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Abstract. This paper provides an asymptotic expansion for the distribution
of the Studentized linear discriminant function with k-step monotone missing
training data. It turns out to be a certain generalization of the results derived
by Anderson [1] and Shutoh and Seo [12]. Furthermore we also derive the cut-
off point constrained by a conditional probability of misclassification using the
idea of McLachlan [8]. Finally we perform Monte Carlo simulation to evaluate
our results.
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§1. Introduction

Discriminant analysis is well known as one of the statistical procedures for
assigning a p–dimensional sample vector x to one of two groups, Π(1) and Π(2).
In this paper, we primarily discuss the linear discrimination when these two
groups are derived by distributions Np(µ

(1),Σ) and Np(µ
(2),Σ), respectively.

Since µ(g) and Σ are usually unknown, we construct their estimators using the

training data T = {x(g)
j }N

(g)
1

j=1 from the gth group Π(g), g = 1, 2. Then consider
the linear discriminant function (or Wald-Anderson’s plug-in criterion)

W = (x(1) − x(2))′S−1

[
x− 1

2
(x(1) + x(2))

]
,(1.1)
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where

x(g) =
1

N
(g)
1

N
(g)
1∑

j=1

x
(g)
j , S =

1

n1

2∑
g=1

N
(g)
1∑

j=1

(x
(g)
j − x(g))(x

(g)
j − x(g))′,

and n1 = N
(1)
1 + N

(2)
1 − 2. Using the discriminant function (1.1) a new ob-

servation x is to be assigned to Π(1) if W > c, where c is a cut-off point.
Classification accuracy is usually measured by the misclassification probabili-
ties that are defined as

e(2|1) = ET [Pr(W ≤ c|T,x ∈ Π(1))],

e(1|2) = ET [Pr(W > c|T,x ∈ Π(2))].

Several authors have been interested in evaluating these probabilities. For
example, Anderson [1] derived an asymptotic expansion of the Studentized
version of W and investigated relation between the corresponding misclassifi-
cation probabilities and the cut-off point c. He also proposed the cut-off point
c such that

ET [Pr(W ≤ c|T,x ∈ Π(1))] = α+O(n−2
1 ),

where α is a value given by experimenters. Further, McLachlan [8] considered
the discrimination where one type of error is generally regarded as more serious
than the other such as medical applications associated with the diagnosis of
diseases, and then, McLachlan [8] proposed the cut-off point c such that

PrT [Pr(W ≤ c|T,x ∈ Π(1)) < M ] = 1− β +O(n−2
1 ),

where 1− β is the desired level of confidence and M is an upper bound.

The above-mentioned results have been developed for the case where all
data is observed. However, the datasets often suffer from missing observa-
tion by some reasons. In particular, k-step monotone missing data is often
observed owing to dropout. Further, variables can be reordered to arrange
non-monotone missing data to a dataset that is similar to k-step monotone
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missing data consisting of the following sample vectors from Π(g) (g = 1, 2):


x
(g)
11

x
(g)
21
...

x
(g)
k−1,1

x
(g)
k1

 , . . . ,



x
(g)

1N
(g)
1

x
(g)

2N
(g)
1
...

x
(g)

k−1,N
(g)
1

x
(g)

kN
(g)
1


,


x
(g)

1,N
(g)
1 +1

x
(g)

2,N
(g)
1 +1
...

x
(g)

k−1,N
(g)
1 +1

 , . . . ,



x
(g)

1,N
(g)
[2]

x
(g)

2,N
(g)
[2]

...

x
(g)

k−1,N
(g)
[2]


, . . . ,(1.2) x
(g)

1,N
(g)
[k−2]

+1

x
(g)

2,N
(g)
[k−2]

+1

 , . . . ,

 x
(g)

1,N
(g)
[k−1]

x
(g)

2,N
(g)
[k−1]

 ,

(
x
(g)

1,N
(g)
[k−1]

+1

)
, . . . ,

(
x
(g)

1,N
(g)
[k]

)
,

where p ≡ p1 + · · · + pk, N
(g)
[i] = N

(g)
1 + · · · + N

(g)
i , and x

(g)
k−i+1,j denotes a

pk−i+1–dimensional sample vector from Π(g) for i = 1, . . . , k, j = 1, . . . , N
(g)
[i]

and g = 1, 2. Then, we assume a large-sample asymptotic framework for k-step
monotone missing data:

N
(g)
1 → ∞, N

(g)
[`] → ∞,

N
(2)
1

N
(1)
1

→ q1,
N

(2)
[`]

N
(1)
[`]

→ q[`] (` = 2, . . . , k, g = 1, 2),

where q1 and q[`] are positive constants, respectively. Kanda and Fujikoshi [5]
suggested the asymptotic approximation for the misclassification probabilities
for the datasets in (1.2) for k = 2 (i.e., 2-step monotone missing data), as-
suming that covariance matrix is known. Recently, a solution addressing the
same problem when a common covariance matrix Σ is unknown was given by
Batsidis et al. [2] and Shutoh and Seo [12] in the case of 2-step monotone
missing data. In this study, we generalize the results derived by Anderson [1]
and McLachlan [8] to the case of k-step monotone missing data. Although
Shutoh [10, 11] focused on the approximations for the misclassification proba-
bilities with a given cut-off point under k-step monotone missing data, we now
suggest a technique for specifying a cut-off point c for any desired constraint
on the upper bound of the conditional misclassification probability. Testing
procedure in the case of monotone missing patterns in multivariate data has
been studied; see e.g., Chang and Richards [3] and Koizumi and Seo [6, 7].
Distributional properties of the estimators based on k-step monotone missing
data were extensively studied in Kanda and Fujikoshi [4].

The paper will proceed as follows: In Section 2, we embed a k-step mono-
tone missing data scheme into discrimination framework. In Section 3, we
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present asymptotic expansion of the Studentized version of W under the miss-
ing data assumption and derive the constrained discriminant rule. In Section
4, we evaluate properties of the technique suggested for specifying the cut-off
point c by using Monte Carlo simulation, and compare our results with the
methods due to Anderson [1] and McLachlan [8]. In Section 5, we conclude
with discussion.

§2. Notation

In this paper, we assume k-step monotone missing scheme for training data,
meaning the sample vectors coming from Π(g) stated in (1.2) can be repre-
sented as

x
(g)
(k−i+1)j =


x
(g)
1j
...

x
(g)
k−i+1,j

 ∼ Np[k−i+1]
(µ

(g)
(k−i+1),Σ(k−i+1))(2.1)

(g = 1, 2, i = 1, . . . , k, j = N
(g)
[i−1] + 1, . . . , N

(g)
[i] ),

where x
(g)
αj for α = 1, . . . , k and j = 1, . . . , N

(g)
[k−α+1] is pα–dimensional parti-

tioned sample vector. Here µ
(g)
α is pα–dimensional partitioned vector of µ(g),

Σαβ is pα × pβ partitioned matrix of Σ for α = 1, . . . , k, β = 1, . . . , k,

µ
(g)
(k−i+1) =


µ
(g)
1
...

µ
(g)
k−i+1

 ,

(2.2)

Σ(k−i+1) =

 Σ11 · · · Σ1,k−i+1
...

. . .
...

Σk−i+1,1 · · · Σk−i+1,k−i+1

 ,

p[k−i+1] =
∑k−i+1

α=1 pα, N
(g)
[i] =

∑i
`=1N

(g)
` and N

(g)
[0] ≡ 0.

Now, using the representations (2.1) and (2.2), the linear discriminant func-
tion is defined by

Wk = (µ̂(1) − µ̂(2))′Σ̂−1

[
x− 1

2
(µ̂(1) + µ̂(2))

]
,

where µ̂(g), g = 1, 2 and Σ̂ are certain estimators of µ(g), g = 1, 2 and Σ
(the details are found in section 3 of Shutoh [10]). Then, the misclassification
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probabilities can be expressed as

ek(2|1) = ETk
[Pr(Wk ≤ c|Tk,x ∈ Π(1))],

ek(1|2) = ETk
[Pr(Wk > c|Tk,x ∈ Π(2))],

where Tk is k-step monotone missing training data. Note that Shutoh [10]
considered a special case c = 0 under a large-sample framework as well as
under a high-dimensional framework. Assume henceforth that x ∈ Π(1). The
symmetry of our discrimination rule allows us to obtain the results for x ∈ Π(2)

by the same arguments.

For the case of ek(2|1), we consider ETk
[Φ((uDk + Fk)V

− 1
2

k )], since

Zk = V
− 1

2
k (µ̂(1) − µ̂(2))′Σ̂−1(x− µ(1))

is distributed as the standard normal distribution given µ̂(1), µ̂(2), Σ̂ and
x ∈ Π(1), where u = [c−(1/2)D2

k]/Dk, Φ(·) denotes the cumulative distribution
function of N(0, 1),

D2
k = (µ̂(1) − µ̂(2))′Σ̂−1(µ̂(1) − µ̂(2)),

Fk = (µ̂(1) − µ̂(2))′Σ̂−1(µ̂(1) − µ(1)),(2.3)

Vk = (µ̂(1) − µ̂(2))′Σ̂−1ΣΣ̂−1(µ̂(1) − µ̂(2)).

For the details of D2
k, Fk and Vk, see Shutoh [9, 10].

§3. Main results

3.1. Asymptotic expansion for the distribution of Studentized ver-
sion of Wk

To derive asymptotic expansion of ek(2|1) = ETk
[Φ((uDk +Fk)V

− 1
2

k )], we now

expand Φ((uDk + Fk)V
− 1

2
k ) using perturbation method, as in Shutoh [9]. Let

A be a p× p matrix. Then, for a large m,(
I − 1√

m
A

)−1

= I +

∞∑
i=1

m− i
2Ai.

By applying this expansion to (2.3), we can obtain the following stochastic
expansions in the form

D2
k ≡ ∆2 +

Dk1√
n

+
Dk2

n
+

Dk3

n
√
n
+Op(n

−2),

Fk ≡ Fk1√
n
+

Fk2

n
+

Fk3

n
√
n
+Op(n

−2),

Vk ≡ ∆2 +
Vk1√
n
+

Vk2

n
+

Vk3

n
√
n
+Op(n

−2),
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where n = n[k], n[`] =
∑`

i=1(N
(1)
i + N

(2)
i − 2) (` = 2, . . . , k), ∆2 = δ′Σ−1δ

and δ = µ(1) − µ(2). Furthermore, using the above expressions and Taylor
expansion of Φ(·), we can determine wk1, wk2 and wk3 using the following
equation,

Φ((uDk + Fk)V
− 1

2
k ) ≡ Φ(u) + φ(u)

[
wk1√
n

+
wk2

n
+

wk3

n
√
n

]
+Op(n

−2),(3.1)

where φ(u) is the density function of N(0, 1) (see Shutoh [9] for the details).

Theorem 1. The cumulative distribution function of the Studentized version
of the linear discriminant function [Wk − (1/2)D2

k]/Dk under x ∈ Π(1) is
expanded as

Φ(u) +
φ(u)

n
bk1(u) + O(n−2),(3.2)

where bk1(u) = c0 + c1u+ c3u
3,

c0 =
p− 1

r1∆
(1 + q1)

+

k∑
`=2

p[k−`+1] −∆2
k−`+1

∆

(
1 + q[`]

r[`]
−

1 + q[`−1]

r[`−1]

)
,

c1 = − 1

r1

(
p− 1

4
+

1

2
q1

)
−

k∑
`=2

∆2
k−`+1

{
1

r[`]

(
p[k−`+1] +

3

2
+

1

2
q[`] −

7

4
∆2

k−`+1

)
− 1

r[`−1]

(
p[k−`+1] +

3

2
+

1

2
q[`−1] −

7

4
∆2

k−`+1

)}
,

c3 = − 1

4r1
−

k∑
`=2

∆4
k−`+1

4

(
1

r[`]
− 1

r[`−1]

)
,

δ(k−`+1) = µ
(1)
(k−`+1) − µ

(2)
(k−`+1),

δ2k−`+1 = δ′(k−`+1)Σ
−1
(k−`+1)δ(k−`+1), ∆k−`+1 = δk−`+1/∆,

r1 denotes the limit of n1/n and r[`] denotes the limit of n[`]/n, for ` = 2, . . . , k.

Proof. Noting that

Pr

[
Wk − 1

2D
2
k

Dk
≤ u

∣∣∣∣Tk,x ∈ Π(1)

]
= Pr[Zk ≤ (uDk + Fk)V

− 1
2

k |Tk,x ∈ Π(1)]

= Φ((uDk + Fk)V
− 1

2
k ),
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(3.2) follows from the expectations for the multivariate normal distribution
and Wishart distribution that ETk

(wk1) = 0, ETk
(wk2) = bk1(u) and the ex-

pectations of the terms included in wk3/(n
√
n) are either 0 or O(n−2).

We notice that the cumulative distribution function of the Studentized
version of the linear discriminant function [Wk +(1/2)D2

k]/Dk under x ∈ Π(2)

is expanded as

Φ(u′)− φ(u′)

n
b′k1(−u′) + O(n−2),

where u′ = [c+(1/2)D2
k]/Dk and b′k1(u) is obtained by inverting q1 and q[`] in

bk1(u). For k = 2, Theorem 1 coincides with the result derived by Shutoh and
Seo [12].

Generalizing Anderson [1], we can obtain the cut-off point c using the above
results.

Theorem 2. For a given α, the cut-off point c which satisfies

ETk
[Φ((uDk + Fk)V

− 1
2

k )] = α+O(n−2)(3.3)

is c = u0Dk + (1/2)D2
k, where u0 = z1−α − bk1(z1−α)/n, z1−α is the upper

100α percentage point of N(0, 1).

Proof. If we put u0 = a+ b/n into (3.2) and combine with (3.3), then we can
determine a = z1−α and b = −bk1(z1−α). The outline of the proof is similar
to that of Theorem 9.8.1 in Siotani et al. [13].

In practical applications, unknown parameters ∆2 and δ2k−`+1 should be
replaced by their asymptotically unbiased estimators proposed in Shutoh [11]:
{(n1 − p− 1)D2

k,k}/n1 and {(n[`] − p[k−`+1] − 1)D2
k,k−`+1}/n[`], where

D2
k,α =

 µ̂
(1)
1 − µ̂

(2)
1

...

µ̂(1)
α − µ̂(2)

α


′ Σ̂11 · · · Σ̂1α

...
. . .

...

Σ̂α1 · · · Σ̂αα


−1 µ̂

(1)
1 − µ̂

(2)
1

...

µ̂(1)
α − µ̂(2)

α

 ,

µ̂(g)
α is pα–dimensional partitioned vector of the estimator of µ(g) based on

k-step monotone missing data and Σ̂αβ is pα × pβ partitioned matrix of the
estimator of Σ based on the same.

The similar result under x ∈ Π(2) can be also obtained if we consider

ETk
[Φ((u∗D∗

k + F ∗
k ){V ∗

k }−
1
2 )] = α+O(n−2),(3.4)
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where u∗ = −(c+ (1/2){D∗
k}2)/D∗

k,

Pr(Wk > c|Tk,x ∈ Π(2)) = Φ((u∗D∗
k + F ∗

k ){V ∗
k }−

1
2 ),

{D∗
k}2, F ∗

k , and V ∗
k are the statistics obtained by interchanging 1 and 2 in the

superscript for D2
k, Fk, and Vk, respectively. By noting that D2

k = {D∗
k}2, the

cut-off point c which satisfies (3.4) can be obtained by inverting q1 and q[`] in
u0 for Theorem 2.

3.2. Constrained discriminant rule with Studentized version of Wk

The another main result is derived in this subsection. Similarly to Theorem
9.6.5 in Siotani et al. [13], we consider the following characteristic function:

c(t) = ETk

[
exp

{
itΦ((uDk + Fk)V

− 1
2

k )

}]
,

where i =
√
−1. Using (3.1), we can obtain the following lemma.

Lemma 1. Φ((uDk+Fk)V
− 1

2
k ) follows asymptotically normal distribution with

mean ξk and variance σ2
k, where bk2(u) = d0 + d2u

2,

ξk = Φ(u) +
φ(u)

n
bk1(u), σ2

k =
{φ(u)}2

n
bk2(u),

d0 =
1 + q1
r1

+

k∑
`=2

∆2
k−`+1

{
1 + q[`]

r[`]
−

1 + q[`−1]

r[`−1]

}
,

d2 =
1

2

{
1

r1
+

k∑
`=2

∆4
k−`+1

(
1

r[`]
− 1

r[`−1]

)}
.

Proof. We can show that

c(t) = exp

[
itETk

{
Φ((uDk + Fk)V

− 1
2

k )

}]

×

[
1 +

(it)2

2!
VarTk

{Φ((uDk + Fk)V
− 1

2
k )}+R

]
,

where R is the remainder term starting with (it)3. Furthermore, we have

c(t) = exp

[
itETk

{
Φ((uDk + Fk)V

− 1
2

k )

}

− t2

2
VarTk

{
Φ((uDk + Fk)V

− 1
2

k )

}]
(1 +R′)
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by noting that

log

[
1 +

(it)2

2!
VarTk

{Φ((uDk + Fk)V
− 1

2
k )}+R′′

]

is expanded as

(it)2

2!
VarTk

{Φ((uDk + Fk)V
− 1

2
k )}+R′′′,

where R′, R′′ and R′′′ are also the remainder terms starting with (it)3, respec-

tively. The required moments of Φ((uDk + Fk)V
− 1

2
k ) are

ETk

[
Φ((uDk + Fk)V

− 1
2

k )

]
= Φ(u) + φ(u)

[
1√
n
ETk

(wk1)

+
1

n
ETk

(wk2) +
1

n
√
n
ETk

(wk3)

]
+O(n−2),

VarTk

[
Φ((uDk + Fk)V

− 1
2

k )

]
=

{φ(u)}2

n
VarTk

(wk1) +
2{φ(u)}2

n
√
n

× {ETk
(wk1wk2)− ETk

(wk1)ETk
(wk2)}

+O(n−2).

The first moment of the terms up to Op(n
− 3

2 ) has been already derived in
Theorem 1. Similarly, we have

VarTk

[
Φ((uDk + Fk)V

− 1
2

k )

]
=

{φ(u)}2

n
bk2(u) + O(n−2)

by using the moments of the multivariate normal distribution and Wishart
distribution.

In the following theorem, we obtain the cut-off point c such that

PrTk

[
Φ((uDk + Fk)V

− 1
2

k ) < M

]
= 1− β +O(n−2).(3.5)

Theorem 3. The cut-off point c = (1/2)D2
k + uDk which satisfies (3.5) can

be obtained by

u = m− hk1√
n
− hk2

n
− hk3

n
√
n
,
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where m = z1−M ,

hk1 = zβb
1
2
k2, hk2 = bk1 +

1

2
z2βm(bk2 − 2d2),

hk3 = zβb
1
2
k2

[
mbk1 +

md2
2bk2

(z2βmd2 − 2bk1) +
z2βbk2

3
(m2 − 1)

− 3m2

2
(z2βd2 + 2c3) +

z2βd2

2
− c1

]
,

bk1 = bk1(m), bk2 = bk2(m).

Proof. By Lemma 1, we express (3.5) as follows:

Φ

(
M − ξk

σk

)
= 1− β +O(n−2).

Thus, our goal is to derive the point u which satisfies

M = ξk + zβσk.(3.6)

It should be noted that M is specified by experimenters. We put the solution
u of (3.6) as

u = m− hk1√
n
− hk2

n
− hk3

n
√
n
,

where hi’s (i = 1, 2, 3) are the unknown finite constants. Since we have

Φ(u) = M +
φ(m)√

n

{
−hk1

}
+

φ(m)

n

{
−hk2 −

1

2
mh2k1

}
+

φ(m)

n
√
n

{
−hk3 −mhk1hk2 −

1

6
(m2 − 1)h3k1

}
+ o(n− 3

2 ),

φ(u) = φ(m) +
φ(m)√

n

{
mhk1

}
+

φ(m)

n

{
mhk2 +

1

2
(m2 − 1)h2k1

}
+ o(n−1),

bk1(u) = bk1 +
1√
n

{
−(c1 + 3c3m

2)hk1

}
+ o(n− 1

2 ),

{bk2(u)}
1
2 = b

1
2
k2 +

1√
n

{
−md2b

− 1
2

k2 hk1

}
+

1

n

{
−md2b

− 1
2

k2 hk2 +
1

2
d2(1−m2d2b

−1
k2 )b

− 1
2

k2 h2k1

}
+ o(n−1),

we can equate the terms of respective order n− 1
2 , n−1, and n− 3

2 in (3.6) and
determine the unknown constants hki’s, which proves Theorem 3.
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In practical applications, unknown parameters ∆2 and δ2k−`+1 should be
replaced by their asymptotically unbiased estimators proposed in Shutoh [11]:
{(n1 − p− 1)D2

k,k}/n1 and {(n[`] − p[k−`+1] − 1)D2
k,k−`+1}/n[`].

The similar result under x ∈ Π(2) can be also obtained if we consider

PrTk

[
Φ((u∗D∗

k + F ∗
k ){V ∗

k }−
1
2 ) < M

]
= 1− β +O(n−2).(3.7)

The cut-off point c = −(1/2)D2
k + u∗Dk which satisfies (3.7) can be obtained

by

u∗ = m−
h∗k1√
n
−

h∗k2
n

−
h∗k3
n
√
n
,

where h∗ki’s are defined as the constants inverting q1 = q[1] and q[`] in hki’s for
i = 1, 2, 3 and ` = 2, . . . , k.

§4. Simulation studies

In this section, we compare the proposed results for Theorems 2 and 3 based on
the monotone missing training data Tk with the similar results for the complete
training data T (i.e., the methods derived by Anderson [1] and McLachlan [8])
under x ∈ Π(1).

At first, in order to evaluate our result derived in Theorem 2, we compare
our result for k = 3 with the result derived by Anderson [1]. We give ∆ = 1.05
and α = 0.10. Further, the dimensionalities are set as p = 3 (p1 = p2 = p3 =
1). The sample sizes are set as N(3) ≡ N1 = N2 = N3 = 10, 15, 20, 40, where

N` ≡ N
(1)
` = N

(2)
` (` = 1, 2, 3). For the result derived by Anderson [1], the

sample size is set as N1 = 10, 15, 20, 40.

Table 1. The comparison of the misclassification probabilities with the
cut-off points proposed in Anderson [1] and Theorem 2.

N1 The result of Anderson [1] N(3) The result of Th.2

10 0.1071 10 0.1055
15 0.1032 15 0.1026
20 0.1019 20 0.1015
40 0.1006 40 0.1005

For all the cases we performed, the misclassification probabilities are closer to
a specified α than the result derived by Anderson [1]. See the bold face we
mark in Table 1.

Furthermore, we also compare our result stated in Theorem 3 for k = 3
with the result derived by McLachlan [8]. We select the seven cases, as listed in
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Table 2. The dimensionalities are set as p = 3 (p1 = p2 = p3 = 1). The sample
sizes are set as N(3) = 20, 40, 100, 200. For the result derived by McLachlan
[8], the sample size is set as N1 = 20, 40, 100, 200.

Table 2. The selected parameters in simulation studies for Cases 1–7.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

1− β 0.95 0.99 0.90 0.95 0.95 0.95 0.95
∆ 1.05 1.05 1.05 0.50 1.36 1.05 1.05
M 0.20 0.20 0.20 0.20 0.20 0.10 0.25

We compare the values of 1 − β listed in Table 3. In Cases 2, 4, and 6,
our result also provides the level 1 − β which is closer to the specified value
than the result for the complete data. These results imply that the proposed
procedure is more efficient than the result derived by McLachlan [8] when β,
∆, and M are lower. By bold face, we mark the results where the suggested
procedure demonstrate superior performance comparing to the method due to
McLachlan [8].

Table 3. The values of the desired 1 − β level of confidence for Cases 1–7.

The values 1− β for the result of McLachlan [8]
N1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

20 0.8959 0.9430 0.8518 0.8701 0.9017 0.8562 0.9075
40 0.9196 0.9671 0.8723 0.9034 0.9225 0.8997 0.9256
100 0.9331 0.9791 0.8834 0.9262 0.9342 0.9247 0.9358
200 0.9376 0.9830 0.8866 0.9340 0.9382 0.9335 0.9391

The values 1− β for the result of Th.3
N(3) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

20 0.8975 0.9528 0.8474 0.8861 0.9001 0.8700 0.9062
40 0.9195 0.9716 0.8676 0.9115 0.9212 0.9062 0.9239
100 0.9320 0.9808 0.8792 0.9273 0.9331 0.9272 0.9338
200 0.9359 0.9836 0.8818 0.9328 0.9365 0.9352 0.9364

In Table 4, we compare the misclassification probabilities based on the
cut-off points provided by the method due to McLachlan [8] and Theorem 3,
respectively. Proposed procedure results in the misclassification probability
closer to a specified M . Then it can be also observed that the other misclas-
sification probability for the proposed procedure is lower than that for the
method due to McLachlan [8].
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Table 4. The misclassification probabilities with
the cut-off point c for Cases 1–7.

e(2|1) for the result of McLachlan [8]
N1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

20 0.1256 0.1079 0.1380 0.1307 0.1243 0.0621 0.1599
40 0.1384 0.1206 0.1499 0.1408 0.1379 0.0645 0.1784
100 0.1571 0.1427 0.1656 0.1575 0.1571 0.0734 0.2011
200 0.1686 0.1568 0.1752 0.1688 0.1685 0.0795 0.2143

e(1|2) for the result of McLachlan [8]
N1 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

20 0.5983 0.6327 0.5752 0.7870 0.4780 0.7399 0.5376
40 0.5446 0.5783 0.5247 0.7512 0.4214 0.7067 0.4786
100 0.4945 0.5196 0.4807 0.7075 0.3731 0.6674 0.4279
200 0.4704 0.4894 0.4600 0.6850 0.3499 0.6456 0.4034

e3(2|1) for the result of Th.3
N(3) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

20 0.1482 0.1315 0.1583 0.1438 0.1490 0.0707 0.1892
40 0.1596 0.1457 0.1677 0.1566 0.1601 0.0749 0.2038
100 0.1737 0.1636 0.1794 0.1725 0.1738 0.0828 0.2204
200 0.1812 0.1736 0.1854 0.1807 0.1813 0.0875 0.2289

e3(1|2) for the result of Th.3
N(3) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

20 0.5374 0.5672 0.5204 0.7533 0.4119 0.7003 0.4721
40 0.4982 0.5219 0.4850 0.7174 0.3742 0.6692 0.4309
100 0.4642 0.4799 0.4556 0.6820 0.3438 0.6391 0.3977
200 0.4488 0.4603 0.4426 0.6664 0.3298 0.6245 0.3829

§5. Conclusion and discussion

This paper provided the asymptotic expansion for the Studentized version of
Wk in subsection 3.1. Subsection 3.1 also derived the cut-off point c which
could control the misclassification probability with a specified value. Moreover
subsection 3.2 provided a certain method for determining the cut-off point
which could control the conditional misclassification probability with its upper
bound and the level of significance. They were certain extensions of the results
derived by Anderson [1], McLachlan [8] and Shutoh and Seo [12]. Our results
on specifying the significance level are more accurate in a way that they allow
for reducing the upper bound of the conditional misclassification probability
for a given cut-off point. In Section 4 we demonstrated the advantages of
our approach by Monte Carlo simulation and showed that it can be useful
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for specifying the cut-off point c in practical classification problems for some
cases.

For the proposed result in Theorem 3, unfortunately, the estimator of hk1
has bias with order n−1 and its bias correction is one of the future problem.
Possible further studies on the classification problem with missing data could
be focused on other approaches such as e.g. maximum likelihood approach or
quadratic discriminant analysis.
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