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Abstract.

This paper presents the holonomic properties and recurrence formula for the dis-

tribution of the sample correlation coefficient. The probability density function

(pdf) is holonomic. Therefore, it is computed exactly based on the holonomic

gradient method (HGM). The initial values for computation are expressed in

terms of Gaussian hypergeometric functions with specific parameters that can

be transformed to a rational equation of gamma functions. Using the integral

algorithm in the D-module theory, the cumulative distribution function (cdf)

is also holonomic. It can be computed using HGM. Next, we derive the recur-

rence formula for the Gaussian hypergeometric function related to the degrees

of freedom and apply it to exact computation of the pdf under a fixed popula-

tion correlation coefficient and increasing degrees of freedom. We conclude with

discussion of the quantile function of the sample correlation coefficient which

satisfies a nonlinear differential equation of second order.
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§1. Introduction

First, we let (X1, Y1), . . . , (XN , YN ) be random vectors that are distributed

identically and independently as a bivariate normal distribution with popu-

lation correlation coefficient ρ = ρ(X,Y ). For the distribution of the sam-

ple correlation coefficient, we assume means µX = µY = 0 and variances

39
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σ2
X = σ2

Y = 1 without loss of generality. Then the sample correlation coeffi-

cient r is defined as r = sXY /(sXsY ), where sXY = 1
N

∑N
i=1(Xi− X̄)(Yi− Ȳ ),

sX =
√

1
N

∑N
i=1 (Xi − X̄)2, sY =

√
1
N

∑N
i=1 (Yi − Ȳ )2, X̄ and Ȳ respectively

denote the sample means of X and Y . The probability density function (pdf)

f(r) (written here as f(r, ρ)) is given by [8] as

(1.1)

f(r, ρ) =
n− 1√

2π

Γ(n)

Γ(n+ 1
2)

(1− ρ2)
n
2 (1− r2)

n−3
2

(1− ρr)n−
1
2

2F1

(
1

2
,
1

2
;n+

1

2
;
1 + ρr

2

)
,

where n = N − 1 and 2F1(a, b; c;x) is the Gaussian hypergeometric function

defined as

2F1(a, b; c;x) =

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
, (a)k =

k−1∏
i=0

(a+ i), and (a)0 = 1.

Here a, b, c lie in C, the set of complex numbers. Full details of this function

are given by [2]. In fact, f(r, ρ) is a regular function for −1 < r < 1 and

−1 < ρ < 1. The function 2F1(a, b; c;x) satisfies the following differential

equation: [
x(1− x)∂2

x − (c+ (a+ b+ 1)x)∂x − ab
]
2F1(a, b; c;x) = 0.

Letting ∂1 = ∂
∂r and ∂2 = ∂

∂ρ , then we take the differential operators

annihilating f(r, ρ) as

h1 := h1(r, ρ, ∂1) = c12∂
2
1 + c11∂1 + c10,(1.2)

h2 := h2(r, ρ, ∂2) = c22∂
2
2 + c21∂2 + c20,(1.3)

h3 := h3(r, ρ, ∂1, ∂2) = c32∂2 + c31∂1 + c30.(1.4)

It follows that hif(r, ρ) = 0 (i = 1, 2, 3), where cij are

c12 = (1− ρ2r2)(1− r2)2,(1.5)

c11 = r(1− r2){2n(1− ρ2)− 6− ρ2 + 7ρ2r2}

c10 = n2(r2 − ρ2) + n(1− 5r2 + 4ρ2r2)− 3(1− 2r2 − 2ρ2r2 + 3ρ2r4)

c22 = (1− ρ2)2(1− r2ρ2), c21 = ρ(1− ρ2){2n(1− r2)− r2(1− ρ2)}

c20 = n{1 + (1− 2r2)ρ2 + n(−r2 + ρ2)}, c32 = −(1− r2)(1− ρ2)ρ

c31 = r(1− r2)(1− ρ2), c30 = −n(1− r2)ρ2 + (n− 3)r2(1− ρ2).



HOLONOMIC PROPERTIES AND RECURRENCE FORMULA 41

Hotelling [8] gave h1 and h3, and implied the existence of h2 without spec-

ifying it. In that report, Hotelling [8] presented a typographical error as

r(1 − 5r2 + 4ρ2r2) instead of n(1 − 5r2 + 4ρ2r2) in the coefficient c10. These

h1, h2 and h3 can also be obtained from the package HolonomicFunctions.m

in Mathematica 11 developed by Koutschan [9, 10].

In the framework of algebraic statistics for the holonomic gradient method

(HGM), we use r and ρ as indeterminate variables. The holonomic gradient

descent method (HGD) was proposed in an earlier report of a study by [12].

That report describes an attempt to find the optimal parameters of the like-

lihood function for the Fisher–Bingham distribution in directional analysis.

Koyama et al. [11] presented the accelerated algorithm of [12]. Hashiguchi et

al. [5] proposed HGM for use in the numerical computation for the distribu-

tion on the largest eigenvalue of the Wishart matrix. Siriteanu et al. [15, 16]

applied HGM for MIMO Zero-Forcing performance evaluation. Hashiguchi et

al. [6] performed numerical computation for the distribution of the ratio of

two Wishart matrices.

This paper presents discussion of the holonomic properties and HGM for

use on the distribution of the sample correlation coefficient under a normal

population. Fisher [3] obtained the pdf of the sample correlation coefficient.

Hotelling [8] provided a useful representation using the Gaussian hypergeomet-

ric function. From the perspective of asymptotic property, Fisher [3] also pro-

posed Fisher’s z-transformation, which has asymptotic normality with great

rapidity. Asymptotic expansion with higher order for the transformation was

explained by [14]. Nakagawa et al. [13] clarified the role of computer alge-

bra to obtain the asymptotic expansion based on the module of symmetric

polynomials. Greco [4] obtained the explicit expression for any sample size

through a relation that enables us to calculate exact values of pdf and the

cumulative distribution function (cdf). In addition, Barabesi and Greco [1]

used the relation to obtain Student’s t and Snedecor F distribution functions.

The distribution of the sample correlation coefficient is calculable numerically

using several methods. However, we specifically examine holonomic properties

and numerical computations using HGM.



42 H. MURA, H. HASHIGUCHI, S. NAKAGAWA AND Y. ONO

§2. Holonomic property of the pdf of r

We examine the pdf of the sample correlation coefficient at the perspective

of D-module theory, of which detailed discussion is presented in Chapter 6 of

[7]. We restrict the case to two parameters and define the ring of differential

operators with rational function coefficients as R2 = C(r, ρ) ⟨∂1, ∂2⟩. We also

define If = ⟨h1, h2, h3⟩ as a left ideal of R2 generated by annihilators h1, h2, h3

of the pdf f(r, ρ), respectively, in (1.2),(1.3) and (1.4). Function g(r, ρ) is a

holonomic function if there exists a left ideal Ig of R2 annihilating g and R2/Ig

has a finite dimension as a vector space. The left ideal Ig and the number of its

dimension are called, respectively, the zero-dimensional ideal and holonomic

rank if R2/Ig has a finite dimension. Actually, the following theorem ensures

that the pdf f(r, ρ) is a holonomic function as well as h2 ∈ ⟨h1, h3⟩.

Theorem 2.1. The term order is defined by the graded lexicographic order

with ∂1 < ∂2. Then the following statements hold.

1. Set G = {h1, h3} as a Gröebner basis of If .

2. The left ideal If is a zero-dimensional ideal. The quotient ring R2/If

has a basis {1, ∂1} as a vector space. The holonomic rank of If is 2.

Proof. From direct calculation, the S-polynomial of h1 and h3 is reduced to

0, i.e., we have sp(h1, h3) −→∗ 0. This result demonstrates that G is a Groeb-

ner basis of If from Theorem 6.1.8 in [7]. Because the initial terms of G are

in<(h1) = ∂2
1 , in<(h3) = ∂2, the standard monomials are {1, ∂1}. From Theo-

rem 6.1.10 in [7], the standard monomials form a vector space basis of R2/If .

Therefore, If is a zero-dimensional ideal with holonomic rank of 2. □

§3. Numerical computation of the pdf of r using HGM

We establish HGM of the pdf f(r, ρ) for any r ∈ (−1, 1) and a fixed ρ ∈ (−1, 1).
From Theorem 2.1, we take the vector

−→
G(r, ρ) = [f(r, ρ), ∂1f(r, ρ)]

⊤

corresponding to the standard monomials {1, ∂1}, where ⊤ is a transposition

of a vector or matrix. The Pfaffian system of
−→
G(r, ρ) has matrices A1(r, ρ)
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and A2(r, ρ) associated with ∂i
−→
G(r, ρ) = Ai(r, ρ)

−→
G(r, ρ) for i = 1, 2, where

A1(r, ρ) and A2(r, ρ) are given, respectively, as

A1(r, ρ) =

[
0 1

− c10
c12

− c11
c12

]
, A2(r, ρ) =

[
− c30

c32
− c31

c32

d21 d22

]
,

using c10, . . . , c32 in (1.5) and

d21 =
2(n− 3)r

(1− r2)2ρ
+

c31
c32

c10
c12

, d22 = −
c30
c32

+
1

ρ
+

c31
c32

c11
c12

.

In the domain {(r, ρ) : −1 < r < 1,−1 < ρ < 1}, the singularity is ρ =

0 for A2. In this case, we are fortunately able to transform r into t =

r
√
n− 1/

√
1− r2 that distributes the Student t-distribution with n − 1 de-

grees of freedom.

For a fixed ρ, we calculate
−→
G(0, ρ) as an initial value and move from

−→
G(r, ρ)

to
−→
G(r +∆r, ρ). For example, we consider the linear equation as

−→
G(r +∆r, ρ) ≈

−→
G(r, ρ) + ∆r ∂1

−→
G(r, ρ)

= [I1 +∆rA1(r, ρ)]
−→
G(r, ρ)

with the initial value
−→
G(0, ρ) = [f(0, ρ), ∂1f(0, ρ)]

⊤, where

f(0, ρ) = C(1− ρ2)
n
2 2F1

(
1

2
,
1

2
;n+

1

2
;
1

2

)
,(3.1)

∂1f(0, ρ) = (n− 1

2
)ρf(0, ρ) +

Cρ(1− ρ2)
n
2

4(2n+ 1)
2F1

(
3

2
,
3

2
;n+

3

2
;
1

2

)
,(3.2)

and

C =
n− 1√

2π

Γ(n)

Γ(n+ 1
2)
.

We take the above initial value
−→
G(0, ρ) so that the hypergeometric function 2F1

are independent of the value of ρ. We must respectively evaluate 2F1(
1
2 ,

1
2 ;n+

1
2 ;

1
2) and 2F1(

3
2 ,

3
2 ;n + 3

2 ;
1
2) in (3.1) and (3.2). However, before evaluating

them, we provide the following lemma.

Lemma 3.1. For a, b > 0 and c > 1, we have

ab

c
2F1(a+ 1, b+ 1; c+ 1;x) =

c− 1

x
[2F1(a, b; c− 1;x)− 2F1(a, b; c;x)].
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Proof.

ab

c
2F1(a+ 1, b+ 1; c+ 1;x) = ∂x 2F1(a, b; c;x)

=
c− 1

x

∞∑
k=1

(a)k(b)k x
k

k!

k

(c− 1)(c)k

=
c− 1

x

∞∑
k=0

(a)k(b)k x
k

k!

{
1

(c− 1)k
− 1

(c)k

}
=

c− 1

x
[2F1(a, b; c− 1;x)− 2F1(a, b; c;x)]

□

The following theorem is a direct consequence of Lemma 3.1.

Theorem 3.1.

1. 2F1

(
1

2
,
1

2
;n+

1

2
;
1

2

)
=

2
1
2
−nΓ(n+ 1

2)
√
π

Γ(n+1
2 )2

2. 2F1

(
3

2
,
3

2
;n+

3

2
;
1

2

)
= 2

5
2
−n Γ(n+

3

2
)
√
π

{
4

Γ(n2 )
2
− 2n− 1

Γ(n+1
2 )2

}
Proof. From formula (51) in Section 2.8, p.104 of [2], we have

(3.3) 2F1

(
a, 1− a; b;

1

2

)
=

21−b√π Γ(b)

Γ(a+b
2 ) Γ(1+b−a

2 )
,

where b is neither a negative integer nor 0. Substituting a = 1
2 and b = n+ 1

2

into (3.3), we have statement 1. Next, we set a = 1
2 , b =

1
2 , and c = n+ 1

2 to

Lemma 3.1 and use (3.3) again to obtain statement 2. □

Substituting (3.1) and (3.2) with statements 1 and 2 of Theorem 3.1, the

initial values f(0, ρ) and ∂1f(0, ρ) can be rewritten as

f(0, ρ) =
(n− 1)(1− ρ2)

n
2 Γ(n)

2n(Γ(n+1
2 ))2

,(3.4)

∂1f(0, ρ) = (n− 1

2
)ρf(0, ρ)(3.5)

+
(n− 1)ρ(1− ρ2)

n
2 Γ(n) Γ(n+ 3

2)

2n(2n+ 1)Γ(n+ 1
2)

×

{
4

Γ(n2 )
2
− 2n− 1

Γ(n+1
2 )2

}
.

We use the Runge–Kutta method for the numerical computation of
−→
G(r, ρ)

as shown below.
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1. Give the values of ρ, n, r0 and ∆r; set r ← 0.

2. Calculate
−→
G(0, ρ) using (3.4) and (3.5).

3. Compute l1, l2, l3 and l4 as

l1 ← ∆r A1(r, ρ)
−→
G(r, ρ),

l2 ← ∆r A1

(
r +

∆r

2
, ρ

){
−→
G(r, ρ) +

l1
2

}
,

l3 ← ∆r A1

(
r +

∆r

2
, ρ

){
−→
G(r, ρ) +

l2
2

}
,

l4 ← ∆r A1(r +∆r, ρ)
{−→
G(r, ρ) + l3

}
.

4. Increment from
−→
G(r, ρ) to

−→
G(r +∆r, ρ) as

−→
G(r +∆r, ρ)←

−→
G(r, ρ) +

1

6
(l1 + 2l2 + 2l3 + l4).

5. Let r ← r +∆r.

6. If r = r0, then return
−→
G(r0, ρ) as a result, else go back to the step 3.

Our numerical computation based on the algorithm above is conducted

using software (Mathematica 11; Wolfram Research Inc.). Figure 1 portrays

the pdf of r with ρ = 0.5 and n = 50. The black line represents the pdf

evaluated by HGM. Open circles represent values computed using a built-in

function, Hypergeometric2F1, in the software.

3.1. Recurrence relation of the pdf

The pdf of r can also be calculated by application of the recurrence relation of

hypergeometric function 2F1 with respect to the degrees of freedom n. Letting

fn = 2F1

(
1
2 ,

1
2 ;n+ 1

2 ;x
)
for convenience, then from formula (30) on p. 103 of

a report by [2], we obtain

(3.6) fn =
1

4x(n− 1)2
(2n− 1)(2n− 3)[(2x− 1)fn−1 − (x− 1)fn−2],

where n ≥ 2. The respective initial terms f0 and f1 are

(3.7) f0 =
1√
1− x

and f1 =
arcsin

√
x√

x
.
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-1.0 -0.5 0.5 1.0

1

2

3

f(r, ρ)

r

Figure 1: The pdf values were evaluated by HGM, where ρ = 0.5 and n = 50.

In Figure 2, the open circles are values of the pdf applying (3.7) and (3.6),

where ρ = 0.5, fixed r = 0.5, and the values of n are 1, 25, 50, 100, 150, and

300. The black curves represent the pdfs of r shown using a built-in function,

Hypergeometric2F1 in the software. It shows how the pdf values are calcu-

lated recursively as the number of the degrees of freedom n increases. For

n = 300, the recurrence formulas (3.7) and (3.6) can compute the values of

the pdf for ρ = 0.5 and r = 0.5, but the function with the built-in function

Hypergeometric2F1 does not work, as shown in Figure 2.

§4. Numerical computation of the cdf of r using HGM

We consider the cdf of r, F (r, ρ), satisfying

(c12∂
2
1 + c11∂1 + c10)∂1F = (c12∂

3
1 + c11∂

2
1 + c10∂1)F = 0.

The pdf of r, a holonomic function, is also its cdf from Theorem 6.10.14 in

[7]. We take the initial value at r = 0 as well, such that to calculate F (r, ρ)

for any r and a fixed ρ, we need only ascertain the value of

F (0, ρ) =

∫ 0

−1
f(r, ρ) dr.

By applying the integration algorithm (see Section 6.10 in [7]), the integral
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n=1

n=25

n=50

n=100

n=150

n=300

0.45 0.50 0.55 0.60

2

4

6

8

f(r, ρ)

r

Figure 2: The pdf values were evaluated using the recurrence formulas (3.7)

and (3.6) where ρ = 0.5. The white circles are at r = 0.5.

F (0, ρ) satisfies the following differential equation:

(4.1)
[
(−1 + ρ2)∂2

2 + (2ρ− nρ)∂2
]
F (0, ρ) = 0.

It is obtained using the HolonomicFunctions.m package in the software (see

Section 1). It is solvable using the initial conditions F (0, 0) = 1
2 and F (0,−1) =

1 (or F (0, 1) = 0) as

F (0, ρ) =
1

2
−

ρ(1− ρ2)
n
2 Γ(n+1

2 )
√
π Γ(n2 )

× 2F1

(
1,

n+ 1

2
;
3

2
; ρ2

)
,(4.2)

which is obtained using the built-in function DSolve in the software. In Figure

3, the black line shows the HGM-based cdf evaluation where ρ = 0.5 and

n = 50. White circles represent the empirical frequency of the 106 Monte

Carlo simulation.

§5. Ordinary differential equation for the quantile of the

distribution of r

In this section, we give an ordinary differential equation for the quantiles of

the distribution of r. A general method for the ordinary differential equation

for a univariate statistic was proposed by Steinbrecher and Shaw [17]. For the
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distribution function of the sample correlation coefficient u = F (r, ρ), we write

its quantile function as r(u) = F−1(u). Then the following theorem holds.

Theorem 5.1. The quantile function r(u) of the distribution of r has a non-

linear differential equation as presented below.

(5.1)
d2r

du2
= H(r, ρ)

(
dr

du

)2

For that equation, H(r, ρ) is given as shown below.

H(r, ρ) =
5ρr2 + 2(n− 3)r + ρ− 2nρ

2(r2 − 1)(ρr − 1)
− ρ

8n+ 4

2F1

(
3
2 ,

3
2 ;n+ 3

2 ;
rρ+1
2

)
2F1

(
1
2 ,

1
2 ;n+ 1

2 ;
rρ+1
2

)
Proof. From equations (55) and (56) of [17], one can infer that

H(r, ρ) = − d

dr
log f(r, ρ),

where f(r, ρ) is given as (1.1). □

Taking r0 = 0 and u0 = F (0, ρ) for a fixed ρ, the equation (5.1) is calculable

numerically with the initial values r(u0) = 0 and r′(u0) = dr
du

∣∣
u=u0

= 1
f(0,ρ) ,

where F (0, ρ) and f(0, ρ) are given respectively as (4.2) and (3.4). Figure 4

presents the plot of the quantile function with ρ = 0.5 and n = 50.

In Figure 4, the black line represents the quantile function of r computed

by solving the differential equation (5.1). White circles show the empirical

quantile function of 106 Monte Carlo simulation. Although the range of the

plot is expected to be −1 < r < 1, we stop computing when values |u| or
|1− u| become sufficiently small to approximate as u = 0 or u = 1.

§6. Conclusion

After first explaining the holonomic property of the pdf of the sample correla-

tion coefficient, we constructed methods for HGM-based exact computation of

the distribution. Results show that they work very well with pdf and cdf com-

putation. We also discussed numerical computations of the quantile function

and derived the recurrence formula for the Gaussian hypergeometric function

related to the degrees of freedom. Future work is expected to investigate

whether the quantile function is holonomic or not.



HOLONOMIC PROPERTIES AND RECURRENCE FORMULA 49
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0.6

0.8

1.0

F (r, ρ)

r

Figure 3: The cdf values evaluated using HGM where ρ = 0.5 and n = 50.

0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

0.8

r(u)

u = F (r, ρ)

Figure 4: The quantile function of r where ρ = 0.5 and n = 50.
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