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Abstract. We consider the following the p-Laplacian equation in a bounded

domain €:
—Apu = f(z,u) in Q,
u=20 on 0.

We treat the case of nonlinearity term f satisfying the following conditions
fo) aot " —bot? ' +o(jtPt) at 0,
x,t) =
at? ™' — bt 4 o([tPTY)  at oo,

for constants ag, by, a and b. We prove the existence of a positive solution or a
negative solution in the case of (ag — A1)(a — A1) =0 or (bg — A1)(b— A1) =0
respectively, where A1 is the first eigenvalue of —A,,.
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8§1. Introduction and statements of results
1.1. Introduction

In this paper, we consider the equation

{ —Apu = f(z,u) in Q,

(P) u =0 on 0,

where 1 < p < 00, Q € RY is a bounded domain, A, denotes the p-Laplacian
defined by Ayu := div (|[Vu[P~?Vu). Our purpose is to show the existence
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of constant sign solutions to (P). Here we say that u € WO1 P(Q) is a (weak)
positive (resp. negative) solution of (P) if u(x) > 0 (resp. u(z) < 0) a.e.
x € ) and

/|Vu|p_2Vqupd:E:/f(:r,u)gpd:E
Q Q

holds for any ¢ € W, P ().
We will treat f satisfying f(x,0) =0 a.e. x € Q and
(1.1)
aotﬁ_l —bot? ' +o(|t|P~Y) as |t| — 0, uniformly in ae. x € 9,

f(l‘vt) =

atﬂ_l — bt o[t as [t| — oo, uniformly in a.e. z € ,

where t1 = max{+t,0} and ag, a, by and b are some real constants. Thus, we
consider the case where (P) has a trivial solution u = 0.

Equation (P) in the case of f(z,t) = atﬂ_1 — bt?! (where a, b € R) has
been considered by Fucik [6](p = 2) and by many authors (c¢f. [3], [2], [4]).
The set ¥, of the points (a,b) € R? for which the equation

(1.2) —Aju=au? ' — b’ we WyP(Q)

has a non-trivial weak solution is called Fuéik spectrum of the p-Laplacian
on Wol’p(Q) (1 < p<o0)([2]). In the case of a = b = XA € R, the equation
(1.2) reads —Apu = Alu|P~2u. Hence (A, A\) belongs to ¥, if and only if \ is
an eigenvalue of —A,, i.e., there exists a non-zero weak solution u € WOLP(Q)
to —Apu = AulP~2u. The set of all eigenvalues of —A, is, as usual, denoted
by o(—A,). It is well known that the first eigenvalue A\; of —A,, is positive,
simple, and has a positive eigenfunction ¢, € Wol’p(Q) N L*>®(Q) N CY{Q) with
Jo @i dx =1 (see [7, Proposition 1.5.19]). Therefore, ¥, contains the lines
{A1} xR and Rx{A;} since ¢1 or —¢; becomes a solution to (1.2) with (a,b) =
(A1,b) or (a, A1), respectively. Furthermore, [2] gave a Lipschitz continuous
curve contained in 3, which is called the first nontrivial curve ¢". This result
was proved by applying the mountain pass theorem to the functional defined
on a manifold in WyP(Q) (see [2] for details).

Many authors treated equation (P) for the nonlinear term f like (1.1) es-
pecially in the non-resonant case ((ao,bo) ¢ £, and (a,b) & £,) (cf. [4], [8],
[10], [11], [14], [19], [20]). In the so-called resonant case where (a,b) € ¥,
or (ag,bp) € X, there are a few existence results (c¢f. [9], [10], [11] where
a = b = A1) and the present author obtained existence results of non-trivial
solutions to (P) in [14], [15], [16] and [17], including both in resonant cases
and non-resonant cases.

As for constant-sign solutions, [4] showed the existence of a positive (resp.
negative) solution to (P) under the condition (ag — A1)(a — A1) < O (resp.
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(bo — A\1)(b— A1) < 0). However, the results of [4] does not cover several cases
where (ag, bo) or (a,b) belongs to ¥, (that is, resonant case).

Thus, the purpose of the present paper is to show the existence of a positive
solution or negative solution for (P) in the case of (ap — A1)(a — A1) = 0 or
(bo—A1)(b—A1) = 0, respectively (containing possibly “doubly resonant’ case).

1.2. Statements of results

In this paper, we assume that the nonlinear term f satisfies the following
assumption (F):

(F) f is a Carathéodory function on 2 x R with f(z,0) =0 for a.e. x € Q
and satisfies the following conditions for some constants ag, by, a, b € R and
a positive constant Cy:

agu? " — bou? " + go(z,w),
au? !t — P 4 g(z,u),

(1.3) fla,u) = {

go(z,t) = o(|t|P~™) as |t| — 0, uniformly in a.e. z € Q,
g(z,t) = o(|t|P"!) as |t| — oo, uniformly in a.e. z € Q,
|f(z,t)| < Colt|P~! for every t € R, a.e. z € Q.
Setting G(z,u) := [y g(x,s)ds and Go(z,u) := [ go(x,s)ds for the non-

linear terms g and gp in (1.3), we can now state relevant conditions on g(x, u)
or go(z,u), which are not necessarily simultaneously assumed in our results.

(G++) pG(z,t) — g(z,t)t - +o00  ast — 400, uniformly in a.e. z € Q,
(G—+) pG(z,t) —g(z,t)t - +o00 ast— —oo, uniformly in a.e. z € Q.
(G+—-) pG(z,t) —g(x,t)t - —00 ast— +oo, uniformly in a.e. z € Q.
(G——=) pG(z,t) —g(z,t)t - —c0 ast— —oo, uniformly in a.e. z € Q.

(Go++) there exist a § > 0 and a measurable subset Q' of  with u(2') >0
such that

Go(z,t) >0 for 0 <t <4, ae. x€Q,

Go(z,t) >0 for0<t <4, ae xe,

where 1(€') denotes the Lebesgue measure of .
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(Go—+) there exist a § > 0 and a measurable subset ' of Q with (") > 0
such that
Go(z,t) >0 for —0 <t<0, ae. x €,
Go(z,t) >0 for —0<t<0, ae. z€Q.
(Go+—) there exist positive constants d, C' and ¢ € (p, p*) such that
Go(z,t) < =CJt|?T for 0 <t <9, ae. x €,
where p* =pN/(N —p) if p< N, p*=+oc0if p > N.

(Gop——) there exist positive constants d§, C' and ¢ € (p,p*) (p* is the number
defined just above) such that

Go(z,t) < =C|t|T for —6 <t <0, a.e. x €
Now we can state our results.

Theorem 1 Assume that f satisfies (F') for some constants ag, by, a, b € R
and a positive constant Cy. Then, if one of the following conditions holds, (P)
has at least one positive solution.

(i) a= X\ <ap and (G+-);
(i) a =X\ > ag and (G++);
(i) a < A\ =ag and (Go++);
(iv) a > X\ =ap and (Go+—);
(v) a=ap =M\, (G+-) and (Go++);
(vi) a =ap = A1, (G++) and (Go+—).

Theorem 2 Assume that f satisfies (F') for some constants ag, by, a, b € R
and a positive constant Cy. Then, if one of the following conditions holds, (P)
has at least one negative solution.

(i) b= A1 <bg and (G——);
(i) b= A1 > by and (G—+);
(iii) b < A = by and (Go—+);
(iv) b> X =bg and (Go——);
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(V) b="by= M\, (G——) and (Go——l—),‘
(vi) b=0by =M1, (G—+) and (Go——).

We remark that many nonlinearities satisfy assumptions above, for exam-
ple, g(x,u) = £|u|?2u near infinity (1 < ¢ < p) and go(x,u) = £|u|""?u near
zero (p <r < p*).

1.3. Notation and the structure of the paper

In what follows, we set X = W(}’p(Q) with norm ||ul| = (fQ |VulP dw)l/l’ and
define two functionals 1™ and I~ on X by

I*(u) ::/Q|Vu|pda:—p/QFi(ac,u) dzx.

where

falz,u) = { g(l',u) iﬁ iz z 8: Fy(z,u):= /Ou fr(z,s)ds .

For the sake of brevity, we use the notation I* to denote either I or I~. fi
or I should be understood in the same way.

Moreover, |lull, denotes the LY norm of v € LI(Q) (1 < g < c0). Note
that X is uniformly convex since we have assumed 1 < p < oco.

Remark 3 Under condition (F), it is well known that I* are C' function-
als and non-trivial critical points of I'™ and I~ correspond to (weak) positive
solutions and negative solutions of equation (P), respectively. Indeed, let u
be a critical point of I~. Noting that 0 = ((I7) (u),us) = p|lus||P, we have
u < 0, hence u is a non-positive weak solution to —Apu = f(x,u). There-
fore, u belongs to L>=(Q) N CY(Q) (c¢f. [1], [5]). Moreover, we have u < 0 or
u =0 in Q by Harnack inequality (cf. [18]). Thus, u is a negative solution of
—Apu = f(z,u) in Q if u# 0. Similarly, if u is a non-trivial critical point of
I, then v > 0 in Q holds.

Firstly, in the next section, we prepare several results for our proofs. In
Section 3, we can obtain a non-trivial critical point of I'" (resp. I~) under
each conditions in Theorem 1 (resp. Theorem 2), whence follows the existence
of a positive (resp. negative) solution for (P), respectively.
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§2. Preliminaries
2.1. The Cerami condition

It is well known that the Palais—Smale condition and the Cerami condition
imply the compactness of a critical set at any level ¢ € R, and they play an
important role in minimax argument. Here, we recall the definition of the
Cerami condition.

Definition 4 A C' functional J on a Banach space E is said to satisfy the
Cerami condition at ¢ € R if any sequence {u,} C E satisfying

J(up) — ¢ and (1 + [Jun|) |7 (un)]|gx — 0 as n — oo

has a convergent subsequence. We say that J satisfies the Cerami condition if
J satisfies the Cerami condition at any ¢ € R.

We note that the Cerami condition is weaker than the usual Palais—-Smale
condition.

Now we introduce assumption (g0) for the nonlinear term g in (1.3) to
prepare the results concerning the Cerami condition.

(g0) g is a Carathéodory function on Q2 xR such that |g(x,t)| < C(1+]t[P~1)
for every t € R, a.e. # € Q and g(z,t) = o(|t|P~!) as |t| — oo uniformly in a.e.
x € Q, where C is a positive constant.

For a, b € R and a nonlinear term g satisfying (g0), we define two C!
functionals on X as follows:

(2.1) I o () = [ull” = allus | — p /Q G (,u) d,
(2.2) (@ = el =vlu- I = | G-Guyda.
where
| g(z,u) if £u>0, Y
g+ (z,u) .—{ 0 i +u<0, Gi(z,u) .—/0 g+(z,s)ds .

Then, the following result has been obtained concerning the Cerami condition
or the Palais-Smale condition on the above two functionals.

Lemma 5 ([16, Lemma 16]) Let g satisfy (¢g0). Then the following assertions
hold:

(i) if a # A1, then I(J; 0) satisfies the Palais—Smale condition;
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(ii) if b # A1, then I(B ) satisfies the Palais—Smale condition;

(iii) if g satisfies (G++) or (G+—) (resp. (G—+) or (G——) ), then I(J; 0)
(resp. I(B b)) satisfies the Cerami condition for every a,b € R.

2.2. The boundedness of a Cerami sequence

Under condition (g0), we define C! functional I, on X by

(2.3) I(a7b)(u):/ \Vu|pda:—a/uﬁdw—b/uﬁdw—p/G(m,u)dw
Q Q Q Q

for a and b € R. Here, we recall the following results to prove the boundedness
of a Cerami sequence.

Lemma 6 ([16, Lemma 13]) We assume that g satisfies (g0). Let I(qp) be the
functional defined by (2.3) for a, b € R and suppose that {u,} C X satisfy

Junll 00 and (7} (wa)lx-/lun P =0 asn - oo,

Then, {un/||un|} has a subsequence converging to some vy € X which is a
non-trivial solution of

—Ayu = auii_l — b in Q, u=0 on 0.

Using above result, we can prove the following lemma (see [16, Lemma 19] for
the proof).

Lemma 7 ([16, Lemma 19]) Assume that g satisfies (¢0) and (G— —) (resp.
(G+-)). Moreover, let {u,} C X satisfy

/
Jimn [ ([on1ymy ) (adllxe =0 and  sup I, () < +oc,
/
(resp- 1 Bl (75, 1) o =0 and - sup I,y () <500 ).

where I(B’)\l_l/n) and I(Jf\l_l/mo) are functionals defined by (2.2) and (2.1) with

the nonlinear term g, respectively. Then, {uy} is bounded in X.

The following lemma can be shown by a similar argument as in the proof of
Lemma 7. Here, we give a sketch of the proof for readers’ convenience.



156 M. TANAKA

Lemma 8 Assume that g satisfies (g0) and (G++) (resp. (G—+)). Moreover,
let {u,} C X satisfy

/
Tim [fug ||( A1+1M)) (un)llx- =0 and infIf o (un) > —o0,
/
<resp hm llwn | I ( 0)\1“/”)) (un)|lx+ =0 and mfI(B)\ Jrl/n)( Up) > —00 > ,

where I g\ 1y ) and I(A +1/n0) OT€ functionals defined by (2.2) and (2.1) with

the nonlinear term g, respectwely. Then, {u,} is bounded in X.

Proof. We prove only the case where g satisfies (¢g0) and (G ++) because
another case is shown by a similar argument. Throughout this proof, we write
I = I()\1+1/n 0) for n € N to simplify the notation.

We prove the boundedness of {u,,} by contradiction. Thus, supposing that
{uy} is not bounded, by taking a subsequence, we may assume that ||u,| — oo
as n — o0o. Setting v, = uy/||u,||, we may suppose that there exists a v € X
such that

v, =v inX andhence v, — v in LP

and vy (z) — v(x) for a.e. x € Q as n — oo.
Since g also satisfies (g0) and

! +\/ p p—1
() ) e < IO () + s

holds, Lemma 6 implies that v, strongly converges to v being a non-trivial
solution of —A,u = Aluﬂ_l in , u =0 on 0N. This yields that v = ¢1/[|¢1]]
because )\ is simple. Hence u,(z) — +oo for a.e. x € Q.

Now let us note the inequality

o(1) — inf I (tn) = (L) (1), ) — inf I (11

(2.4) > =((L) (un), un) — I (un)

"W

_ / PGy (1) — g (@, )t .
Q

On the other hand, by (¢0) and (G++), we have
ess.inf { pGy(z,t) — g4 (z,t)t; z € Qt € R} > —0
and hence by (G++) and u,(x) — +oo for a.e. x € Q,

liminf/ PGy (x,up) — g+ (x, up)uy, de = 00
Q

n—oo

by Fatou’s lemma. This gives a contradiction to (2.4). |
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2.3. Some key results

In this subsection, we prepare several results for the proofs of Theorems 1
and 2. At first, we state the following result concerning the mountain pass
argument.

Lemma 9 Let f satisfy (F) and assume that ag = A\ and (Go+—) hold.
Then, there exists a positive constant &y satisfying

inf I (u) >0,
l[ull=do

where I is the functional defined in section 1.3.

Proof. From (F') and (Gp+—), there exist C1 >0, Cy >0 and p < g <r < p*
such that

Go(z,u) < —=Ciu? + Cou"  for every u > 0, a.e. x € .
Therefore,
(2.5) I (u) > Jlu— [P+ [Jut P = Mlfug][§ +pCrllu |G — pCollui |}

holds for every u € X. In addition, we can get positive constants C3 and Cy
satisfying

(2.6) lullp < Csllully and  lull, < Cyf|ul|  for every u € X

by Héder’s inequality and the continuity of the inclusion by X into L"(Q),
respectively.

For every u € X with g lu||b < [Juy||P (where g is the second eigenvalue
of —Ap), we can get the following inequality

I (u) 2 fJu—[[” + ug [P (1 = A /A2 = pCoCiflur |77

by (2.5) and (2.6). Because of Ay > A\j and p < r, there exist positive constants
61 and C5 such that

(2.7) I (u) > [u—|[” + Cs|lu+ [P > min{1, C5}|[ul/”

for every u € X provided Agu|[h < [Juy|P < dF.
Next, let u € X satisfy Ao||uy|[p > |Jus|/P. Then, noting the inequality

s 1 > (s llp/C5)* > (lur]l/(C3A5™) )7,



158 M. TANAKA

we obtain

pCh

CYAY?

I (u) 2 fu—[[? + flur | ( —pC2C£\\U+|!T_q>

by (2.5), (2.6) and |Ju|” > A1]lus|h, and hence there exist 62 € (0,1] and
Cg > 0 such that
(2.8) I (u) = [u-|I” + Céllu | = min{1, Co}||ul?

for every u € X provided [Juy|| < 2 and Aalut|h > [Juy|P.
Put 09 = min{dy,d2} > 0. Then, the inequalities (2.7) and (2.8) imply

I'"(u) > min{1, C5, Co}|ul|? = min{1, C5, Cs}d5 > 0
for every u € X with |lu]| = dp. 1

Because the following lemma concerning I~ defined in section 1.3 can be shown
by a similar argument as for Lemma 9, we omit the proof here.

Lemma 10 Let f satisfy (F') and we assume that by = A1 and (Go——) hold.
Then, there exists a positive constant &y satisfying
inf I~ (u) > 0.
[|ll=d0
A similar result to the following proposition can be found as in [16, Proposition
18]. Here, we sketch the proof for readers’ convenience.

Proposition 11 Assume that f satisfies (F') with a = A\ (resp. b = A1) and
(G+—) (resp. (G—=)). Then, I'" (vesp. I") has a global minimium.

Proof. At first, we consider I". Let us set

1
LE) = T3, yyugy () = TH) + s 2

for u € X and n € N to simplify the notation.

For each n € N, it is easy to see that I is bounded from below on X
since [, Gy (z,u)dr = o(||lut|p) as [Jui|p — oo and [lul[P > Aq|ul[j for every
u € X. Moreover, let us note that I} satisfies the Palais—Smale condition for
every n € N by Lemma 5. Therefore, by a standard argument ([13, Theorem
4.2]) and by the Palais—-Smale condition, for every n € N, there exists a u,, € X
such that

1Y (ua)lx- =0 and I (un) = inf I < I (0) = 0.
X
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Since g satisfies (G+—), by Lemma 7, {u,} is a bounded sequence in X, and
hence we may assume that there exists a ug € X such that

Uy, = up in X and wu, — ug in LP

by taking a subsequence. Furthermore, for every w € X and n € N,
1
I (un) < Iy (un) < Iy (w) = I (w) + w3

holds (where we use the fact that u, is a global minimizer of I;7 in the second
inequality). By taking the limit inferior with respect to n in the above inequal-
ity, It (up) < I'"(w) holds for every w € X since I is weakly sequentially
lower semi-continuous. This shows that wug is a global minimum point of IT.

Next, we consider I™. By using I\ /. (see (2.2) for the definition)
instead of [ (J;\I_l Jn,0) WE can obtain a bounded sequence {u,} such that u,
is a global minimum point of (67 M—1/n) for each n. Because Lemma 7 gives

the boundedness of {u, }, we may assume that {u,,} weakly converges to some
ug € X, by choosing a subsequence. Then, by the same argument as that for
I™, we can prove that ug is a global minimizer of I~. |

83. Proofs of Theorems
3.1. Proof of Theorem 1

Now, we start to prove Theorem 1.

Proof of Theorem 1. Case (i) a = A1 < a¢ and (G+—) hold: In this case,
we note that I has a global minimum point ug € X by Proposition 11. So,
we shall prove that infy I is negative to obtain wug # 0.

From (F), for any ¢ and r satisfying 0 < ¢ < (ag — A\1)/p and r > p, there
exists a C' > 0 such that

Go(z,u) > —¢lu|P — Clu|" for every u € R, a.e. x € Q.
Thus, we have for ¢ > 0

I (ter) < (lenll? — aolleallpy + epllp I} + pCt a7
=1t? (A1 —ag +ep + pCt" Pl |7.) .
Because A\; — ag +ep < 0 and r > p, this inequality shows that I"(t¢1) < 0

for sufficiently small ¢ > 0, and hence I (ug) = infx I < 0. Therefore, (P)
has a positive solution (see Remark 3).
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Case(il) a = Ay > ap and (G++) hold: In this case, by applying the
mountain pass theorem to

1
It (u) :==I"(u) — EHquHg = I(J;\1+1/n,0)(u) forue X

(see (2.1) for the definition of I}

(n+1/n,0) with g), we shall construct a Cerami

sequence for 1.

Since [, Goy (@, u) dz = o[Jus||’) as |Juy] — 0, we have I (u) > |lu_||P +
(1 — ap/A1)||us]]P — o(JJus|P) as ||ug| — 0. Thus, there exists a positive
constant &g satisfying

a:=inf{I"(u); |lu|| =6} >0

since ag < Aq.
On the other hand, noting that for each n € N

P P

t t
It (tpr) = / G(z,tp1)de — — = o(tP) — — ast — +oo,
0 n n

we obtain a T, > &y/||¢1]| such that 17, (T, ¢1) < 0. Define
In:={y€C([0,1],X); 7(0) = 0, v(1) = Thepn }
and

n = inf I" t
cn = Inf max ()

for n € N. Let us note that dy < ||T,,¢1]| and

&

. + . - > i + ; = SV n\t
inf{I" (u); ||lul| =} > inf{I*(u); |jul]| = d} e S

and so inf{IF, (u); |Jul| = S} > 0 for n > &5 /(a)1). Hence, by the mountain
pass theorem, for each n > & /(a\;), we have that ¢, is a critical value of I,
since It satisfies the Palais-Smale condition by Lemma 5 (note \; + 1/n #
A1). Therefore, there exists a u, € X such that

4

Because {u,} is bounded in X by Lemma 8 (note It = I(J;\1+1/n 0)), we may
assume that there exists a ug € X such that u,, weakly converges to ug in X by

taking a subsequence. Also, by choosing a subsequence again, we may suppose
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that {c,} is a convergent sequence since ¢, € [0,I(u,)] and I is bounded on
any bounded subsets of X.
Furthermore, the following inequality

1) (un) x = 1) (un) = (I5,) ()| x+ < nLAlHume_l

shows [|(I7) (up)||x+ — 0 as n — oo. Thus, {u,} is a bounded Palais-Smale
sequence of I, that is to say that {u,} is a Cerami sequence of I". Since I"
satisfies the Cerami condition by Lemma 5, u, strongly converges to a critical
point ug of IT.

In addition, the following inequality

1 5
I+(un) = Ijn(un) + E”un-i-Hg > Cp >0 — n—)o\l
implies " (ug) > lim,, oo ¢y > « > 0, and hence ug is a non-trivial critical
point of IT.
Case(iii) @ < A\; = ag and (Gg++) hold: From (F'), we have [, G (x,u)dx =
o(|lus|[h) as ||uy|h — oo. Hence, the following inequality

I* () = [ulf? — allug |E - p /Q G (,u) dx
a
> |+ (1= sl = ol ) as sl — o0

and a < A1 show that I is coercive and bounded from below on X. Moreover,
it is easy to see that I" is weakly lower semi-continuous. It follows from the
standard argument (c¢f. [13, Theorem 1.1]) that I has a global minimum
point.

On the other hand, for ¢ > 0 such that ||ty1|lcc < § where § is a positive
constant described in (Go++), we obtain

I+(tg01) = —p/ Go(z,tpy)dx <0,
Q

and hence infx I < 0. Therefore, I has a non-trivial critical point ug
satisfying I (up) = miny I < 0.

Case(iv) a > A\ = ap and (Go+—) hold: It follows from Lemma 9 that
there exists a dp > 0 satisfying inf{I*(u); ||u|]| = dp } > 0. On the other hand,
we have for ¢t > 0

It(to1) = (M — a)t?|l1][h — o(t?) — —co ast — +oo

by A\t —a <0 and [, Gy (z,ter)de = o(tP) as t — +oco. Thus, we can choose
a positive constant T' such that T' > 6y /||¢1|| and I (Tp1) < 0. So, we define

I:={~ecC(0,1,X); v(0) =0, v(1) =Ty }
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and

:= inf It (~(t)).
¢i= inf max (v(?))

Then, by mountain pass theorem, c is a critical value of I™ with
¢ > inf{I"(u); [[ull =6} >0

because I (=1 (J; 70)) satisfies the Palais-Smale condition by Lemma 5. So, I
has a non-trivial critical point.

Case(v) a = ap = A1, (G+—) and (Go++) hold: In this case, we note that
I™ has a global minimum point by Proposition 11. Hence, we shall show that
the minimum value of It is negative.

Let 0 be a positive constant described in (Go++). For ¢ > 0 with [[t¢1]|co <
d, we get I (typ1) = —p [, Go(z,tp1) dz < 0, which implies that infx I < 0
holds, and so I™ has a non-trivial critical point.

Case(vi) a = ap = A1, (G++) and (Go+—) hold: Recall the definition of

the approximate functional I setting in case (ii) as follows:
1
It (u) := I (u) — EHMHZ = I(J;\1+1/n,0)(u) forue X
Let &y be a positive constant obtained by Lemma 9, that is, dy satisfies
a:=inf{I"(u); |lul| =} > 0.

By the same argument as in case (ii), we can obtain a u, € X for each
n > 08 /(aA1) such that

P
(3.1) (IF,)(un) =0 and IT, (u,)>inf{IT, (u); ||ul|l =00} > a — :—)\0.
1

Furthermore, it can be shown that there exists a subsequence of {u,} (we
write this subsequence again by {u, }) that is a Cerami sequence at some level
¢ € R by the same argument as in case (ii) by Lemma 8. Since I" satisfies the
Cerami condition by Lemma 5, {u,} has a subsequence strongly converging
to some critical point ug of ™. By taking a limit with respect to n in (3.1),
we have I (ug) > a > 0, and hence ug is a non-trivial critical point of 7.

3.2. Proof of Theorem 2

Next, we start to prove Theorem 2 which can be shown by a similar argument
to Theorem 1. We give only a sketch of the proof.
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Proof of Theorem 2. Case(i) b =\ < by and (G——) hold: In this case,
it follows from Proposition 11 that I~ has a global minimizer. On the other
hand, because we have for t > 0

I_(—tgol) )\1 — bo / GO a; —tgol

and [, Go(z, —tg1) dz = o(t?) as t — +0 by (F), minyx I~ < 0 holds (note
A1 < bp). Hence I~ has a non-trivial critical point corresponding to a negative
solution of (P) (see Remark 3).

Case(il) b = A1 > by and (G—+) hold: We shall construct a bounded
Palais-Smale sequence for I~ by using the approximate functional I defined
as follows:

) = () = = a5 = T

(0, ,\1+1/n)(u) forue X, neN

(see (2.2) for the definition of I(o N1/n) with g).

From [, Go—(z,u) dz = o(||[u—|P) as [[u—_|| — 0 and by < A1, we can obtain
a positive constant &y satisfying o := {I7(u); |lul]| = do} > 0. Then, by
applying the mountain pass theorem to I, (note that for each n, we have
I (—tp1) — —o0 as t — 00), we can get a Palais-Smale sequence {u,} such
that

_ _ 1 &b
(3.2) I (un) = Iy (un) + —lun—|lp 2 @ = —=
Tl)\l
for n > 6} /(aA1) and we have that {u,} is bounded by Lemma 8 (see the
proof of Theorem 1 (ii) for details). Since I~ satisfies the Cerami condition by
Lemma 5, we may assume, by taking a subsequence, that u,, strongly converges
to some critical point ug of I~. In addition, by taking n — oo in (3.2), we
have I~ (up) > a > 0 and so ug is a non-trivial critical point of I~
Case(iil) b < A\; = by and (Go—+) hold: From b < A\; and [, G_(z,u) dz =
o([lu—||b) as |lu—||, — oo, we can easily show that I~ is coercive and bounded
from below on X. Because I~ is weakly lower semi-continuous, I~ has a
global minimum point (¢f. [13, Theorem 1.1]). Let § be a positive con-
stant as in (Gg—+) and let t > 0 satisfy |[tp1|loo < 0. Then I~ (—tp1) =
—p fQ Go(x, —tep1) dz < 0 holds, whence the minimum value of I~ is negative,
that is, the global minimum point of I~ is a non-trivial critical point.
Case(iv) b > A1 = by and (Gg— —) hold: Let g be a positive constant
obtained in Lemma 10, that is, dg is a number such that inf{/~(u); ||u|| =
do } > 0 holds. Because it follows from b > Ay and (F') that I~ (—tp1) — —o0
as t — oo, there exists a T' > 0 such that T' > &o/||p1| and I~ (=T¢1) < 0.
Since I~ satisfies the Palais—Smale condition by Lemma 5, we can obtain a
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critical value ¢ of I~ with ¢ > inf{I~(u); ||u| = do} > 0 by the mountain
pass theorem (see the proof of case (iv) in Theorem 1 for details).

Case(v) b = bg = A1, (G——) and (Gog—+) hold: In this case, we already
get a global minimum point of I~ by Proposition 11. Furthermore, if we take
a t > 0 satisfying ||t¢1]lcc < 0 where § is a positive constant described in
(Go—+), then we have I~ (—tg1) = —p [, Go(x, —tp1)dz < 0. Hence, the
minimum value of I~ is negative, and so I~ has a non-trivial critical point.

Case(vi) b=bg = A\, (G—+) and (Go——) hold: Let dg be a constant as in
Lemma 10, that is, a := inf{I~(u); ||u|]| = do } > 0. Recall the definition of
the approximate function I, introducing in case (ii) as follows:

n

_ _ 1 _
I (u):=1 (u)—E||u_||gzl(0’)\l+1/n)(u) forue X, neN.

Then, for each n € N there exists a number T}, > 0 satisfying || T, 1] > do and
I (=The1) < 0 by (F'). Therefore, we can construct a bounded Palais-Smale

n
sequence {u,} for I~ such that

(33) ()= I () + Sun P> a— 20 forns %
' ne ATl g e = nA1 al

by applying the mountain pass theorem to I, and by Lemma 8 (see the proof
of case (vi) or (ii) in Theorem 1 for details). Since I~ satisfies the Cerami
condition by Lemma 5 and {I~ (uy)} is bounded by the boundedness of {u,},
we may assume that wu, strongly converges to some critical point ug of I~
by choosing a subsequence. In addition, by taking n — oo in (3.3), we have
I~ (up) > a > 0 and hence ug is a non-trivial critical point of I~. |
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