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Abstract. The object of the present paper is to introduce a type of non-flat
Riemannian manifolds called almost pseudo cyclic Ricci symmetric manifold and
study its geometric properties. Among others it is shown that an almost pseudo
cyclic Ricci symmetric manifold is a special type of quasi-Einstein manifold. We
also study conformally flat almost pseudo cyclic Ricci symmetric manifolds and
prove that such a manifold is isometrically immersed in an Euclidean manifold
as a hypersurface. The existence of such notion is ensured by a non-trivial
example.
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§1. Introduction

By extending the definition of pseudo Ricci symmetric manifold, very recently
M. C. Chaki and T. Kawaguchi [8] introduced the notion of almost pseudo
Ricci symmetric manifold. A Riemannian manifold (M™, g)(n > 2) is called
an almost pseudo Ricci symmetric manifold if its Ricci tensor S of type (0, 2)
is not identically zero and satisfies the condition

(1.1) (VxS)(Y,Z) = [A(X) + B(X)]S(Y, Z)
FA(Y)S(X,Z) + A(Z)S(Y,X) forall X, Y, Z € (M),

where V denotes the operator of covariant differentiation with respect to the
metric tensor g and x (M) is the Lie algebra of all smooth vector fields on M,;
and A and B are nowhere vanishing 1-forms associated with the unique vector
field U and V respectively such that g(X,U) = A(X) and g(X,V) = B(X) for
all X € x(M). The vector fields U, V are called the generators of the manifold.
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The 1-forms A and B are called associated 1-forms and an n-dimensional man-
ifold of this kind is denoted by A(PRS),. If, in particular, B = A then (1.1)
reduces to the notion of pseudo Ricci symmetric manifold [6]. Extending the
notion of almost pseudo Ricci symmetric manifold, in the present paper we
introduce the notion of almost pseudo cyclic Ricci symmetric manifold. A
Riemannian manifold (M",g)(n > 2) (this condition is assumed throughout
the paper) is said to be an almost pseudo cyclic Ricci symmetric manifold if its
Ricci tensor S of type (0, 2) is not identically zero and satisfies the following:

(1.2) (Vx)(Y, 2) + (VyS)(Z,X) + (V25)(X,Y)
= [A(X) + B(X)]S(Y, 2) + A(Y)S(X, Z) + A(Z)S(Y, X),

where A and B are nowhere vanishing 1-forms associated to the unique vector
field U and V respectively such that A(X) = ¢(X,U) and B(X) = g(X,V)
for all X and V denotes the operator of covariant differentiation with re-
spect to the metric tensor g. Such an n-dimensional manifold is denoted by
A(PCRS)y,.

The present paper is organized as follows. Section 2 is concerned with some
basic properties of A(PCRS),. Every A(PRS),, is A(PCRS),, but not con-
versely. However, it is proved that an A(PCRS), with Codazzi type Ricci
tensor is an A(PRS),. Again it is shown that an A(PCRS), is a special type
of quasi-Einstein manifold ([7], [10], [11]) and also it is proved that the scalar
curvature of an A(PCRS),, is always non-zero at every point of the manifold.

In Section 3 we investigate conformally flat A(PCRS),, and prove that such
a manifold is of quasi-constant curvature. It is shown that in a conformally

flat A(PCRS),, the unique unit vector field A defined by j% =T(X) =

g(X,\), for all X € x(M), is a unit proper concircular vector field and hence
such a manifold is a subprojective manifold in the sense of Kagan ([1], [20]).
Again it is proved that a conformally flat A(PCRS), can be expressed as

the warped product IXe» M , where ( M , 5) is an (n — 1) dimensional Einstein
manifold [13].

As a generalization of subprojective manifold B. Y. Chen and K. Yano [9]
introduced the notion of special conformally flat manifold. It is shown that a
conformally flat A(PCRS)),, with non-constant and negative scalar curvature
is a special conformally flat manifold and also it is proved that such a simply
connected manifold can be isometrically immersed in an Euclidean manifold
E"t1 as a hypersurface.

A non-zero vector X on a semi-Riemannian manifold M is said to be time-
like (resp., non-spacelike, null, spacelike) if it satisfies g(X, X) < 0 (resp. <0,
= 0, > 0) [15]. Since A is a unit vector field on the Riemannian manifold
M = A(PCRS),, with metric tensor g, it can be easily shown [15](p.148) that
g=g¢g—2T ®T is a Lorentz metric on M. Hence A becomes timelike so that



ON ALMOST PSEUDO CYCLIC RICCI SYMMETRIC MANIFOLDS 3

the resulting Lorentz manifold (M, g) is time-orientable. The last section deals
with a non-trivial example of A(PCRS),,.

§2. Some basic properties of A(PCRS),

This section deals with various basic geometric properties of A(PCRS),,. Let
@ be the symmetric endomorphism of the tangent bundle of the manifold
corresponding to the Ricci tensor S, ie., g(QX,Y) = S(X,Y) for all vector
fields X, Y.

Let {e; : i =1,2,--- ,n} be an orthonormal basis of the tangent space at
each point of the manifold. Then setting Y = Z = ¢; in (1.2) and then taking
summation over i, 1 < ¢ < n, we obtain

(2.1) 2dr(X) = r[A(X) + B(X)] + 2A(QX),

where r is the scalar curvature of the manifold. Again contracting (1.2) with
respect to Z and X, and then replacing Y by X in the resulting equation, we
get

(2.2) 2dr(X) =rA(X) +2A(QX) + B(QX).
From (2.1) and (2.2) it follows that

(2.3) B(QX) =rB(X),
(2.4) S(X,V)=rg(X,V).

This leads to the following:

Proposition 1. The scalar curvature r of an A(PCRS),, is an eigenvalue of
the Ricci tensor S corresponding to the eigenvector V.

We now suppose that the Ricci tensor of an A(PCRS),(n > 2) is of Codazzi
type ([12],[16]). Then we have

(2.5) (VxS)(Y, Z) = (VyS)(Z, X) = (Vz9)(X,Y)
for all X, Y, Z and hence the defining condition (1.2) of an A(PCRS),, reduces
to
(2.6) (VxS)(Y, 2)
=[A(X)+ B(X)]S(Y,2)+ A(Y)S(Z,X) + A(Z)S(X,Y),

where A(X) = g(X,2U) and B(X) = g(X,%V) are nowhere vanishing 1-
forms, and consequently the manifold is A(PRS),,. This leads to the following:
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Proposition 2. If the Ricci tensor of an A(PCRS),, is of Codazzi type, then
it is an A(PRS)y,.

Interchanging X and Y in (1.2) we obtain

(VyS)(X,Z)+ (VxS)(Z,Y) + (VzS)(Y, X)
= [A(Y)+B(Y)]S(X,Z) + A(X)S(Y, Z) + A(Z)S(Y, X).

By virtue of (1.2) and above equation, it follows that

(2.7) B(X)S(Y,Z)=B(Y)S(X,Z) VX, Y, Z € x(M).

Setting Y =V in (2.7) we get

(2.8) S(X,7) = B(IV)B(X)B(QZ).

In view of (2.3), (2.8) yields

(2.9) S(X,Z) =rT(X)T(Z),

where T(X) = g(X,\) = ———=DB(X), X being a unit vector field associated

B(V)
with the nowhere vanishing 1-form 7. From (2.9) it follows that if » = 0 at
every point of the manifold, then S(X,Z) = 0, which is inadmissible by the
definition of A(PCRS),. Hence we can state the following:

Proposition 3. The scalar curvature of an A(PCRS),, is non-zero at every
point of the manifold, and its Ricci tensor is of the form (2.9).

A Riemannian manifold (M",g)(n > 2) is said to be quasi-Einstein man-
ifold ([7], [10], [11]) if its Ricci tensor S of type (0, 2) is not identically zero
and satisfies the following:

(2.10) S(X,Y) = ag(X,Y) + BD(X)D(Y),

where «, 8 are scalars of which 8 # 0 and D is a nowhere vanishing 1-form
associated with the unique unit vector field o defined by ¢(X, o) = D(X) for
all X € x(M). Hence from (2.9) we can state the following:

Proposition 4. An A(PCRS),, is a special type of quasi-Einstein manifold.
If an A(PCRS),(n > 2) is Einstein, then from (1.2) it follows that
(2.11) {AX) + B(X)}g(Y,2) + A(Y)g(Z, X) + A(Z)g(X,Y) = 0,

as r is non-zero at every point of the manifold. From (2.11), we can easily get
B(X) = 0, which is inadmissible by the definition of A(PCRS),. Hence we
can state the following;:

Proposition 5. There does not exist any Einstein A(PCRS),(n > 2).
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§3. Conformally flat A(PCRS),

A Riemannian manifold (M™,g)(n > 2) is said to be the manifold of quasi-
constant curvature ( [2], [3], [4], [5], [17]) if it is conformally flat and its
curvature tensor R of type (0, 4) has the following form:

(31) R<X> Y> Z7 W) = al[g(y7 Z)g(Xv W) - g(X> Z)g(Ya W)]
+azlg(Y, Z)A(X)A(W) — g(X, Z)A(Y)A(W)
+9(X, W)A(Y)A(Z) — g(Y,W)A(X)A(Z)],
where A is a nowhere vanishing 1-form and a1, as are scalars of which ag # 0.

Let a Riemannian manifold (M", g)(n > 3) be conformally flat. Then the
curvature tensor R of type (0, 4) is of the following form:

(32) RX,Y,ZW) = - [{S(Y, 2)g(X, W) — S(X, Z)g(¥, W)
+S(X,W)g(Y,Z) — S(Y,W)g(X,Z)}

_ﬁ{g(y, 2)9(X, W) — g(X, Z)g(Y,W)}].

Using (2.9) in (3.2) we obtain

(33)  R(X,Y,Z,W) = alg(Y,2)9(X, W) —g(X, Z)g(Y,W)]
+blg(X, W)T(Y)T(Z) — g(Y,W)T(X)T(Z)
gV, 2)T(X)T(W) — g(X, Z)T(Y)T(W)],

_l_

where a = —m and b = 5 are non-zero scalars. By virtue of (3.1),
it follows from (3.3) that a conformally flat A(PCRS),(n > 3) is a manifold

of quasi-constant curvature. This leads to the following:

Theorem 1. Every conformally flat A(PCRS)y,(n > 3) is a manifold of quasi-
constant curvature.

Since in a 3-dimensional Riemannian manifold the conformal curvature
tensor C' vanishes, the relation (3.2) holds and hence (3.3) also holds. This
leads to the following;:

Corollary 1. Every A(PCRS)s is a manifold of quasi-constant curvature.

The conformal curvature tensor C of type (1, 3) of a Riemannian manifold
(M™, g) (n > 3) is defined by

(34)  C(X,Y)Z = R(X,Y)Z-— 5[5(1@ 2)X
—S(X,2)YY +9(Y,2)QX — g(X, Z2)QY]

+m[g(ya 2)X —g9(X,2)Y].
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Differentiating (3.4) covariantly and then contracting we obtain
1
(3.5)(divC)(X,Y)Z = (divR)(X,Y)Z — m[(VXS)(Y, Z)

—(Vr9)(X, 2) + %dr(X)g(Y, Z) - %dr(Y)g(X, 2))
1
T D) X 2) —dr(V)g(X, 2)],

where ‘div’ denotes the divergence. Again it is known that in a Riemannian
manifold, we have

Consequently by virtue of the above relation, (3.5) takes the form

(3.6) (divC)(X,Y)Z = Z:;[(VXS)(Y,Z)f(VyS)(X,Z)

b
2(n—1)
Let us consider a conformally flat A(PCRS),(n > 3). Then we have

{dr(X)g(Y, Z) — dr(Y)g(X, Z)}].

(divC)(X,Y)Z =0
and hence (3.6) yields
(3.7) (Vx9(Y, Z) = (VyS)(X, Z)

_ 2(711_1>[dr(X)§/(Y, Z) —dr(Y)g(X, Z)].

Again from (2.9) we have

(3.8) (VyS)(X, Z)
= dr(Y)T(X)T(2) + r[(VyT)(X)T(Z) + T(X)(VyT)(Z)]-

Using (3.8) in (3.7) we obtain

(3.9)  dr(X)T(Y)T(Z) = dr(Y)T(X)T(Z) + r[(VxT)(Y)T(Z)

+TY)VxT)(Z) = (VyT)X)T(Z) = T(X)(VyT)(Z)]
1
— 5 A (X)alY. 2) — dr(V)g(X, 7).
Setting Y = Z = ¢; in (3.9) and taking summation over i,1 < i < n, we get
(3.10) dr(NT(X) + r{(V,\T)(X) + T(X) Z(VeiT)(ei)} = %dr(X).

=1
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Again putting Y = Z = X in (3.9) we obtain

(3.11) F(VAT)(X) = ;Z:;[dr(X) — dr(V)T(X).
Using (3.11) in (3.10) we get
(3.12)
- n—2 1
rT(X) ;(VaiT)(ei) T 3y 0 + gy drNT(X) =0

Setting X = X in (3.12) we get
(3.13) 3 (Ve ) (er) = —%dr()\).

=1
From (3.12) and (3.13), it follows that
(3.14) dr(X) = dr(\)T(X).

Again plugging Z = X in (3.9) and then using (3.14), we obtain
H(TXT)(Y) = (VyT)(X)} =0,

which implies that

(3.15) (VxT)(Y) = (VyT)(X) =0,

since 7 # 0. The relation (3.15) implies that the 1-form 7" is closed. In view
of (3.14) it follows from (3.11) that

(3.16) (VAT)(Z) =0,

which implies that V A = 0. The existence of the integral curve of A is ensured
by Proposition 49 of ([15], p. 28). Hence we can state the following:

Theorem 2. In a conformally flat A(PCRS),(n > 3), the integral curves of
the vector field \ are geodesics.

Also setting Y = A in (3.9) we obtain by virtue of (3.14) and (3.16) that

1

(3.17) (VXT)(Z) = 30—,

dr(N[T(X)T(Z) — 9(X, Z)].

Let us now consider a non-zero scalar function f = ﬁdr()\), where the

n—1)
scalar curvature r is non-constant. Then we have

1 1

(3.18) Vxf= —Wdr(/\)dr(X) + mdQT(A’)Q'
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From (3.14) it follows that
(3.19) Pr(X,Y) = d*>r(\Y)T(X) + dr(\)(VyT)(X).

Since a second covariant differential of any function is a symmetric 2-form,
(3.15) and (3.19) give

(3.20) Pr(\Y)T(X) = d*>r(\, X)T(Y).
Replacing Y by A in (3.20) we have
(3.21) d’r(\ X) = Pr(\NT(X) = —yT(X),

where 1) = —d?r(\, \) is a scalar function. Using (3.14) and (3.21) in (3.18)
we obtain

(3.22) Vxf=pT(X),

where

p=— [ + {dr(A)}’]

2(n—1)r?
is a scalar. Since r is non-zero and non-constant function, dr(X) # 0 for all
X and hence dr(\) # 0, and therefore ¥ # 0. Consequently p is a non-zero
scalar. We now consider an 1-form w defined by

1

W(X) = 5o drNT(X) = JT(X).

Then by virtue of (3.15) and (3.22) we have

dw(X,Y) = 0.
Hence the 1-form w is closed. Therefore (3.17) can be rewritten as
(3.23) (VxT)(Z) = ~f9(X, Z) + w(X)T(Z),

which implies that the vector field A is a proper unit concircular vector field
([18], [19]). Again in a conformally flat 3-dimensional Riemannian manifold,
the relation (3.7) holds for n = 3. Hence proceeding similarly as above it is
easy to check that in an A(PCRS)s3, A is a unit proper concircular vector field.
Thus we can state the following:

Theorem 3. In a conformally flat A(PCRS),, with non-constant scalar cur-
vature the vector field \ defined by g(X, \) = T'(X) is a unit proper concircular
vector field.
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Again if a conformally flat Riemannian manifold (M",g),n > 3, admits a
proper concircular vector field, then the manifold is a subprojective manifold of
Kagan ([1], [20]) and hence by virtue of Theorem 3, we can state the following:

Theorem 4. Every conformally flat A(PCRS),,n > 3, with non-constant
scalar curvature is a subprojective manifold in the sense of Kagan.

In [19] K. Yano proved that a Riemannian manifold admits a concircular
vector field, if and only if there exists a coordinate system with respect to
which the fundamental quadratic differential form can be written as

ds? = dz'* + ¢ gi; da'da?,

where g:j: Gij [2¥] are the functions of 2* only (i,7,k = 2,3,--- ,n) and p =
p(z') is a non-constant function of 2’ only. Hence if an A(PCRS),,n > 3, is

* *
conformally flat, then it is a warped product I x.» M, where (M, 5) isan (n—1)
dimensional Riemannian manifold, and I C R is an open interval. Again,

A. Gebarowski [13] proved that the warped product IX.» ]\j[ satisfies the
condition (3.7) if and only if M is an Einstein manifold. Since a conformally
flat A(PCRS),, satisfies (3.7), it must be a warped product IX,» ]\j[, where
ES

M is an Einstein manifold. Hence we can state the following:

Theorem 5. Every conformally flat A(PCRS),,n > 3, with non-constant

* * *
scalar curvature can be expressed as a warped product IXeo M, where (M, 9)
is an (n — 1) dimensional Einstein manifold.

As a generalization of subprojective manifold, B. Y. Chen and K. Yano [9]
introduced the notion of special conformally flat manifold defined as follows:
a conformally flat Riemannian manifold is said to be a special conformally flat
manifold if the tensor field H of type (0, 2) defined by

,
(3.24) H(X,Y):—n_QS(X,Y)—i—2(n_1)(n_2)g(X,Y)
is expressible in the form

(3.25 H(X,Y) = =2 g(X.Y) + B(Xa)(Va).

where a, § are two scalars such that « is positive. In view of (2.9), (3.24) can
be written as

(3.26) H(X,Y) = —

T(X)T(Y) +

n—2 =D =9
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Let us now take
r

3.27 e >0 ided r < 0.
(3.27) e (n—l)(n—2)> ,  provided r <
Then dr(X)
"

20(Xa) = —— )

alXa) = - hm—2)
which implies by virtue of (3.14) that

T(X
20(Xa) = - TITX)
(n—1)(n—2)

Hence
4n—1)(n —2)r

52
where § = dr(X) # 0. Therefore, by virtue of (3.27), (3.26) can be expressed
as

T(X)T(Y) = —

(Xa)(Ya),

2
e
H(X¢Y) = _?g(X7Y) + B(XO()(YO{),
where 8 = 4(7?721)7"2 # 0 at each point of the manifold, provided r is non-
constant. Hence the manifold is a special conformally flat manifold. This
leads to the following;:

Theorem 6. A conformally flat A(PCRS),,n > 3, with non-constant and
negative scalar curvature is a special conformally flat manifold.

Again in [9] it is proved that every simply-connected special conformally
flat manifold can be isometrically immersed in an Euclidean manifold E"*! as
a hypersurface. Therefore by virtue of Theorem 6, we can state the following:

Theorem 7. Every simply-connected conformally flat A(PCRS),,n > 3, with
non-constant and negative scalar curvature can be isometrically immersed in
an Buclidean manifold E™ as a hypersurface.

§4. An example of A(PCRS),

Example . Let M = R3 x (0,00) C R*. We take the identity map I; on M
such that N = I;(M) = R? x (0,00). Then {E; = (1,0,0,0), Es = (0,1,0,0),
Es = (0,0,1,0), E4 = (0,0,0,1)} form a basis at each point p € N. We
define the Lorentz metric ¢ on N by giving its components relative to the

basis {F;(p)} at each point p = (z!, 22, 23, 2*) as follows:

0 if i g
(4.1) 9ij(p) = gij(a', 2%, 2% 2") = (z4) if i=57=1,2,3;
1 if i=j =4,
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where 2°,i = 1,2,3,4 are the standard coordinates of R*. Then the manifold
N with metric (4.1) represents the Einstein-deSitter spacetime which repre-

sents the simplest cosmological model in general relativity ([14], p. 89). Hence
for X,Y € T,N,

w(X,Y) = g(X'E;, Y Ey)
_ (x4)%(X1Y1 + X2y?2 +X3Y3) — Xy,

where z? is the ‘height’ of p. We note that this is a Lorentz metric since
smoothness is obvious on z* > 0 and, for each p € N, one can define a new
basis {e; : i = 1,2,3,4} for T,N by e; = (z4) 3 E; for i = 1,2,3 and ey = E4.
Then g(e;, ej) = n;j, where

1 for 1=45=1,2,3;
Nij = -1 for i=j=4;
0 otherwise.

Also we observe that for p € N the null cone at p is

4
3

(X =XTB e TN s (a3 ((X)? + (X2 + (X)) = (x)?}

which one might interpret geometrically as saying that the null cones in N
‘get steeper’ as p ‘gets higher’. Then the only non-zero Christoffel symbols for
the standard coordinate patch on N are given by ([14], p. 95, Exercise 3.3.4)

2

(4-2) Fh = leu = F§4 = F4212 = F§4 = Fiz = m

and the components of the Ricci tensor relative to the standard coordinate
patch are given by

g _ 3(:34)2 for 1 =j =4,
" 0 otherwise.

Also the scalar curvature of N is given by

2
T

In terms of local coordinates the defining condition (1.2) of an A(PCRS)4 can
be written as
(4.3) Sij b+ Sjk,i + Ski, j

= (Ax + By)Sij + AiSji + AjSik, 1,7,k =1,2,3,4.
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In view of (4.2) and (4.3) it follows that

6 —gurp  fori=j=k=4,
i, b 0 otherwise.

In terms of local coordinates, if we consider the components of the 1-forms A
and B as follows:

4 .

—5 for i=4

p— 3zt )

(4:4) Ai { 0 otherwise ;
2 .

o -4  for =4,

(4.5) Bi = { 0 otherwise ;

then in view of (4.4) - (4.5), it is easy to check that (4.3) holds for all i, j, k =
1,2,3,4. Therefore N equipped with metric (4.1) is an A(PCRS)4 which is
not A(PRS)4. This leads to the following:

Theorem 8. An FEinstein-deSitter spacetime N equipped with the metric (4.1)
is an A(PCRS)4 which is not an A(PRS)y.

Remark 1. The metric defined in (4.1) is not positive definite.
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