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Abstract. The average number of ciphertexts per one session c̄T is an indicator
of aptitude of a key-management tree T for a given frequency distribution of
communication. In this paper, we estimate the weighted mean of c̄T over all
T ’s with respect to appropriate weights as a criterion of aptitude of a key-
management tree. We also give the concrete value of that mean in the case of
equal weights.
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§1. Introduction

1.1. 1-to-k cryptography and tree-based key-management system

The 1-to-k cryptography is a recent problem arising in a scheme of broadcast
communications, which is motivated largely by pay-TV applications, multi-
cast communications, secure distribution of copyright-protected material (e.g.
music) and audio streaming. A 1-to-k encryption involves 1 transmitter and n
users. Each user is given some keys, and the transmitter is given all the keys
by the key manager. Let U be the whole set of n users and J (⊆ U) be a set of
k authorized receivers. The transmitter sends ciphertexts to all users, but any
receiver in J should be able to decrypt the received ciphertext by using the
receiver’s key while users in the revoked set U \J should not be able to do so.
The algorithm for the 1-to-k encryption-decryption consists of the following
steps.
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Initialization (by the key manager)

1. Set a family of subsets of users Fn = {S1, . . . , Sm} (⊆ 2U ) satisfying∪m
i=1 Si = U and

(
U
1

)
⊆ Fn.

2. For each i = 1, . . . ,m, create a key Ki and transmit it to all the users
∈ Si by a secret communication.

Encryption/Transmission (by the transmitter)

1. Choose a set of receivers J (⊆ U) to whom the message M is addressed.

2. Take a family of disjoint subsets {Si1 , . . . , Sit} (⊆ Fn) satisfying
∪t

l=1 Sil

= J in such a way as to minimize t.

3. Encrypt the message M by using each key Ki1 , . . . ,Kit and transmit the
ciphertexts Ci1 , . . . , Cit to all the users.

Reception/Decryption (by each receiver u ∈ J)

1. Find j satisfying u ∈ Sij .

2. Decrypt the ciphertext Cij to get the message M by using the key Kij

which u owns.

We consider two quantities as main criteria for performance evaluations;
the number of ciphertexts for a set of receivers, the number of keys owned by
a user. A problem to be considered is how to set a family of subsets of users
Fn. If Fn consists of all the non-empty subsets of U (i.e., Fn =

∪n
i=1

(
U
i

)
), the

transmitter always sends 1 ciphertext and each user must have 2n−1 keys, so
that this method is not suitable for users with limited memory capacities. If
Fn consists of all 1-subsets of users (i.e., Fn =

(
U
1

)
), each user has only 1 key

and the transmitter always sends k different ciphertexts, so that this method
is not suitable for channels with limited bandwidth. Thus the number of keys
which one user should own and the number of ciphertexts which should be
sent to users are in a trade-off relationship. Many methods of keeping that
balance have been proposed. One of them is the tree-based key-management
system suggested by Wong et al. [7] and Naor et al. [3]

In a tree-based key-management system, each user corresponds to a leaf
of a rooted tree T in one-to-one manner and Si corresponds to a node of the
tree. Hereafter T is assumed to be binary. The most popular method is to
assign each node v the set Sv of users corresponding to leaves under v and set
Fn = {Sv | v is a node of T}. Then each user owns the keys assigned to the
nodes on the path from the root to the leaf corresponding to that user. The
number of keys owned by a user and the number of ciphertexts for a set of
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receivers are uniquely determined once we have chosen the tree structure T
and the placement of users among its leaves. Henceforth we regard the number
of necessary ciphertexts as cost. Let cT (J) be the cost for a set of receivers J
in a key-management tree T (define cT (∅) = 0).

Note that J corresponds to a subset of leaves in a key-management tree
T with user-set U . If we delete all the paths (and all the edges incident to
them) that connect the root and the leaves in the revoked set U \J , then there
remains a forest consisting of cT (J) number of subtrees of T . The cT (J) is
called in [4] the covering number for J in T .

1.2. Average cost under a frequency distribution of communication

In this paper we take into consideration a frequency distribution of communi-
cation in the tree-based key-management system. Let p(J) be the probability
that a message is sent to J ∈ 2U \ {∅}. In the case that users are not too
many, the transmitter may estimate the frequency distribution of communi-
cation

(
p(J)

∣∣ J ∈ 2U \ {∅}
)
by tallying up the number of communications to

receiver set J . For a given frequency distribution of communication (p(J)),
the average cost is given by

c̄T =
∑

J∈2U\{∅}

p(J)cT (J).

A tree T minimizing this value is called optimal, and denoted by T ∗.

Let TU denote the set of all the key-management trees for the set of users
U . A key-management tree can be regarded as a graphic representation of a
binary total partition of U . Put bn = |TU |, then it is known that b1 = 1,

bt =
1

2

t−1∑
s=1

(
t

s

)
bsbt−s = (2t− 3)!!, t > 2,(1.1)

where b0 = 0 (see [6]). t!! means the double factorial, that is, (−1)!! = 0!! = 1
and t!! = t(t− 2)!! for t > 1. Therefore the total number of key-management
trees is O(tt), so that it is not easy to find an optimal tree by an exhaustive
search. Funayama et al. [1] and Imamura et al. [2] proposed algorithms for
generating key-management trees suitable for a given frequency distribution
of communication. Both algorithms, however, do not always generate optimal
trees for some distributions, and need exhaustive searches of all trees to ascer-
tain the optimality. For this reason, Ochiumi et al. [4, 5] introduced an upper
bound on the average cost of the optimal tree T ∗ as a criterion of aptitude of
a key-management tree for a given frequency distribution of communication.
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Theorem A ([4, 5]). Let an,k =
∑

T∈TU cT (J) for |U | = n and J ∈
(
U
k

)
. Then

c̄T ∗ 6 1

(2n− 3)!!

n∑
k=1

an,kP{|J | = k}

holds for n > 2. And an,k satisfies the following formula:

an,k = (2(n− k)− 1)!!

(
(2n− 2)!!

(2(n− k)− 2)!!
− (2n− 3)!!

(2(n− k)− 3)!!

)
, 1 6 k 6 n− 1.

It was also shown in [4] that the polygonal line though the points
(
k
n ,

an,k

(2n−1)bn

)
(0 6 k 6 n) approaches the curve f(ρ) =

√
1− ρ(1 −

√
1− ρ) when n → ∞

with fixing k
n to ρ.

The purpose of this paper is to estimate a lower bound on the average cost
for the optimal tree. For a given frequency distribution of communication,
good key-management trees are expected to be balanced if the distribution is
flat, and imbalanced if it is biased. It seems natural to think that the cost
for the optimal tree is close to the weighted mean of c̄T with respect to T s’
weights wT (wT > 0 and

∑
T∈TU wT = 1) when we put high weights on trees

considered to be suitable for a key-management tree.
This paper is organized as follows. In section 2, we propose a lower bound

on
∑

T∈TU wT c̄T in terms of the Shannon entropy H(p(J)) of the frequency
distribution of communication. We also give a neat formula for the lower
bound when the weights of the trees are uniform. In section 3, we state about
some remarks for the lower bound.

§2. Results

The weighted mean of the average costs over all the trees satisfies the following
inequality.

Proposition 1.∑
T∈TU

wT c̄T > H(p(J))− log
∑

J∈2U\{∅}

∑
T∈TU

wT 2
−cT (J).(2.1)

Proof. For the given frequency distribution of communication (p(J)), we have

H(p(J)) = −
∑

J∈2U\{∅}

p(J) log p(J) 6 −
∑

J∈2U\{∅}

p(J) log
2−cT (J)∑

J ′∈2U\{∅}

2−cT (J ′)
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by the log-sum inequality. Hence we obtain

c̄T =
∑

J∈2U\{∅}

p(J)cT (J) > H(p(J))− log
∑

J∈2U\{∅}

2−cT (J).

And we have

∑
T∈TU

wT c̄T > H(p(J))−
∑
T∈TU

wT

log
∑

J∈2U\{∅}

2−cT (J)


> H(p(J))− log

∑
J∈2U\{∅}

∑
T∈TU

wT 2
−cT (J),

where the second inequality follows from the Jensen’s inequality.

Let wT depend only on T ’s form and be independent of the way in which
users correspond to leaves in T . Then

∑
T∈TU wT 2

−cT (J) depends only on |J |
and with respect to (2.1) we obtain

∑
J∈2U\{∅}

∑
T∈TU

wT 2
−cT (J) =

n∑
k=1

∑
J∈(Uk)

∑
T∈TU

wT 2
−cT (J) =

n∑
k=1

(
n

k

)
αn,k

bn
,(2.2)

where αn,k = bn
∑

T∈TU wT 2
−cT (J) for |U | = n, J ∈

(
U
k

)
(n > 1, 0 6 k 6 n)

and bn is given by (1.1). Particularly, in the case that the weights of the trees
are uniform, that is, wT = b−1

n for all T ∈ TU ,

αn,k =
∑
T∈TU

2−cT (J), |U | = n, J ∈
(
U

k

)
(n > 1, 0 6 k 6 n).(2.3)

In Theorem 2, we obtain an explicit formula for the general term αn,k in that
case.

Theorem 2. Let αn,k be defined as in (2.3). Then for n > 1 and 0 6 k 6 n,

αn,k =
1

2k
(2(n− k)− 1)!!

(2n− 2)!

(2n− k − 1)!
.(2.4)

We need two lemmas to give a proof of the theorem.

Lemma 3. For all l,m ∈ N,

l−1∑
i=0

Cl−i−1

(
m+ 2i+ 1

i

)
=

(
m+ 2l

l − 1

)
,(2.5)

where Ct (t > 0) is the t-th Catalan number (i.e., Ct =
1

t+1

(
2t
t

)
).
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Proof. We shall prove that (2.5) holds for all m ∈ N by induction on l. (2.5)
clearly holds for l = 1. For l > 1, we have

l∑
i=0

Cl−i

(
m+ 2i+ 1

i

)

=

(
m+ 2l + 1

l

)
+

l−1∑
i=0

Cl−i

(
m+ 2i+ 1

i

)

=

(
m+ 2l + 1

l

)
+

l−1∑
i=0

 l∑
j=i+1

Cl−jCj−i−1

(
m+ 2i+ 1

i

)

=

(
m+ 2l + 1

l

)
+

l∑
j=1

Cl−j

j−1∑
i=0

Cj−i−1

(
m+ 2i+ 1

i

)

=

(
m+ 2l + 1

l

)
+

l∑
j=1

Cl−j

(
m+ 2j

j − 1

)

=

(
m+ 2l + 1

l

)
+

(
m+ 2l + 1

l − 1

)
=

(
m+ 2l + 2

l

)
,

where the second equality holds by the recursion of the Catalan numbers

Ct+1 =

t∑
s=0

CsCt−s

and the fourth and the fifth by the induction hypothesis, that is,

j−1∑
i=0

Cj−i−1

(
m+ 2i+ 1

i

)
=

(
m+ 2j

j − 1

)
for 1 6 j 6 l

and

l∑
j=1

Cl−j

(
m+ 2j

j − 1

)
=

l−1∑
j=0

Cl−j−1

(
m+ 1 + 2j + 1

j

)
=

(
m+ 1 + 2l

l − 1

)
.

Hence (2.5) holds for all l,m ∈ N.

Lemma 4. For all m ∈ N,(
1

2

(
1 +

√
1− 4y

))−m

=
∑
l>0

m

m+ 2l

(
m+ 2l

l

)
yl, |y| < 1

4
.(2.6)
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Proof. For m = 1, we have

2
(
1 +

√
1− 4y

)−1
=

1

2y

(
1−

√
1− 4y

)
=

1

2y

∑
l>1

(2l − 3)!!

l!
2lyl


=

∑
l>1

1

2l − 1

(
2l − 1

l − 1

)
yl−1,

hence (2.6) holds. Assume that (2.6) holds for some m > 1. Differentiate the
both sides of (2.6) with respect to y, then we have(

1

2

(
1 +

√
1− 4y

))−(m+1)

=
√

1− 4y
∑
l>1

l

m+ 2l

(
m+ 2l

l

)
yl−1

=
∑
i>0

(1
2

i

)
(−4y)i

∑
l>0

(
m+ 2l + 1

l

)
yl

=
∑
l>0

l∑
i=0

( 1
2

l − i

)
(−4)l−i

(
m+ 2i+ 1

i

)
yl,

where

(
λ

t

)
=

λ(λ− 1) · · · (λ− t+ 1)

t!
for t ∈ N and

(
λ

0

)
= 1. Here we see

that

l∑
i=0

( 1
2

l − i

)
(−4)l−i

(
m+ 2i+ 1

i

)
=

m+ 1

m+ 2l + 1

(
m+ 2l + 1

l

)
,

because it is clear for l = 0, and

l∑
i=0

( 1
2

l − i

)
(−4)l−i

(
m+ 2i+ 1

i

)

= −2

l−1∑
i=0

1

l − i

(
2(l − i− 1)

l − i− 1

)(
m+ 2i+ 1

i

)
+

(
m+ 2l + 1

l

)
= −2

(
m+ 2l

l − 1

)
+

(
m+ 2l + 1

l

)
(by Lemma 3)

=
m+ 1

m+ 2l + 1

(
m+ 2l + 1

l

)
for l > 1. Hence (2.6) holds for m+1. Therefore (2.6) holds for all m ∈ N.
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Proof of Theorem 2. It is clear that αn,0 = (2n− 3)!! = bn and αn,n = 1
2(2n−

3)!! = 1
2bn since cT (∅) = 0 and cT (U) = 1 for all T ∈ TU . For 1 6 k 6 n − 1,

let T1, T2 be the two subtrees of the root of T ∈ TU . And define V and its
complement V c as the sets of leaves of T1 and T2 respectively. Then cT (J) =
cT1(J ∩ V ) + cT2(J ∩ V c) holds for J ∈

(
U
k

)
(1 6 k 6 n− 1), and we have

αn,k =
∑
T∈TU

2−cT (J)

=
1

2

n−1∑
l=1

∑
V ∈(Ul )

∑
T1∈TV

∑
T2∈TV c

2−{cT1 (J∩V )+cT2 (J∩V
c)}

=
1

2

n−1∑
l=1

∑
V ∈(Ul )

∑
T1∈TV

2−cT1 (J∩V )
∑

T2∈TV c

2−cT2 (J∩V
c)

=
1

2

n−1∑
l=1

∑
V ∈(Ul )

αl,|J∩V |αn−l,|J∩V c|.

Noting that |J ∩ V | = i iff |J ∩ V c| = k − i and
∣∣∣{V ∈

(
U
l

) ∣∣ |J ∩ V | = i
}∣∣∣ =∣∣∣{V ∈

(
U
l

) ∣∣ |J ∩ V c| = k − i
}∣∣∣ = (

k
i

)(
n−k
l−i

)
for 0 6 i 6 k, we obtain

αn,k =
1

2

n−1∑
l=1

k∑
i=0

(
k

i

)(
n− k

l − i

)
αl,iαn−l,k−i

=
1

2

k∑
i=0

n−k+i∑
l=i

(
k

i

)(
n− k

l − i

)
αl,iαn−l,k−i, 1 6 k 6 n− 1,

where α0,0 = 0. Putting An,k =
αn,k

(n− k)!k!
for 0 6 k 6 n and fk(x) =∑

n>k An,kx
n−k for k > 0, we have

An,k =
1

2

k∑
i=0

n−k+i∑
l=i

Al,iAn−l,k−i
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for 1 6 k 6 n− 1. Hence we have

fk(x)−Ak,k =
∑

n>k+1

An,kx
n−k

=
∑

n>k+1

(
1

2

k∑
i=0

n−k+i∑
l=i

Al,iAn−l,k−i

)
xn−k

=
1

2

k∑
i=0

∑
n>k

n−k+i∑
l=i

(
Al,ix

l−i
)(

An−l,k−ix
n−l−k+i

)
−Ai,iAk−i,k−i


=

1

2

k∑
i=0

(fi(x)fk−i(x)−Ai,iAk−i,k−i) , for k > 1.

Putting f(x, y) =
∑

k>0 fk(x)y
k =

∑
k>0

∑
n>k An,kx

n−kyk, we have

f(x, y)− f0(x)−
∑
k>0

Ak,ky
k =

1

2

∑
k>1

k∑
i=0

(fi(x)fk−i(x)−Ai,iAk−i,k−i) y
k

=
1

2

f(x, y)2 − f0(x)
2 −

∑
k>0

Ak,ky
k

2 .

Since An,0 =
bn
n! , Ak,k = 1

2
bk
k! and

∑
t>0

bt
t! z

t = 1−
√
1− 2z, we have

(f(x, y)− 1)2 =

∑
k>0

Ak,ky
k − 1

2

+ (f0(x)− 1)2 − 1

=
1

4

(
1 +

√
1− 2y

)2
− 2x,
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and

f(x, y)

= 1− 1

2

√(
1 +

√
1− 2y

)2
− 8x

= 1− 1

2

(
1 +

√
1− 2y

)∑
t>0

(1
2

t

)
(−8x)t

(
1 +

√
1− 2y

)−2t

= 1− 1

2

(
1 +

√
1− 2y

)
+

∑
t>1

(2t− 3)!!

t!
xt

(
1

2

(
1 +

√
1− 2y

))−(2t−1)

=
1

2

(
1−

√
1− 2y

)
+

∑
t>1

(2t− 3)!!

t!
xt
∑
k>0

2t− 1

2t+ 2k − 1

(
2t+ 2k − 1

k

)(y
2

)k

=
1

2

∑
n>0

bn
n!

yn +
∑
k>0

∑
t>1

(2t− 1)!!(2t+ 2k − 2)!

2kt!k!(2t+ k − 1)!
xtyk,

where the fourth equality follows from Lemma 4. Substituting t with n − k,
we have

An,k =
1

2k
(2(n− k)− 1)!!(2n− 2)!

(n− k)!k!(2n− k − 1)!
, 0 6 k 6 n− 1.

From the above, the proof is complete.

§3. Concluding remarks

Using (2.2) and (2.4) in (2.1), when the weights of the trees are uniform, we
get the following inequality:

1

|TU |
∑
T∈TU

c̄T > H(p(J))− log
n∑

k=1

(
n

k

)
1

2k
(2(n− k)− 1)!!(2n− 2)!

(2n− k − 1)!(2n− 3)!!
.(3.1)

The second term on the right-hand side of (2.1) is determined by the weights
of the trees, which may be taken suitably for the given frequency distribution
of communication. An effective lower bound of

∑
T∈TU wT c̄T could be derived

by choosing appropriate the weights of the trees. The right-hand side of (3.1)
could be negative and then (3.1) would make no sense, which might be caused
by setting the weights of the trees uniform regardless of the given frequency
distribution of communication. Calculating the values of log

∑n
k=1

(
n
k

)αn,k

bn
for

n = 1, . . . , 1000 and plotting the points of
(
n, log

∑n
k=1

(
n
k

)αn,k

bn

)
, we get the

following figure.
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Figure 1: log
∑n

k=1

(
n
k

)αn,k

bn
for n = 1, . . . , 1000

From this calculation, we expect

1

n
log

n∑
k=1

(
n

k

)
αn,k

bn
; 0.6438

even when n is large. In the special case that each user is contained in the
receivers set J independently with probability p, the entropy of the frequency
distribution of communication is nH(p, 1−p) (H(p, 1−p): the binary entropy).
When 0.17 6 p 6 0.83, H(p, 1 − p) > 0.6438 and the right-hand side of (3.1)
is positive.

We call cT (J) the covering number for J in tree T ([4]). A simple lower
bound for the expected covering number provided by the completely random
choices of T (with n leaves) and J would be about 0.356n, since we have
H(p(J)) = log(2n − 1).
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