, \phi) \\
\mathcal{H}_{2} & =\frac{1}{2}\left(\nu^{1} \hat{h}_{\beta}^{1} p_{1}^{2}+\nu^{2} \hat{h}_{\beta}^{2} p_{2}^{2}\right),
\end{aligned}
$$

where we assume that \mathcal{H} and \mathcal{H}_{2} are in involution.
The Poisson bracket of \mathcal{H} and \mathcal{H}_{2} is calculated as follows :

$$
\begin{aligned}
\left\{\mathcal{H}_{2}, \mathcal{H}\right\}=\{ & \left.\frac{1}{2}\left(\left(\frac{\partial}{\partial \theta} \hat{h}_{\beta}^{1}\right) p_{1}^{2}+\left(\frac{\partial}{\partial \theta} \hat{h}_{\beta}^{2}\right) p_{2}^{2}\right)+\frac{\partial G}{\partial \theta}\right\} \nu^{1} \hat{h}_{\beta}^{1} p_{1} \\
& +\frac{\partial G}{\partial \phi} \nu^{2} \hat{h}_{\beta}^{2} p_{2}-\frac{1}{2} \hat{h}_{\beta}^{1} p_{1}\left\{\frac{\partial}{\partial \theta}\left(\nu^{1} \hat{h}_{\beta}^{1}\right) p_{1}^{2}+\frac{\partial}{\partial \theta}\left(\nu^{2} \hat{h}_{\beta}^{2}\right) p_{2}^{2}\right\},
\end{aligned}
$$

since \hat{h}_{β}^{1} and \hat{h}_{β}^{2} depend only on the variable θ. Hereafter, we consider the case $\nu^{1}=0$. Then we have

$$
\left\{\mathcal{H}_{2}, \mathcal{H}\right\}=\frac{\partial G}{\partial \phi} \nu^{2} \hat{h}_{\beta}^{2} p_{2}-\frac{1}{2} \hat{h}_{\beta}^{1} \frac{\partial}{\partial \theta}\left(\nu^{2} \hat{h}_{\beta}^{2}\right) p_{1} p_{2}^{2} .
$$

Thus $\left\{\mathcal{H}_{2}, \mathcal{H}\right\}=0$ implies that

$$
\frac{\partial G}{\partial \phi} \nu^{2} \hat{h}_{\beta}^{2}=0, \quad \hat{h}_{\beta}^{1} \frac{\partial}{\partial \theta}\left(\nu^{2} \hat{h}_{\beta}^{2}\right)=0,
$$

from which, we obtain that $\nu^{2}=k\left(\hat{h}_{\beta}\right)_{2}$ (k is nonzero constant). Then the potential function G depends only on the variable θ.

§4. Construction of symplectic-Haantjes manifold for a Hamiltonian system

Assume that $\nu^{1}=0, \nu^{2}=k\left(\hat{h}_{\beta}\right)_{2}$ (k is nonzero constant) and the potential function G depends only on θ. Then we can consider the functions

$$
\begin{aligned}
\mathcal{H} & =\frac{1}{2}\left(\hat{h}_{\beta}^{1} p_{1}^{2}+\hat{h}_{\beta}^{2} p_{2}^{2}\right)+G(\theta), \\
\mathcal{H}_{2} & =\frac{1}{2} k p_{2}^{2},
\end{aligned}
$$

where we assume that λ is a suitable function of θ as in (3.5) and (3.6), \mathcal{H} and \mathcal{H}_{2} are in involution, k is nonzero constant. Using above functions, we construct a Haantjes operator.

We put a 4-dimensional square matrix

$$
\begin{aligned}
K & =\left(K_{j}^{i}\right) \\
& =\left(\begin{array}{cccc}
a(\theta) & b(\theta) & 0 & b(\theta) \\
c\left(\theta, p_{1}, p_{2}\right) & a(\theta) & -b(\theta) & 0 \\
0 & c\left(\theta, p_{1}, p_{2}\right) & a(\theta) & c\left(\theta, p_{1}, p_{2}\right) \\
-c\left(\theta, p_{1}, p_{2}\right) & 0 & b(\theta) & a(\theta)
\end{array}\right)=\left(\begin{array}{cccc}
a & b & 0 & b \\
c & a & -b & 0 \\
0 & c & a & c \\
-c & 0 & b & a
\end{array}\right),
\end{aligned}
$$

where $a=k\left(\hat{h}_{\beta}\right)_{2}, b=b(\theta), c=-k \hat{h}_{\beta}^{1}\left(\hat{h}_{\beta}\right)_{2}^{2} p_{1} p_{2}^{-1}$.
This function matrix K satisfies conditions (2.2), (2.3), and the potential function G is given such that the following formula is satisfied:

$$
\frac{\partial G}{\partial \theta}=-\frac{1}{2}\left(\frac{\partial \hat{h}_{\beta}^{1}}{\partial \theta} p_{1}^{2}+\frac{\partial \hat{h}_{\beta}^{2}}{\partial \theta} p_{2}^{2}\right)+\frac{1}{k} b\left(\hat{h}_{\beta}^{2}\right)^{2} p_{2},
$$

where, from (3.5) and (3.6), G can be regarded as a function of θ, under the assumption that λ is a suitable function of θ. Then, minimal polynomial of K is

$$
\begin{equation*}
m_{K}(x)=x^{2}-2 a x+a^{2} . \tag{4.1}
\end{equation*}
$$

From (4.1), we put $c_{1}=2 a$ and $c_{2}=-a^{2}$, the condition (2.4) is satisfied.
We set $x_{1}=\theta, x_{2}=\phi, x_{3}=p_{1}, x_{4}=p_{2}$ and $K\left(\frac{\partial}{\partial x_{j}}\right)=\sum_{i=1}^{4} K_{j}^{i} \frac{\partial}{\partial x_{i}}(j=$
$1,2,3,4)$. For example, we have, using the definition of the Nijenhuis torsion:

$$
\begin{aligned}
\left(\mathcal{N}_{K}\right)_{12}^{1}= & \sum_{\alpha=1}^{4} \frac{\partial b}{\partial x_{\alpha}} K_{1}^{\alpha}-\sum_{\alpha=1}^{4} \frac{\partial a}{\partial x_{\alpha}} K_{2}^{\alpha} \\
& +a\left(\frac{\partial a}{\partial x_{2}}-\frac{\partial b}{\partial x_{1}}\right)+b\left(\frac{\partial c}{\partial x_{2}}-\frac{\partial a}{\partial x_{1}}\right)-b \frac{\partial c}{\partial x_{2}} \\
= & b^{\prime} a-a^{\prime} b-a b^{\prime}-b a^{\prime} \\
= & -2 a^{\prime} b \\
\left(\mathcal{N}_{K}\right)_{14}^{2}= & -\sum_{\alpha=1}^{4} \frac{\partial c}{\partial x_{\alpha}} K_{4}^{\alpha}+c\left(\frac{\partial a}{\partial x_{4}}-\frac{\partial b}{\partial x_{1}}\right)+a \frac{\partial c}{\partial x_{4}}-b\left(-\frac{\partial c}{\partial x_{1}}\right) \\
= & -\frac{\partial c}{\partial \theta} b-\frac{\partial c}{\partial p_{1}} c-\frac{\partial c}{\partial p_{2}} a-b^{\prime} c+a \frac{\partial c}{\partial p_{2}}+b \frac{\partial c}{\partial \theta} \\
= & -b^{\prime} c-c \frac{\partial c}{\partial p_{1}}
\end{aligned}
$$

where $a^{\prime}:=\frac{\partial a}{\partial \theta}, b^{\prime}:=\frac{\partial b}{\partial \theta}$.
Then we get the following equations which calculate the components of a Nijenhuis torsion $\mathcal{N}_{K}=\mathcal{N}$:

$$
\begin{aligned}
& \mathcal{N}_{12}^{1}=-2 a^{\prime} b, \quad \mathcal{N}_{14}^{1}=-2 a^{\prime} b, \quad \mathcal{N}_{12}^{2}=-b^{\prime} c-c \frac{\partial c}{\partial p_{1}}, \quad \mathcal{N}_{13}^{2}=a^{\prime} b-b \frac{\partial c}{\partial p_{2}} \\
& \mathcal{N}_{14}^{2}=-b^{\prime} c-c \frac{\partial c}{\partial p_{1}}, \quad \mathcal{N}_{23}^{2}=-b b^{\prime}-b \frac{\partial c}{\partial p_{1}}, \quad \mathcal{N}_{24}^{2}=-a^{\prime} b-b \frac{\partial c}{\partial p_{2}} \\
& \mathcal{N}_{34}^{2}=b b^{\prime}+b \frac{\partial c}{\partial p_{1}}, \quad \mathcal{N}_{12}^{3}=-a^{\prime} c-c \frac{\partial c}{\partial p_{2}}, \quad \mathcal{N}_{14}^{3}=-a^{\prime} c-c \frac{\partial c}{\partial p_{2}} \\
& \mathcal{N}_{23}^{3}=a^{\prime} b-b \frac{\partial c}{\partial p_{2}}, \quad \mathcal{N}_{34}^{3}=-a^{\prime} b+b \frac{\partial c}{\partial p_{2}}, \quad \mathcal{N}_{12}^{4}=b^{\prime} c+c \frac{\partial c}{\partial p_{1}} \\
& \mathcal{N}_{13}^{4}=-a^{\prime} b+b \frac{\partial c}{\partial p_{2}}, \quad \mathcal{N}_{14}^{4}=b^{\prime} c+c \frac{\partial c}{\partial p_{1}}, \quad \mathcal{N}_{23}^{4}=b^{\prime} b+b \frac{\partial c}{\partial p_{1}} \\
& \mathcal{N}_{24}^{4}=a^{\prime} b+b \frac{\partial c}{\partial p_{2}}, \quad \mathcal{N}_{34}^{4}=-b b^{\prime}-b \frac{\partial c}{\partial p_{1}}
\end{aligned}
$$

where $\mathcal{N}_{j k}^{i}=0$ (otherwise, except skew-symmetric ones with the above formulas). From (2.1), we have

$$
\begin{align*}
\left(\mathcal{H}_{K}\right)_{j k}^{i}=\sum_{\alpha, \beta=1}^{n}\left\{K_{\alpha}^{i} K_{\beta}^{\alpha}\left(\mathcal{N}_{K}\right)_{j k}^{\beta}\right. & +K_{j}^{\alpha} K_{k}^{\beta}\left(\mathcal{N}_{K}\right)_{\alpha \beta}^{i} \tag{4.2}\\
& \left.+K_{\alpha}^{i} K_{j}^{\beta}\left(\mathcal{N}_{K}\right)_{k \beta}^{\alpha}+K_{\alpha}^{i} K_{k}^{\beta}\left(\mathcal{N}_{K}\right)_{\beta j}^{\alpha}\right\}
\end{align*}
$$

For example, we have, from the components of K and Nijenhuis torsion :

$$
\begin{aligned}
& \sum_{\alpha, \beta=1}^{4} K_{\alpha}^{1} K_{\beta}^{\alpha}\left(\mathcal{N}_{K}\right)_{12}^{\beta} \\
&= \sum_{\alpha=1}^{4} K_{\alpha}^{1}\left(K_{1}^{\alpha}\left(\mathcal{N}_{K}\right)_{12}^{1}+K_{2}^{\alpha}\left(\mathcal{N}_{K}\right)_{12}^{2}+K_{3}^{\alpha}\left(\mathcal{N}_{K}\right)_{12}^{3}+K_{4}^{\alpha}\left(\mathcal{N}_{K}\right)_{12}^{4}\right) \\
&= K_{1}^{1}\left(K_{1}^{1}\left(\mathcal{N}_{K}\right)_{12}^{1}+K_{2}^{1}\left(\mathcal{N}_{K}\right)_{12}^{2}+K_{4}^{1}\left(\mathcal{N}_{K}\right)_{12}^{4}\right) \\
&+K_{2}^{1}\left(K_{1}^{2}\left(\mathcal{N}_{K}\right)_{12}^{1}+K_{2}^{2}\left(\mathcal{N}_{K}\right)_{12}^{2}+K_{3}^{2}\left(\mathcal{N}_{K}\right)_{12}^{3}\right) \\
&+K_{4}^{1}\left(K_{1}^{4}\left(\mathcal{N}_{K}\right)_{12}^{1}+K_{3}^{4}\left(\mathcal{N}_{K}\right)_{12}^{3}+K_{4}^{4}\left(\mathcal{N}_{K}\right)_{12}^{4}\right) \\
&=a^{2}\left(-2 a^{\prime} b\right)+a b\left(-b^{\prime} c-c \frac{\partial c}{\partial p_{1}}\right)+a b\left(b^{\prime} c+c \frac{\partial c}{\partial p_{1}}\right) \\
&+b c\left(-2 a^{\prime} b\right)+b a\left(-b^{\prime} c-c \frac{\partial c}{\partial p_{1}}\right)+b(-b)\left(-a^{\prime} c-c \frac{\partial c}{\partial p_{2}}\right) \\
&+b(-c)\left(-2 a^{\prime} b\right)+b^{2}\left(-a^{\prime} c-c \frac{\partial c}{\partial p_{2}}\right)+b a\left(b^{\prime} c+c \frac{\partial c}{\partial p_{1}}\right) \\
&=-2 a^{2} a^{\prime} b .
\end{aligned}
$$

Similarly, we have

$$
\sum_{\alpha, \beta=1}^{4} K_{1}^{\alpha} K_{2}^{\beta}\left(\mathcal{N}_{K}\right)_{\alpha \beta}^{1}=-2 a^{2} a^{\prime} b
$$

Also, we have

$$
\begin{aligned}
\sum_{\alpha, \beta=1}^{4} K_{\alpha}^{1} K_{1}^{\beta}\left(\mathcal{N}_{K}\right)_{2 \beta}^{\alpha}= & K_{1}^{1} K_{1}^{1}\left(\mathcal{N}_{K}\right)_{21}^{1}+K_{2}^{1}\left(K_{1}^{1}\left(\mathcal{N}_{K}\right)_{21}^{2}+K_{1}^{4}\left(\mathcal{N}_{K}\right)_{24}^{2}\right) \\
& +K_{4}^{1}\left(K_{1}^{1}\left(\mathcal{N}_{K}\right)_{21}^{4}+K_{1}^{4}\left(\mathcal{N}_{K}\right)_{24}^{4}\right) \\
= & 2 a^{2} a^{\prime} b+b a\left(b^{\prime} c+c \frac{\partial c}{\partial p_{1}}\right)+b(-c)\left(-a^{\prime} b-b \frac{\partial c}{\partial p_{2}}\right) \\
& +b a\left(-b^{\prime} c-c \frac{\partial c}{\partial p_{1}}\right)+b(-c)\left(a^{\prime} b+b \frac{\partial c}{\partial p_{2}}\right) \\
= & 2 a^{2} a^{\prime} b .
\end{aligned}
$$

Similarly, we have

$$
\sum_{\alpha, \beta=1}^{4} K_{\alpha}^{1} K_{2}^{\beta}\left(\mathcal{N}_{K}\right)_{\beta 1}^{\alpha}=2 a^{2} a^{\prime} b
$$

Then we have

$$
\left.\left.\begin{array}{rl}
\left(\mathcal{H}_{K}\right)_{12}^{1} & =\sum_{\alpha, \beta=1}^{n}\left\{K_{\alpha}^{1} K_{\beta}^{\alpha}\left(\mathcal{N}_{K}\right)_{12}^{\beta}\right.
\end{array}\right)+K_{1}^{\alpha} K_{2}^{\beta}\left(\mathcal{N}_{K}\right)_{\alpha \beta}^{1}\right] .
$$

Secondly, we calculate $\left(\mathcal{H}_{K}\right)_{34}^{2}$.

$$
\begin{aligned}
\sum_{\alpha, \beta=1}^{4} K_{\alpha}^{2} & K_{\beta}^{\alpha}\left(\mathcal{N}_{K}\right)_{34}^{\beta} \\
= & K_{1}^{2}\left(K_{2}^{1}\left(\mathcal{N}_{K}\right)_{34}^{2}+K_{4}^{1}\left(\mathcal{N}_{K}\right)_{34}^{4}\right)+K_{2}^{2}\left(K_{2}^{2}\left(\mathcal{N}_{K}\right)_{34}^{2}+K_{3}^{2}\left(\mathcal{N}_{K}\right)_{34}^{3}\right) \\
& +K_{3}^{2}\left(K_{2}^{3}\left(\mathcal{N}_{K}\right)_{34}^{2}+K_{3}^{3}\left(\mathcal{N}_{K}\right)_{34}^{3}+K_{4}^{3}\left(\mathcal{N}_{K}\right)_{34}^{4}\right) \\
= & c b\left(b b^{\prime}+b \frac{\partial c}{\partial p_{1}}\right)+c b\left(-b b^{\prime}-b \frac{\partial c}{\partial p_{1}}\right)+a^{2}\left(b b^{\prime}+b \frac{\partial c}{\partial p_{1}}\right) \\
& +a(-b)\left(-a^{\prime} b+b \frac{\partial c}{\partial p_{2}}\right)-b c\left(b b^{\prime}+b \frac{\partial c}{\partial p_{1}}\right)-b a\left(-a^{\prime} b+b \frac{\partial c}{\partial p_{2}}\right) \\
& \quad-b c\left(-b b^{\prime}-b \frac{\partial c}{\partial p_{1}}\right) \\
= & a^{2} b b^{\prime}+2 a a^{\prime} b^{2}+a^{2} b \frac{\partial c}{\partial p_{1}}-2 a b^{2} \frac{\partial c}{\partial p_{2}}
\end{aligned}
$$

Similarly, we have

$$
\sum_{\alpha, \beta=1}^{4} K_{3}^{\alpha} K_{4}^{\beta}\left(\mathcal{N}_{K}\right)_{\alpha \beta}^{2}=a^{2} b b^{\prime}+a^{2} b \frac{\partial c}{\partial p_{1}}+2 a b^{2} \frac{\partial c}{\partial p_{2}}
$$

Also we have

$$
\begin{aligned}
\sum_{\alpha, \beta=1}^{4} K_{\alpha}^{2} K_{3}^{\beta}\left(\mathcal{N}_{K}\right)_{4 \beta}^{\alpha}= & K_{2}^{2}\left(K_{3}^{2}\left(\mathcal{N}_{K}\right)_{42}^{2}+K_{3}^{3}\left(\mathcal{N}_{K}\right)_{43}^{2}\right)+K_{3}^{2} K_{3}^{3}\left(\mathcal{N}_{K}\right)_{43}^{3} \\
= & a(-b)\left(a^{\prime} b+b \frac{\partial c}{\partial p_{2}}\right)+a^{2}\left(-b b^{\prime}-b \frac{\partial c}{\partial p_{1}}\right) \\
& -b a\left(a^{\prime} b-b \frac{\partial c}{\partial p_{2}}\right) \\
= & -2 a a^{\prime} b^{2}-a^{2} b b^{\prime}-a^{2} b \frac{\partial c}{\partial p_{1}}
\end{aligned}
$$

Similarly, we have

$$
\sum_{\alpha, \beta=1}^{4} K_{\alpha}^{2} K_{4}^{\beta}\left(\mathcal{N}_{K}\right)_{\beta 3}^{\alpha}=-a^{2} b b^{\prime}-a^{2} b \frac{\partial c}{\partial p_{1}} .
$$

Consequently, we have

$$
\begin{aligned}
\left(\mathcal{H}_{K}\right)_{34}^{2}= & \sum_{\alpha, \beta=1}^{n}\left\{K_{\alpha}^{2} K_{\beta}^{\alpha}\left(\mathcal{N}_{K}\right)_{34}^{\beta}\right. \\
& +K_{3}^{\alpha} K_{4}^{\beta}\left(\mathcal{N}_{K}\right)_{\alpha \beta}^{2} \\
& =0 .
\end{aligned}
$$

Similarly, we can prove that all components of Haantjes tensor vanish.
Thus the function matrix K satisfies the condition (2.5). Hence, we get a Haantjes operator K. Thus, we construct a symplectic Haantjes manifold $\left(T^{*} X^{\circ}, \omega, I, K\right)$.

§5. Other examples

In this Section, we construct $\omega \mathcal{H}$ manifolds in three cases. Let us consider the Hamiltonian system of the geodesic flow of 2-dimensional Minkowski space (cf. [13])

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2}\left(-p_{1}^{2}+p_{2}^{2}\right) \tag{5.1}
\end{equation*}
$$

with an independent integral of motion

$$
\begin{equation*}
\mathcal{H}_{2}=p_{1} . \tag{5.2}
\end{equation*}
$$

Thus, \mathcal{H} has Haantjes operator K in the following way.
We consider $\mathcal{G}=\mathcal{G}(q, p)$ which is functionally independent of \mathcal{H}. We assume the Poisson bracket $\{\mathcal{H}, \mathcal{G}\}$ vanishes, that is

$$
\{\mathcal{H}, \mathcal{G}\}=\sum_{i=1}^{2}\left(\frac{\partial \mathcal{H}}{\partial p_{i}} \frac{\partial \mathcal{G}}{\partial q_{i}}-\frac{\partial \mathcal{H}}{\partial q_{i}} \frac{\partial \mathcal{G}}{\partial p_{i}}\right)=-p_{1} \frac{\partial \mathcal{G}}{\partial q_{1}}+p_{2} \frac{\partial \mathcal{G}}{\partial q_{2}}=0 .
$$

Then we get the following condition:

$$
\begin{equation*}
p_{1} \frac{\partial \mathcal{G}}{\partial q_{1}}=p_{2} \frac{\partial \mathcal{G}}{\partial q_{2}} . \tag{5.3}
\end{equation*}
$$

The function \mathcal{H}_{2} in (5.2) as \mathcal{G} satisfies the condition (5.3). Under the condition (2.2), we put a 4 -dimensional square matrix

$$
K=\left(\begin{array}{cccc}
a_{11} & a_{12} & 0 & b_{12} \\
a_{21} & a_{22} & -b_{12} & 0 \\
0 & c_{12} & a_{11} & a_{21} \\
-c_{12} & 0 & a_{12} & a_{22}
\end{array}\right)
$$

Then from the condition (2.3), we get the following relationship

$$
\begin{aligned}
a_{21} & =\frac{a_{11} p_{1}+1}{p_{2}} \\
a_{22} & =\frac{a_{12} p_{1}}{p_{2}} \\
b_{12} & =0
\end{aligned}
$$

Further, we put $c_{1}=\left(a_{12} p_{1}+a_{11} p_{2}\right) p_{2}^{-1}$ and $c_{2}=a_{12} p_{2}^{-1}$, the condition (2.4) is satisfied. We set $x_{1}=p_{1}, x_{2}=p_{2}, x_{3}=q_{1}, x_{4}=q_{2}$. For example, we have, using the definition of the Nijenhuis torsion :

$$
\begin{aligned}
\left(\mathcal{N}_{K}\right)_{j k}^{1} & =\sum_{\alpha=1}^{4}\left(\frac{\partial K_{j}^{\alpha}}{\partial x_{k}}-\frac{\partial K_{k}^{\alpha}}{\partial x_{j}}\right) K_{\alpha}^{1}=\left(\frac{\partial K_{j}^{2}}{\partial x_{k}}-\frac{\partial K_{k}^{2}}{\partial x_{j}}\right) K_{2}^{1} \\
\left(\mathcal{N}_{K}\right)_{12}^{1} & =\left(\frac{\partial K_{1}^{2}}{\partial x_{2}}-\frac{\partial K_{2}^{2}}{\partial x_{1}}\right) K_{2}^{1} \\
& =\left\{\frac{\partial}{\partial p_{2}}\left(\frac{a_{11} p_{1}+1}{p_{2}}\right)-\frac{\partial}{\partial p_{1}}\left(\frac{a_{12} p_{1}}{p_{2}}\right)\right\} a_{12} \\
& =a_{12}\left(-\frac{a_{11} p_{1}+1}{p_{2}^{2}}-\frac{a_{12}}{p_{2}}\right) \\
& =-\frac{a_{12}\left(a_{11} p_{1}+a_{12} p_{2}+1\right)}{p_{2}^{2}}, \\
\left(\mathcal{N}_{K}\right)_{23}^{1} & =\left(\frac{\partial K_{2}^{2}}{\partial x_{3}}-\frac{\partial K_{3}^{2}}{\partial x_{2}}\right) K_{2}^{1}=\left\{\frac{\partial}{\partial q_{1}}\left(\frac{a_{12} p_{1}}{p_{2}}\right)-0\right\} a_{12}=0
\end{aligned}
$$

Then we get the following equations which calculate the components of the

Nijenhuis torsion $\mathcal{N}_{K}=\mathcal{N}$:

$$
\begin{aligned}
& \mathcal{N}_{12}^{1}=-\frac{a_{12}\left(a_{11} p_{1}+a_{12} p_{2}+1\right)}{p_{2}^{2}}, \quad \mathcal{N}_{12}^{2}=-\frac{a_{12} p_{1}\left(a_{11} p_{1}+a_{12} p_{2}+1\right)}{p_{2}^{3}}, \\
& \mathcal{N}_{12}^{3}=-\frac{c_{12}\left(a_{11} p_{1}+a_{12} p_{2}+1\right)}{p_{2}^{2}}, \quad \mathcal{N}_{14}^{3}=-\frac{\left(a_{11} p_{1}+1\right)\left(a_{11} p_{1}+a_{12} p_{2}+1\right)}{p_{2}^{3}}, \\
& \mathcal{N}_{24}^{3}=\frac{a_{11}\left(a_{11} p_{1}+a_{12} p_{2}+1\right)}{p_{2}^{2}}, \quad \mathcal{N}_{14}^{4}=-\frac{a_{12} p_{1}\left(a_{11} p_{1}+a_{12} p_{2}+1\right)}{p_{2}^{3}}, \\
& \mathcal{N}_{24}^{4}=\frac{a_{12}\left(a_{11} p_{1}+a_{12} p_{2}+1\right)}{p_{2}^{2}},
\end{aligned}
$$

where $\mathcal{N}_{j k}^{i}=0$ (otherwise, except skew-symmetric ones with the above formulas). From (4.2), for example, we have, from the components of K and Nijenhuis torsion :

$$
\begin{aligned}
& \sum_{\alpha, \beta=1}^{4} K_{\alpha}^{3} K_{\beta}^{\alpha}\left(\mathcal{N}_{K}\right)_{12}^{\beta} \\
& =K_{2}^{3} K_{2}^{2}\left(\mathcal{N}_{K}\right)_{12}^{2}+K_{1}^{1}\left(K_{2}^{3}\left(\mathcal{N}_{K}\right)_{12}^{2}+K_{1}^{1}\left(\mathcal{N}_{K}\right)_{12}^{3}\right)+K_{1}^{2} K_{2}^{1}\left(\mathcal{N}_{K}\right)_{12}^{3}, \\
& \sum_{\alpha, \beta=1}^{4} K_{1}^{\alpha} K_{2}^{\beta}\left(\mathcal{N}_{K}\right)_{\alpha \beta}^{3} \\
& =K_{1}^{1} K_{2}^{2}\left(\mathcal{N}_{K}\right)_{12}^{3}-K_{1}^{2} K_{2}^{1}\left(\mathcal{N}_{K}\right)_{12}^{3}+K_{2}^{3}\left(K_{2}^{1}\left(\mathcal{N}_{K}\right)_{14}^{3}+K_{2}^{2}\left(\mathcal{N}_{K}\right)_{24}^{3}\right), \\
& \sum_{\alpha, \beta=1}^{4} K_{\alpha}^{3} K_{1}^{\beta}\left(\mathcal{N}_{K}\right)_{2 \beta}^{\alpha} \\
& =-K_{2}^{3}\left(K_{1}^{1}\left(\mathcal{N}_{K}\right)_{12}^{2}+K_{2}^{3}\left(\mathcal{N}_{K}\right)_{24}^{2}\right)-K_{1}^{1}\left(K_{1}^{1}\left(\mathcal{N}_{K}\right)_{12}^{3}+K_{2}^{3}\left(\mathcal{N}_{K}\right)_{24}^{3}\right) \\
& -K_{1}^{2}\left(K_{1}^{1}\left(\mathcal{N}_{K}\right)_{12}^{4}+K_{2}^{3}\left(\mathcal{N}_{K}\right)_{24}^{4}\right) \text {, } \\
& \sum_{\alpha, \beta=1}^{4} K_{\alpha}^{3} K_{2}^{\beta}\left(\mathcal{N}_{K}\right)_{\beta 1}^{\alpha}=-K_{2}^{3} K_{2}^{2}\left(\mathcal{N}_{K}\right)_{12}^{2}-K_{1}^{1} K_{2}^{2}\left(\mathcal{N}_{K}\right)_{12}^{3} .
\end{aligned}
$$

From above equations, we get

$$
\begin{aligned}
\left(\mathcal{H}_{K}\right)_{12}^{3}= & K_{2}^{3}\left(K_{2}^{1}\left(\mathcal{N}_{K}\right)_{14}^{3}+K_{2}^{2}\left(\mathcal{N}_{K}\right)_{24}^{3}\right)-K_{2}^{3} K_{2}^{3}\left(\mathcal{N}_{K}\right)_{24}^{2}-K_{1}^{1} K_{2}^{3}\left(\mathcal{N}_{K}\right)_{24}^{3} \\
& -K_{1}^{2}\left(K_{1}^{1}\left(\mathcal{N}_{K}\right)_{12}^{4}+K_{2}^{3}\left(\mathcal{N}_{K}\right)_{24}^{4}\right) \\
=- & -\frac{c_{12}\left(a_{11} p_{1}+a_{12} p_{2}+1\right)\left(a_{11}^{2} p_{2}+a_{11} a_{12} p_{1}+2 a_{12}\right)}{p_{2}^{3}} .
\end{aligned}
$$

If $\left(\mathcal{H}_{K}\right)_{12}^{3}=0$, we can choose $a_{11}=0, a_{12}=0$ as one of the solutions.
Consequently, we have

$$
\left(\mathcal{H}_{K}\right)_{12}^{3}=0,
$$

where $a_{11}=0, a_{12}=0$ and $\mathcal{N} \neq 0$. Similarly, we can prove that all components of Haantjes tensor vanish. Thus we get the Haantjes operator K :

$$
K=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
p_{2}^{-1} & 0 & 0 & 0 \\
0 & c_{12} & 0 & p_{2}^{-1} \\
-c_{12} & 0 & 0 & 0
\end{array}\right),
$$

where $\mathcal{N} \neq 0$ and $c_{12} \neq 0$. Hence we construct a $\omega \mathcal{H}$ manifold $\left(T^{*} \mathbb{R}^{2}, \omega, I, K\right)$.
Now, we put the function

$$
\begin{equation*}
\mathcal{H}_{3}=k_{1} p_{1}+k_{2} p_{2} . \tag{5.4}
\end{equation*}
$$

This function (5.4) satisfies the condition (5.3). Then, by the same calculation as above, we construct the Haantjes operator K^{\prime} :

$$
K^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
5 p_{2}^{-1} & k_{2} p_{2}^{-1} & 0 & 0 \\
0 & c_{12} & 0 & 5 p_{2}^{-1} \\
-c_{12} & 0 & 0 & k_{2} p_{2}^{-1}
\end{array}\right)
$$

where $\left(\mathcal{N}_{K^{\prime}}\right)_{12}^{2}=\left(\mathcal{N}_{K^{\prime}}\right)_{14}^{4}=-5 k_{2} p_{2}^{-3},\left(\mathcal{N}_{K^{\prime}}\right)_{12}^{3}=-5 c_{12} p_{2}^{-2},\left(\mathcal{N}_{K^{\prime}}\right)_{14}^{3}=$ $-25 p_{2}^{-3}$ and otherwise except skew-symmetric ones with the above formulas. Hence, we get a different $\omega \mathcal{H}$ manifold $\left(T^{*} \mathbb{R}^{2}, \omega, I, K^{\prime}\right)$ from the one above.

Moreover, we consider

$$
\begin{equation*}
\mathcal{H}_{4}=k p_{1} p_{2} . \tag{5.5}
\end{equation*}
$$

Similar to the above, this function (5.5) satisfies the condition (5.3). Then, if we put

$$
K^{\prime \prime}=\left(\begin{array}{cccc}
0 & -5 & 0 & 0 \\
5 & 0 & 0 & 0 \\
0 & c_{12} & 0 & 5 \\
-c_{12} & 0 & -5 & 0
\end{array}\right),
$$

$K^{\prime \prime}$ is a Haantjes operator. In fact, (5.1), (5.5) and $K^{\prime \prime}$ satisfy the conditions (2.2), (2.3), (2.4) and (2.5). Therefore, we construct an $\omega \mathcal{H}$ manifold $\left(T^{*} \mathbb{R}^{2}, \omega, I, K^{\prime \prime}\right)$.

Acknowledgments

The authors wish to thank Professor Akira Yoshioka for his comments on this paper. Without his guidance and persistent help this paper would not have been possible.

References

[1] J. Eells and A. Ratto, Harmonic maps and minimal immersions with symmetries, Ann. Math. Studies 130, 1993.
[2] S. De Filippo, G. Marmo, M. Salerno and G. Vilasi, A new characterization of completely integrable systems, Nuovo Cimento B 83 (1984), 97-112.
[3] J. Haantjes, On X_{n-1}-forming sets of eigenvectors, Indag. Mathematicae 17 (1955), 158-162.
[4] K. Hosokawa, On the construction of recursion operators and of symplecticHaantjes manifolds for certain Hamiltonian systems, Ph.D. Thesis, 2018, Tokyo Univ. of Science.
[5] K. Hosokawa, T. Takeuchi, A Construction for the Concrete Example of a Recursion Operator, JP Journal of Geometry and Topology 14 (2013), 99-118.
[6] K. Hosokawa, T. Takeuchi, A. Yoshioka, Construction of symplectic-Haantjes manifold of certain Hamiltonian systems, Geometry, integrability and quantization XIX, 140-147, Bulgar. Acad. Sci. Sofia, 2018.
[7] K. Kikuchi, The construction of rotation surfaces of constant mean curvature and the corresponding Lagrangians, Tsukuba J. Math. 36 (2012), No.1, 43-52.
[8] K. Kikuchi, S^{1}-equivariant CMC surfaces in the Berger sphere, the hyperbolic 3 -space and the corresponding Hamiltonian systems, Far East J. Dyn. Syst. 22 (2013), No.1, 17-31.
[9] K. Kikuchi, S^{1}-Equivariant CMC Surfaces in the Berger Sphere and the Corresponding Lagrangians, Advances in Pure Math. 3 (2013), 259-263.
[10] I. Kosmann-Schwarzbach, Beyond Recursion Operators, Lecture in the conference: XXXVI Workshop on Geometric Methods in Physics, Bialowieza, Poland, July 2-July 82017.
[11] G. Landi, G. Marmo and G. Vilasi, Recursion Operators: Meaning and Existence for Completely Integrable Systems, J. Math. Phys. 35 (1994), 808-815.
[12] G. Marmo and G. Vilasi, When Do Recursion Operators Generate New Conservation Laws?, Phys. Lett. B 277 (1992), 137-140.
[13] T. Takeuchi, On the Construction of Recursion Operators for the Kerr-Newman and FLRW Metrics, Journal of Geometry and Symmetry in Physics, 37 (2015), 85-96.
[14] P. Tempesta, G. Tondo, Haantjes Manifolds of Classical Integrable Systems, Preprint arXiv: 1405.5118 (2016).
[15] P. Tempesta, G. Tondo, Haantjes structures for the Jacobi-Calogero model and the Benenti systems, SIGMA Symmetry Integrability Geom. Methods Appl, 12 (2016), No.023, 18 pages.
[16] G. Vilasi, Hamiltonian Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.

Keiichi Kikuchi
Department of Mathematics, Tokai University
Takanawa 2-3-23, Minatoku, Tokyo 108-8619, Japan
E-mail: kikuchi6@ozzio.jp
Tsukasa Takeuchi
Department of Mathematics, Tokyo University of Science
Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan
E-mail: takeuchi.tsukasa@rs.tus.ac.jp

