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Abstract. In this paper, we propose a new pseudorandom number generator
(AST) using an Artin-Schreier tower, which is a modified version of the twisted
generalized feedback shift register (TGFSR). In TGFSR, the period is depend-
ing on the order of its multiplied matrix, and it is difficult to get the theoretical
upper bound in general. Using the recursive structure of Artin-Schreier towers,
we define a matrix with a parameter whose order is expected to be close to
fairly near the upper bound. After examining some properties of this matrix,
we give an algorithm of a new pseudorandom number generator AST which
produce a sequence of numbers with a long period. Finally, we report the re-
sults of TestU01 to qualify that it has a good statistical property, although its
generation speed is rather slower than TGFSR.
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§1. Introduction

A pseudorandom number generator is an algorithm for generating a sequence
xi (i = 0, 1, 2, . . . ) of numbers which is widely used in various fields. Each xi
of a sequence is a word with components 0 and 1 of size w, and is produced by
a generator from initial seeds. One of important parameters which represent
the performance of a pseudorandom number generator is its period, which is
the smallest integer p such that xi+p = xi holds for every integer i. A good
generator must have a sufficiently long period. The generalized feedback shift
register (GFSR) algorithm suggested by Lewis and Payne ([5]) is a widely used
pseudorandom number generator. But the period of a GFSR sequence 2n − 1
is far smaller than the theoretical upper bound 2nw−1, where n is the number
of initial seeds xn−1, · · · , x1, x0. The twisted GFSR (TGFSR) generator ([7],
[8]) resolves this drawback. Furthermore, Mersenne Twister (MT) introduced
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by Matsumoto and Nishimura provides a super astronomical period and has
good statistical properties (cf. [9]). In this paper we propose a new generator
AST using an Artin-Schreier tower. This generator produces a sequence with
a long period which is conjectured to be fairly near to the theoretical upper
bound, and gives a sequence whose period is longer than MT’s by choosing
suitable parameters. In addition to the theoretical properties, the standard
statistical test for pseudorandom number generators, TestU01 [11], shows that
our new generator AST has a good experimental property as a pseudorandom
number generator.

Here is the plan of this paper. In sections 2 and 3, we will briefly introduce
several examples of pseudorandom number generators related with our new
generator AST and define a linear recurrence equation. Next, we will describe
a construction of finite fields using the specific Artin-Schreier tower starting
from the binary field F2 and a multiplication algorithm in section 4. In sec-
tion 5, we will define certain matrices as an application of section 4, prove
the properties of these matrices and propose a new pseudorandom number
generator using them. In section 6, we will exhibit the results of TestU01.

Here are some conventions. Throughout this paper, the notation Fq is used
as a finite field of q elements, and 22

n
stands for 2(2

n) = exp (2n log 2) as usual.
Basic notations and definitions on pseudorandom numbers are refered to [2]
and [4] and general facts on finite fields are refered to [6].

§2. Pseudorandom number generators related to AST

We will briefly introduce several related pseudorandom number generators ac-
cording to the formulation by Matsumoto-Kurita [7], [8] since our new pseu-
dorandom number generator AST is based on the TGFSR.

2.1. GFSR

Definition 1. (Lewis-Payne [5]) Let n,m and w be positive integers with
n > m. The generalized feedback shift register (GFSR) generator is based on
the linear recurring equation

xj+n := xj+m + xj (j = 0, 1, . . . ),(2.1)

where each xj is a word with components 0 or 1 of size w and + means the
addition as F2-vectors. Thereby, this algorithm generates the same number of
m-sequences as the word length in parallel.

The period of a GFSR sequence is 2n − 1 which is far smaller than the
theoretical upper bound 2nw − 1.
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2.2. TGFSR

Definition 2. (Matsumoto-Kurita [7], [8]) Let n,m and w be positive integers
with n > m. The twisted GFSR generator (TGFSR) is the same as the GFSR
generator except that it is based on the linear recurrence equation

xj+n := xj+m + xjA (j = 0, 1, . . . ),(2.2)

where each xj is a word regarded as a row vector over F2 of size w, A is a
w×w matrix with entries in F2 and + means the addition as F2-vectors. With
a suitable choice of n, m, and A, the TGFSR generator attains the maximal
period 2nw − 1, that is, it produces all possible states except the zerostate in
a period.

The TGFSR generator improves on the drawback of the GFSR generator
as the period of the generated sequence attains the theoretical upper bound
2nw−1. However, the matrix A should be chosen so that xjA can be calculated
fast for practical use. For example, one may choose A of the form

0 1
0 1

. . .
. . .

0 1
a0 a1 · · · aw−2 aw−1



whose characteristic polynomial is given by ϕA(t) = tw +

w−1∑
i=0

ait
i. It is hard

to find a matrix in general which has the both properties that the calculation
of xjA can be done fast and the period of it attains the theoretical upper
bound.

2.3. Mersenne Twister

Mersenne Twister is a pseudorandom number generator which adds two ideas
to the TGFSR to attain these records. One is the adoption of an incomplete
array to realize a Mersenne-prime period, and the other is the existence of fast
algorithm to test the primitivity of the characteristic polynomial of a linear
recurrence.

Definition 3 (Matsumoto-Nishimura [9]). Mersenne Twister is based on the
following linear recurrence equation

xj+n = xj+m + (xuj |xlj+1)A (j = 0, 1, . . . ),(2.3)
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where xlk stands for the extraction of the lower r bits of xk, x
u
k stands for

the extraction of the upper w − r bits of xk, and (xuj |xlj+1) stands for the

concatenation of xuj and xlj+1. It requires several constants, an integer n which
is the degree of the recurrence equation, an integer r with 0 ≤ r ≤ w − 1, an
integer m with 1 ≤ m ≤ n, and a w × w matrix A with entries in F2. Let
xn−1, · · · , x1, x0 be initial seeds. Then, the generator produces xn by the
above recurrence equation with j = 0. By putting j = 1, 2, . . . , the generator
determines xn+1, xn+2, . . . .

If one eliminates the lower r bits from the (n×w)-array xj+n−1, . . . , xj+1, xj ,
then the dimension of the state space is nw−r, which can be taken any number.
This is the great advantage of MT. See [9] for details.

§3. Linear recurrence equations on finite fields

In this section, we explain how to translate n-th order linear recurrence equa-
tions into first order linear recurrence equations. We continue to use the
notations as in the previous section.

Definition 4. LetW be a w-dimensional vector space over F2 which we regard
as the state space of the generator. Let g : Wn → W be a linear state map.
Let xn−1, . . . , x1, x0 be initial nw-arrays with x0, . . . , xn−1 ∈ W . We define
the linear recurrence equation

xj+n = g(xj+n−1, . . . , xj)

as n-th order linear recurrence.
Let S := Wn, and f : S → S be a linear state transition map. Then n-th

order linear recurrence equation can be transformed into the first order linear
recurrence equation as follow:

f(xj+n−1, . . . , xj) = (g(xj+n−1, . . . , xj), xj+n−1, . . . , xj+1) (j = 0, 1, · · · ).

For example, TGFSR (2.2) can be transformed into the first order linear
recurrence map as:

f : (xj+n−1, . . . , xj+1, xj) 7→ (xj+m + xjA, xj+n−1, . . . , xj+2, xj+1)

(j = 0, 1, · · · ),

where f is a linear state transition map, which multiply nw-bit vector by
matrix B,

B =


Iw

Iw

Iw
. . .

Iw
A

 .
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Since we have the equation

(xj+n, xj+n−1, . . . , xj+1) = (xj+n−1, xj+n−2, . . . , xj)B

for j = 0, 1, . . . , it is clear that the period of the sequence of numbers is equal
to just the order of the matrix B.

Similarly, Mersenne Twister (2.3) can be transformed as:

f : (xj+n−1, xj+n−2, . . . , xj+1, {xuj })
7→ (xj+m + (xuj |xlj+1)A, xj+n−1, . . . , xj+2, {xuj+1}) (j = 0, 1, · · · ).

Now, let B be (nw − r)× (nw − r)-array matrix as follows:

B =


Iw

Iw

Iw
. . .

Iw−r

S

 ,

where S =

(
0 Ir
Iw−r 0

)
A, then, one gets

(xj+n, xj+n−1, . . . , x
u
j+1) = (xj+n−1, xj+n−2, . . . , x

u
j )B.

Note that MT can attain the maximal period (see [9]) with a suitable choice
of B, but it is difficult to find such B with maximal period for TGFSR.

Using the expression by linear recurrence equations, we will introduce a
pseudorandom number generator in the following sections which can produce
a pseudorandom number sequence whose period is expected to be close to the
maximum, and even longer than MT with suitable parameters. It also has the
merit that it can be easily implemented to computers because of its simple
structure.

§4. Artin-Schreier towers

In this section we give a construction of finite fields using the Artin-Schreier
tower, which has a beautiful recursive structure. We also give the multiplica-
tion algorithm using this recursive structure.

4.1. Definition of the Artin-Schreier tower

Definition 5 (Ito-Kajiwara-Song [3]). Let K0 be the prime field F2 = {0, 1}
and f1(x) := x2 + x+ 1 be a polynomial in F2[x], we define

K1 := K0[x]/(f1(x)) = K0(α1) = F2(α1) = F22 ,
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where α1 := x̄ ∈ K1 be the image of x in K1. Suppose that αr−1 and fr−1(x)
are defined for r ≥ 2. Define fr(x), Kr and αr as follows:

fr(x) := x2 + x+ (α1 · · ·αr−1),

Kr := Kr−1[x]/(fr(x)),

αr := x̄ ∈ Kr = Kr−1(αr).

Then we have the tower of finite fields inductively:

K0 ⊂ K1 = K0(α1) ⊂ K2 = K1(α2) ⊂ · · · ⊂ Kr = Kr−1(αr) ⊂ · · · .

We call this sequence of extensions the Artin-Schreier tower.

The polynomial fr in the definition is known to be irreducible over Kr−1

by analyzing the Artin-Schreier extensions (see [3]). Because of its natural
definition of the tower, this Artin-Schreier tower has a beautiful recursive
structure which is a key structure of our current work.

Let us explain the recursive structure. Since the basis of K1 over K0 is 1
and α1, we have an expression

K1 = {s01 + t0α1 | s0, t0 ∈ K0}.

The basis ofK2 overK1 is 1 and α2, then the basis ofK2 overK0 is 1, α1, α2, α1α2,
thus we have an expression

K2 = {s11 + t1α2 | s1, t1 ∈ K1}
= {s011 + t01α1 + s02α2 + t02α1α2 | s01, t01, s02, t02 ∈ K0}.

Similarly, the basis of Kr over Kr−1 is 1 and αr, so that we have the basis of
Kr over K0 as

(

2r−2︷ ︸︸ ︷
22︷ ︸︸ ︷

2︷︸︸︷
1, α1

∣∣α2, α1α2

∣∣∣ . . . ∣∣∣∣ αr−1, α1αr−1, . . . , α1 · · ·αr−1︸ ︷︷ ︸
2r−1

∣∣∣∣∣ αr, α1αr, . . . , α1 · · ·αr

︸ ︷︷ ︸
2r

) .

Note that the last half of this basis is given by multiplying αr with the first
half of this basis which is the recursive structure of the basis of this extensions.
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4.2. The multiplication algorithm

Using the recursive structures of the basis exhibited above, we can make an
algorithm of multiplication on the Artin-Schreier extensions without the power
expression of each element. First we recall a vector expression of the elements
of the fields (cf. [10]). We write s1 + s2αr ∈ Kr as (s1, s2) with s1, s2 ∈
Kr−1. And we also write the multiplication of two elements of Kr, (s1 +
s2αr)(t1 + t2αr) as (s1, s2)(t1, t2). Taking the multiplication of two elements
s1 + s2αr, t1 + t2αr ∈ Kr inside the field Kr, we have

(s1 + s2αr)(t1 + t2αr) = s1t1 + (s1t2 + s2t1)αr + s2t2α
2
r .

Since αr is a root of fr(x) = x2 + x+ αr−1 · · ·α1, we have

α2
r = αr + αr−1 · · ·α1,

thus we can write

(s1 + s2αr)(t1 + t2αr) = (s1t1 + s2t2αr−1 · · ·α1) + (s1t2 + s2t1 + s2t2)αr.

Since (s1t1+ s2t2αr−1 · · ·α1) and (s1t2+ s2t1+ s2t2) are the elements of Kr−1

we have

(s1, s2)(t1, t2) = (s1t1 + s2t2αr−1 · · ·α1, s1t2 + s2t1 + s2t2).

Doing the above operation recursively, we can express an element of Kr

as a vector of length 2r over K0 with the basis shown in the end of the last
subsection. Note that αr−1 · · ·α1 can be regarded as the vector (0, · · · , 0, 1)
over K0. By the argument above, we have the matrix which expresses the
multiplication of two elements.

Theorem 1 (Song-Ito [10]). For elements (s1, s2) and (t1, t2) of K1, let

A(1)(t1, t2) be the 2×2 matrix defined by A(1)(t1, t2) :=

(
t1 t2
t2 t1 + t2

)
. Then

the multiplication of (s1, s2) and (t1, t2) is expressed as

(s1, s2)(t1, t2) = (s1, s2)

(
t1 t2
t2 t1 + t2

)
.

Similarly, for each r ≥ 1 and two elements (s1, s2, . . . , s2r) and (t1, t2, · · · , t2r)

of Kr, define the 2r × 2r matrix A(r)(t1, . . . , t2r) as

(
S T
U V

)
, where 2r−1 ×

2r−1 matrices S, T, U, V are defined recursively as follows:

S = A(r−1)(t1, . . . , t2(r−1)),

T = A(r−1)(t2(r−1)+1, . . . , t2r),

U = A(r−1)(t2(r−1)+1, . . . , t2r) ·A
(r−1)(0, . . . , 1),

V = A(r−1)(t1, . . . , t2(r−1)) +A(r−1)(t2(r−1)+1, . . . , t2r).
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Then the matrix A(r)(t1, . . . , t2r) gives the multiplication of (s1, s2, . . . , s2r)
and (t1, t2, · · · , t2r) as

(s1, s2, . . . , s2r)(t1, t2, . . . , t2r) = (s1, s2, . . . , s2r) ·A(r)(t1, . . . , t2r)

= (s1, s2, . . . , s2r)

(
S T
U V

)
.

Proof. The case for K1 is clear from the argument above the theorem.

When r = 2, let (s1, s2, s3, s4), (t1, t2, t3, t4) be two elements of K2, then

(s1, s2, s3, s4)(t1, t2, t3, t4) = ((s1, s2) + (s3, s4)α2)((t1, t2) + (t3, t4)α2)

= (s1, s2)(t1, t2) + ((s1, s2)(t3, t4) + (s3, s4)(t1, t2))α2 + (s3, s4)(t3, t4)α
2
2

= ((s1, s2)(t1, t2) + (s3, s4)(t3, t4)α1)

+ ((s1, s2)(t3, t4) + (s3, s4)(t1, t2) + (s3, s4)(t3, t4))α2

= ((s1, s2) ·A(1)(t1, t2) + (s3, s4) ·A(1)(t3, t4) ·A(1)(0, 1))

+ ((s1, s2) ·A(1)(t3, t4) + (s3, s4) ·A(1)(t1, t2) + (s3, s4) ·A(1)(t3, t4))α2

= (s1, s2, s3, s4)

 A(1)(t1, t2) A(1)(t3, t4)

A(1)(t3, t4) ·A(1)(0, 1) A(1)(t1, t2) +A(1)(t3, t4)


= (s1, s2, s3, s4) ·A(2)(t1, t2, t3, t4).

For the case Kr, let (s1, . . . , s2r) and (t1, . . . , t2r) be two elements of Kr.

We obtain the following by induction:

(s1, . . . , s2r)(t1, . . . , t2r)

= ((s1, . . . , s2r−1) + (s2r−1+1, . . . , s2r)αr)

× ((t1, . . . , t2r−1) + (t2r−1+1, . . . , t2r)αr)

= (s1, . . . , s2r−1)(t1, . . . , t2r−1)

+ ((s1, . . . , s2r−1)(t2r−1+1, . . . , t2r) + (s2r−1+1, . . . , s2r)(t1, . . . , t2r−1))αr

+ (s2r−1+1, . . . , s2r)(t2r−1+1, . . . , t2r)α
2
r
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= (s1, . . . , s2r−1)(t1, . . . , t2r−1)

+ ((s1, . . . , s2r−1)(t2r−1+1, . . . , t2r) + (s2r−1+1, . . . , s2r)(t1, . . . , t2r−1))αr

+ (s2r−1+1, . . . , s2r)(t2r−1+1, . . . , t2r)(αr + (αr−1 · · ·α1))

= (s1, . . . , s2r−1)(t1, . . . , t2r−1)

+ ((s1, . . . , s2r−1)(t2r−1+1, . . . , t2r) + (s2r−1+1, . . . , s2r)(t1, . . . , t2r−1))αr

+ (s2r−1+1, . . . , s2r)(t2r−1+1, . . . , t2r)(αr +A(r−1)(0, . . . , 1))

= (s1, . . . , s2r)

 S T

U V


= (s1, . . . , s2r) ·A(r)(t1, . . . , t2r).

Along the way, we get an algorithm for multiplication of two elements of
Kr as below:

Algorithm
Input: r, (s1, . . . , s2r ), (t1, . . . , t2r )
Output: (u1, . . . , u2r )
Procedure:
1. M0

i ← ti (1 ≤ i ≤ 2r), U0 ← 1;
2. for (j = 1, j ≤ r, j = j + 1);

for (i = 1, i ≤ 2r−j , i = i+ 1);

M j
i ←

(
M

(j−1)
2i−1 M

(j−1)
2i

M
(j−1)
2i U (j−1) M

(j−1)
2i−1 +M

(j−1)
2i

)

U j ←

(
0 U (j−1)

(U (j−1))
2

U (j−1)

)
3. (u1, . . . , u2r ) ← (s1, . . . , s2r )M

r
1

4. return (u1, . . . , u2r )

§5. New generator using the Artin-Schreier tower

In this section, we define a matrix, called Br, with a parameter r > 0, which
can be proved to have a large order, and give a new linear recurrence. By the
new linear recurrence, we have a new pseudorandom number generator, which
conjecturally attains near the maximum period.
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5.1. The definition and the order of Br

Definition 6. The multiplication of x, (1 + αr) ∈ F22r can be written as
follows:

x(1 + αr) = x(1, 0, . . . , 0︸ ︷︷ ︸
2r−1

∣∣1, 0, . . . , 0) = x ·A(r)(1, 0, . . . , 0︸ ︷︷ ︸
2r−1

∣∣1, 0, . . . , 0)

= x ·


I I

A(r−1)(0, . . . , 0, 1︸ ︷︷ ︸
2r−1

) O

 .

Then we define the 2r × 2r matrix Br as A(r)(1, 0, . . . , 0︸ ︷︷ ︸
2r−1

∣∣1, 0, . . . , 0), and the

2r−1 × 2r−1 matrix Ar−1 as A(r−1)(0, . . . , 0, 1︸ ︷︷ ︸
2r−1

). Here I is the identity matrix,

and O is the zero matrix.

Note that Ar+1 can be written as Ar+1 =

(
0 Ar

Ar
2 Ar

)
by Theorem 1, and

Br+1 can be written as Br+1 =

(
I I
Ar 0

)
by the definition. Although the

order of Br cannot reach the maximum order 22
r − 1 of 2r × 2r matrices, it is

fairly big and conjecturally near to the upper bound. We are going to evaluate
both the orders of Ar and Br after preparing some lemmas.

Lemma 1. For n ≥ 2 and k ≥ 1, write ϕk(An) := A2k−1

n +A2k−2

n +· · ·+A2
n+An.

Then we have

An+1
2k =

(
A2k

n ϕk(An) A2k
n

A2k+1
n A2k

n (ϕk(An) + I)

)
, Bn+1

2k =

(
ϕk(An) + I I

An ϕk(An)

)
.

Proof. Since An+1 =

(
O An

An
2 An

)
by definition, then

An+1
2 =

(
An

3 An
2

An
3 An

3 +An
2

)
=

(
A21

n ϕ1(An) A21
n

A21+1
n A21

n (ϕ1(An) + I)

)
.

Suppose that An+1
2k−1

=

(
A2k−1

n ϕk−1(An) A2k−1

n

A2k−1+1
n A2k−1

n (ϕk−1(An) + I)

)
. Then
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we can calculate A2k
n+1 as follows:

An+1
2k = (An+1

2k−1
)2

=

(
A2k

n ϕ2
k−1(An) +A2k−1+2k−1+1

n A2k−1+2k−1

n

A2k−1+2k−1+1
n A2k−1+2k−1+1

n +A2k
n ϕ2

k−1(An) +A2k
n

)

=

(
A2k

n ϕk(An) A2k
n

A2k+1
n A2k

n (ϕk(An) + I)

)
.

We get the first assertion by induction, and we can prove the remaining asser-
tion similarly.

Lemma 2. If A
22

n
−1

3
n = I is satisfied, then ϕ2n(An) + I = O holds.

Proof. We prove by induction. When n = 1, ϕ21(A1) + I = A2
1 + A1 + I =(

1 1
1 0

)
+

(
0 1
1 1

)
+

(
1 0
0 1

)
= O.

Suppose that ϕ2n(An) + I = O. Let us express

ϕ2n+1(An) + I = A22
n+1−1

n+1 +A22
n+1−2

n+1 + · · ·+A2
n+1 +An+1 + I

in the form

(
T1 T2

T3 T4

)
.

By Lemma 1, we can express each term as a block matrix, thus we have

T3 = A22
n+1−1+1

n +A22
n+1−2+1

n + · · ·+A22
n+1−2n+1

n +A22
n−1+1

n

+ · · ·+A2+1
n +A1+1

n +O

= An(A
22

n+1−1

n +A22
n+1−2

n + · · ·+A22
n+1−2n

n +A22
n−1

n + · · ·+A2
n +An)

= An[(ϕ2n(An))
22

n

+ (ϕ2n(An))]

= An(I
22

n

+ I)

= O,
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T1 = A22
n+1−1

n ϕ2n+1−1(An) + · · ·+A22
n+1−2n+1

n ϕ2n+1−2n+1(An)

+A22
n+1−2n

n ϕ2n+1−2n(An) +A22
n−1

n ϕ2n−1(An) + · · ·+A2
nϕ1(An)

+O + I

= A22
n+1−1

n (A22
n+1−2

n +A22
n+1−3

n + · · ·+A22
n+1−2n

n +A22
n−1

n + · · ·+An)

+ · · ·

+A22
n+1−2n+1

n (A22
n+1−2n

n +A22
n−1

n + · · ·+An)

+A22
n+1−2n

n (A22
n−1

n + · · ·+An)

+A22
n−1

n ϕ2n−1(An) + · · ·+A2
nϕ1(An) +O + I.

Since the factor ϕ2n(An) = A22
n−1

n + · · · + An appears many times in the
expression of T1, we substitute it to the above equation to get the following.

T1 = (A22
n+1−1

n + · · ·+A22
n+1−2n

n )ϕ2n(An)

+ {(A22
n−1

n ϕ2n−1(An))
22

n

+ · · ·+ (A2
nϕ1(An))

22
n

}

+A22
n−1

n ϕ2n−1(An) + · · ·+A2
nϕ1(An) + I

= I2
2n

I + I

+A22
n−1

n ϕ2n−1(An)
(
(A22

n−1

n ϕ2n−1(An))
22

n−1 + I
)

+ · · ·+A2
nϕ1(An)

(
(A2

nϕ1(An))
22

n−1 + I
)
.

Since (An)
(22

n−1)/3 = I, the last row above equals O.
For T2 (resp. T4), one can get the result by the same argument as for T3

(resp. T1).

Lemma 3. If (An)
22

n
−1

3 = I is satisfied, then we have An+1
22

n
+1 =

(
A3

n O
O A3

n

)
and Bn+1

22
n
+1 =

(
An O
O An

)
.

Proof. By the assumption (An)
22

n
−1

3 = I, it holds A22
n

n = An. Then using
Lemma 1 and Lemma 2, we have

An+1
22

n

=

(
A22

n

n ϕ2n(An) A22
n

n

A22
n
+1

n A22
n

n (ϕ2n(An) + I)

)
=

(
An An

A2
n O

)
.

Thus

An+1
22

n
+1 =

(
An An

A2
n O

)(
O An

A2
n An

)
=

(
A3

n O
O A3

n

)
.
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Similarly,

Bn+1
22

n

=

(
ϕ2n(An) + I I

An ϕ2n(An)

)
=

(
O I
An I

)
.

Thus Bn+1
22

n
+1 =

(
O I
An I

)(
I I
An O

)
=

(
An O
O An

)
.

Theorem 2. For n ≥ 2, we have

A
22

n
−1

3
n = B

22
n
−1

3
n = I.

Proof. We prove by induction. For n = 2, it is clear that o(A2) = 5 by direct
calculation.

Suppose the assertion holds for An, that is, A
22

n
−1

3
n = I holds.

Then by Lemma 3 we have An+1
22

n
+1 =

(
A3

n O
O A3

n

)
, and by using the

induction hypothesis again, we have

An+1
(22

n
+1) 2

2n−1
3 = An+1

22
n+1

−1
3 = I.

Using Lemma 3 again, we have the same assertion for the matrix Bn.

Remark 1. It is clear that 22
n−1 = Fn−1 ·Fn−2 ·· · ··F1 ·F0, where Fn = 22

n
+1

is the n-th Fermat number. Therefore we have

22
n − 1

3
= Fn−1 · Fn−2 · · · · · F1.

From Theorem 2, we can write o(An) = sn−1 · tn−1, where sn−1 is a factor

of Fn−1 and tn−1 is a factor of 22
n−1−1
3 . One can show that A

Fn−1
n 6= I and

A
22

n−1
−1

3
n 6= I holds by Lemmas above, thus we have sn−1 6= 1 and tn−1 6= 1.

Furthermore, we have o((An+1)
Fn) = o(A3

n) = o(An) by Lemma 3 because

3 is relatively prime to 22
n−1
3 . Let us write Fn = sn · un. Since un is relatively

prime to 22
n+1−1
3 and sn is a factor of the order of An+1, we have o(An+1)/sn =

o(An). Thus we have the following theorem by induction.

Theorem 3. The order of the matrix An is given as follows:

o(An) = sn−1 · sn−2 · · · · · s1.

Here, si is a nontrivial factor of the i-th Fermat number Fi = 22
i
+ 1.
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By the same argument above, we know the order of the matrix Bn+1 is of
the form s′n × t′n with s′n 6= 1 and t′n 6= 1. Then we have o(Bn+1)/s

′
n = o(An)

by Lemma 3, and have the following theorem for the matrix Bn.

Theorem 4. The order of the matrix Bn is given as follows:

o(Bn) = s′n−1 · o(An) = s′n−1 · sn−2 · · · · · s1,

where s′n−1 is a nontrivial factor of the n-th Fermat number Fn = 22
n−1

+ 1
and sl’s are same as in Theorem 3.

By the work of Lucas (see for example, [1] Theorem 1.3.5), every nontrivial
factor of Fn must have the form k · 2n+2 + 1 with k ≥ 3, thus we have the
evaluation of the order from the below.

Corollary 1. o(An) and o(Bn) are bounded below by 3n−1 · 2
1
2
(n+1)(n+2)−3.

By various calculations and the known facts on Fermat numbers, we expect
all sl’s and s′l’s are equal to Fl’s for every l.

Conjecture 1. The orders of the matrices An and Bn both are equal to

22
n − 1

3
= Fn−1 · Fn−2 · · · · · F1.

5.2. New pseudorandom number generator AST

From now on, we propose a new pseudorandom number generator AST using
the matrix Br defined above and give a linear recurrence equation of AST.

Definition 7. Let W be a w-dimensional vector space over F2 which is the
state space of the generator. Let n, w and r be positive integers with n ≥ 2
and r ≥ 2 so that nw := 2r. Define a linear state map g : Wn → W

n
2 as

below.

Put xn−1, . . . , x1, x0 ∈ W which we regard as an initial nw-array. We define
the linear recurrence by

(xj+ 3
2
n−1, . . . , xj+n) := g(xj+n−1, . . . , xj)(5.1)

:= (xj+ 1
2
n−1, . . . , xj)×Ar−1

+ (xj+n−1, . . . , xj+ 1
2
n) (j = 0, 1, . . . ),

where Ar−1 is the matrix defined in Definition 6.
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Put S := Wn, then the equation (5.1) can be transformed into the first
order linear recurrence from S to S:

f(xj+n−1, . . . , xj) = (g(xj+n−1, . . . , xj), xj+n−1, . . . , xj+ 1
2
n)

= (xj+ 3
2
n−1, . . . , xj+n, xj+n−1, . . . , xj+ 1

2
n) (j = 0, 1, . . . ).(5.2)

We call this pseudorandom number generator the Artin-Schreier Tower (AST).

This f is a linear state transition map. Since 2r = nw, the linear recurrence
equation (5.2) is same as multiplying an nw-bit vector by Br, where Br is is
already defined in Definition 6 as

Br =

(
Ir−1 Ir−1

Ar−1 O

)
.

Thus, for nonnegative integer j, we have

(xj+ 3
2
n−1, . . . , xj+n, xj+n−1, . . . , xj+ 1

2
n)

= (xj+n−1, . . . , xj+ 1
2
n, xj+ 1

2
n−1, . . . , xj)×Br.

Start with initial seeds xn−1, . . . , x1, x0 the state transition is given as follows:

(xn−1, · · · , xn
2
, xn

2
−1, · · · , x0)×Br

↓

(x 3
2
n−1, · · · , xn, xn−1, · · · , x 1

2
n)×Br

↓
...

(x 1
2
n−1, · · · , x0, · · · · · · · · · · · · )×Br

↓

(xn−1, · · · , x 1
2
n, x 1

2
n−1, · · · , x0).

There are some merits for the new generator AST. One is that AST can
generate n/2 words by multiplying Br for each time. And the other is that
the period of the sequence is n

2 ×o(B) which is conjecturally n/2× (22
r −1)/3.

Example 1. Let us consider the case r = 11. In this case, Br is a 211 × 211

matrix and nw = 211 holds. Take the parameter w = 25 = 32, for example,
then n = 26 = 64. Let x63, . . . , x32, x31, . . . , x0 be initial seeds. The transfor-
mation f : F

2211
→ F

2211
produces a pseudorandom number sequence starting
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with the initial seeds x63, . . . , x32, x31, . . . , x0. More concretely, the 211 × 211

matrix B11 is as follows:

B11 =



Iw Iw
. . .

. . .

Iw Iw

A10 O


.

Then the conjectured period of AST with r = 11 is
64

2
·2

211 − 1

3
≈ 3.447×10617.

Finally, we mention the generation speed using AST compared to MT19937,
whose period is approximately 1.3 × 106001. The computational results show
that its generation speed is rather slower than TGFSR, which is a demerit
of AST. In fact, AST with r = 11 needs approximately 465 times longer
CPU time than Mersenne Twister MT19937. For AST with r = 14 which
has conjecturally almost same period with MT19937, it needs approximately
1.2 × 104 times longer CPU time than MT19937. For AST with r = 16
which has conjecturally 1013729 times longer period than MT19937, it needs
approximately 8.8× 104 times longer CPU time than MT19937.

§6. Results of TestU01

In this section, we exhibit the results of TestU01 [11], which is a C library
for empirical testing of pseudorandom number generators by P. L’Ecuyer and
R. Simard. We evaluate the performance of our pseudorandom number gen-
erator AST using this library.

We implemented AST in C Language and tested it by five batteries in
TestU01 Alphabit, Rabbit, Small Crush, Crush and Big Crush in the case of
r = 11, w = 32, n = 64, whose conjectured period is approximately 3.447 ×
10617. Here is the table of the results.

Battery Parameters # Statistics # Failures

Alphabit 32× 109 bits 17 0
Rabbit 32× 109 bits 40 0
Small Crush Standard 15 0
Crush Standard 144 0
Big Crush Standard 160 2
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Through these 376 statistical tests in the five batteries, only two tests called
LinearComp with different parameters failed in the battery Big Crush and all
other tests were passed. LinearComp measures the F2-linear dependency of
the given sequence, and it is quite natural that LinearComp of AST fails since
AST is obviously linearly generated. The p-values of the two tests LinearComp
were 1− eps1, where eps1 means a value less than 1.0× 10−15.

Therefore, our new pseudorandom number generator AST has a good sta-
tistical property.
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