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Abstract. We consider the following the p-Laplacian equation in a bounded
domain Ω: j −Δpu = f(x, u) in Ω,

u = 0 on ∂Ω.

We treat the case of nonlinearity term f satisfying the following conditions

f(x, t) =

8<
:

a0t
p−1
+ − b0t

p−1
− + o(|t|p−1) at 0,

atp−1
+ − btp−1

− + o(|t|p−1) at ∞,

for constants a0, b0, a and b. We prove the existence of a positive solution or a
negative solution in the case of (a0 − λ1)(a − λ1) = 0 or (b0 − λ1)(b − λ1) = 0
respectively, where λ1 is the first eigenvalue of −Δp.
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§1. Introduction and statements of results

1.1. Introduction

In this paper, we consider the equation

(P)
{ −Δpu = f(x, u) in Ω,

u = 0 on ∂Ω,

where 1 < p < ∞, Ω ⊂ R
N is a bounded domain, Δp denotes the p-Laplacian

defined by Δpu := div
(|∇u|p−2∇u

)
. Our purpose is to show the existence
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of constant sign solutions to (P). Here we say that u ∈ W 1,p
0 (Ω) is a (weak)

positive (resp. negative) solution of (P) if u(x) > 0 (resp. u(x) < 0) a.e.
x ∈ Ω and ∫

Ω
|∇u|p−2∇u∇ϕdx =

∫
Ω

f(x, u)ϕdx

holds for any ϕ ∈ W 1,p
0 (Ω).

We will treat f satisfying f(x, 0) = 0 a.e. x ∈ Ω and
(1.1)

f(x, t) =

⎧⎨
⎩

a0t
p−1
+ − b0t

p−1
− + o(|t|p−1) as |t| → 0, uniformly in a.e. x ∈ Ω,

atp−1
+ − btp−1

− + o(|t|p−1) as |t| → ∞, uniformly in a.e. x ∈ Ω,

where t± = max{±t, 0} and a0, a, b0 and b are some real constants. Thus, we
consider the case where (P) has a trivial solution u = 0.

Equation (P) in the case of f(x, t) = atp−1
+ − btp−1

− (where a, b ∈ R) has
been considered by Fuč́ık [6](p = 2) and by many authors (cf. [3], [2], [4]).
The set Σp of the points (a, b) ∈ R

2 for which the equation

(1.2) −Δpu = aup−1
+ − bup−1

− , u ∈ W 1,p
0 (Ω)

has a non-trivial weak solution is called Fuč́ık spectrum of the p-Laplacian
on W 1,p

0 (Ω) (1 < p < ∞) ([2]). In the case of a = b = λ ∈ R, the equation
(1.2) reads −Δpu = λ|u|p−2u. Hence (λ, λ) belongs to Σp if and only if λ is
an eigenvalue of −Δp, i.e., there exists a non-zero weak solution u ∈ W 1,p

0 (Ω)
to −Δpu = λ|u|p−2u. The set of all eigenvalues of −Δp is, as usual, denoted
by σ(−Δp). It is well known that the first eigenvalue λ1 of −Δp is positive,
simple, and has a positive eigenfunction ϕ1 ∈ W 1,p

0 (Ω)∩L∞(Ω)∩C1(Ω) with∫
Ω ϕp

1 dx = 1 (see [7, Proposition 1.5.19]). Therefore, Σp contains the lines
{λ1}×R and R×{λ1} since ϕ1 or −ϕ1 becomes a solution to (1.2) with (a, b) =
(λ1, b) or (a, λ1), respectively. Furthermore, [2] gave a Lipschitz continuous
curve contained in Σp which is called the first nontrivial curve C . This result
was proved by applying the mountain pass theorem to the functional defined
on a manifold in W 1,p

0 (Ω) (see [2] for details).
Many authors treated equation (P) for the nonlinear term f like (1.1) es-

pecially in the non-resonant case ((a0, b0) �∈ Σp and (a, b) �∈ Σp) (cf. [4], [8],
[10], [11], [14], [19], [20]). In the so-called resonant case where (a, b) ∈ Σp

or (a0, b0) ∈ Σp, there are a few existence results (cf. [9], [10], [11] where
a = b = λ1) and the present author obtained existence results of non-trivial
solutions to (P) in [14], [15], [16] and [17], including both in resonant cases
and non-resonant cases.

As for constant-sign solutions, [4] showed the existence of a positive (resp.
negative) solution to (P) under the condition (a0 − λ1)(a − λ1) < 0 (resp.
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(b0 − λ1)(b− λ1) < 0). However, the results of [4] does not cover several cases
where (a0, b0) or (a, b) belongs to Σp (that is, resonant case).

Thus, the purpose of the present paper is to show the existence of a positive
solution or negative solution for (P) in the case of (a0 − λ1)(a − λ1) = 0 or
(b0−λ1)(b−λ1) = 0, respectively (containing possibly “doubly resonant” case).

1.2. Statements of results

In this paper, we assume that the nonlinear term f satisfies the following
assumption (F ):

(F ) f is a Carathéodory function on Ω× R with f(x, 0) = 0 for a.e. x ∈ Ω
and satisfies the following conditions for some constants a0, b0, a, b ∈ R and
a positive constant C0:

f(x, u) =

{
a0u

p−1
+ − b0u

p−1
− + g0(x, u),

aup−1
+ − bup−1

− + g(x, u),
(1.3)

g0(x, t) = o(|t|p−1) as |t| → 0, uniformly in a.e. x ∈ Ω,

g(x, t) = o(|t|p−1) as |t| → ∞, uniformly in a.e. x ∈ Ω,

|f(x, t)| ≤ C0|t|p−1 for every t ∈ R, a.e. x ∈ Ω.

Setting G(x, u) :=
∫ u
0 g(x, s) ds and G0(x, u) :=

∫ u
0 g0(x, s) ds for the non-

linear terms g and g0 in (1.3), we can now state relevant conditions on g(x, u)
or g0(x, u), which are not necessarily simultaneously assumed in our results.

(G++) pG(x, t) − g(x, t)t → +∞ as t → +∞, uniformly in a.e. x ∈ Ω,

(G−+) pG(x, t) − g(x, t)t → +∞ as t → −∞, uniformly in a.e. x ∈ Ω.

(G+−) pG(x, t) − g(x, t)t → −∞ as t → +∞, uniformly in a.e. x ∈ Ω.

(G−−) pG(x, t) − g(x, t)t → −∞ as t → −∞, uniformly in a.e. x ∈ Ω.

(G0++) there exist a δ > 0 and a measurable subset Ω′ of Ω with μ(Ω′) > 0
such that

G0(x, t) ≥ 0 for 0 ≤ t ≤ δ, a.e. x ∈ Ω,

G0(x, t) > 0 for 0 < t ≤ δ, a.e. x ∈ Ω′,

where μ(Ω′) denotes the Lebesgue measure of Ω′.
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(G0−+) there exist a δ > 0 and a measurable subset Ω′ of Ω with μ(Ω′) > 0
such that

G0(x, t) ≥ 0 for − δ ≤ t ≤ 0, a.e. x ∈ Ω,

G0(x, t) > 0 for − δ ≤ t < 0, a.e. x ∈ Ω′.

(G0+−) there exist positive constants δ, C and q ∈ (p, p∗) such that

G0(x, t) ≤ −C|t|q for 0 ≤ t ≤ δ, a.e. x ∈ Ω,

where p∗ = pN/(N − p) if p < N , p∗ = +∞ if p ≥ N .

(G0−−) there exist positive constants δ, C and q ∈ (p, p∗) (p∗ is the number
defined just above) such that

G0(x, t) ≤ −C|t|q for − δ ≤ t ≤ 0, a.e. x ∈ Ω.

Now we can state our results.

Theorem 1 Assume that f satisfies (F ) for some constants a0, b0, a, b ∈ R

and a positive constant C0. Then, if one of the following conditions holds, (P)
has at least one positive solution.

(i) a = λ1 < a0 and (G+−);

(ii) a = λ1 > a0 and (G++);

(iii) a < λ1 = a0 and (G0++);

(iv) a > λ1 = a0 and (G0+−);

(v) a = a0 = λ1, (G+−) and (G0++);

(vi) a = a0 = λ1, (G++) and (G0+−).

Theorem 2 Assume that f satisfies (F ) for some constants a0, b0, a, b ∈ R

and a positive constant C0. Then, if one of the following conditions holds, (P)
has at least one negative solution.

(i) b = λ1 < b0 and (G−−);

(ii) b = λ1 > b0 and (G−+);

(iii) b < λ1 = b0 and (G0−+);

(iv) b > λ1 = b0 and (G0−−);
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(v) b = b0 = λ1, (G−−) and (G0−+);

(vi) b = b0 = λ1, (G−+) and (G0−−).

We remark that many nonlinearities satisfy assumptions above, for exam-
ple, g(x, u) = ±|u|q−2u near infinity (1 ≤ q < p) and g0(x, u) = ±|u|r−2u near
zero (p < r < p∗).

1.3. Notation and the structure of the paper

In what follows, we set X = W 1,p
0 (Ω) with norm ‖u‖ =

( ∫
Ω |∇u|p dx

)1/p and
define two functionals I+ and I− on X by

I±(u) :=
∫

Ω
|∇u|p dx − p

∫
Ω

F±(x, u) dx.

where

f±(x, u) :=
{

f(x, u) if ± u > 0,
0 if ± u ≤ 0,

F±(x, u) :=
∫ u

0
f±(x, s) ds .

For the sake of brevity, we use the notation I± to denote either I+ or I−. f±
or F± should be understood in the same way.

Moreover, ‖u‖q denotes the Lq norm of u ∈ Lq(Ω) (1 ≤ q ≤ ∞). Note
that X is uniformly convex since we have assumed 1 < p < ∞.

Remark 3 Under condition (F ), it is well known that I± are C1 function-
als and non-trivial critical points of I+ and I− correspond to (weak) positive
solutions and negative solutions of equation (P), respectively. Indeed, let u
be a critical point of I−. Noting that 0 = 〈(I−)′(u), u+〉 = p‖u+‖p, we have
u ≤ 0, hence u is a non-positive weak solution to −Δpu = f(x, u). There-
fore, u belongs to L∞(Ω) ∩ C1(Ω) (cf. [1], [5]). Moreover, we have u < 0 or
u ≡ 0 in Ω by Harnack inequality (cf. [18]). Thus, u is a negative solution of
−Δpu = f(x, u) in Ω if u �= 0. Similarly, if u is a non-trivial critical point of
I+, then u > 0 in Ω holds.

Firstly, in the next section, we prepare several results for our proofs. In
Section 3, we can obtain a non-trivial critical point of I+ (resp. I−) under
each conditions in Theorem 1 (resp. Theorem 2), whence follows the existence
of a positive (resp. negative) solution for (P), respectively.
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§2. Preliminaries

2.1. The Cerami condition

It is well known that the Palais–Smale condition and the Cerami condition
imply the compactness of a critical set at any level c ∈ R, and they play an
important role in minimax argument. Here, we recall the definition of the
Cerami condition.

Definition 4 A C1 functional J on a Banach space E is said to satisfy the
Cerami condition at c ∈ R if any sequence {un} ⊂ E satisfying

J(un) → c and (1 + ‖un‖ ) ‖J ′(un)‖E∗ → 0 as n → ∞

has a convergent subsequence. We say that J satisfies the Cerami condition if
J satisfies the Cerami condition at any c ∈ R.

We note that the Cerami condition is weaker than the usual Palais–Smale
condition.

Now we introduce assumption (g0) for the nonlinear term g in (1.3) to
prepare the results concerning the Cerami condition.

(g0) g is a Carathéodory function on Ω×R such that |g(x, t)| ≤ C(1+|t|p−1)
for every t ∈ R, a.e. x ∈ Ω and g(x, t) = o(|t|p−1) as |t| → ∞ uniformly in a.e.
x ∈ Ω, where C is a positive constant.

For a, b ∈ R and a nonlinear term g satisfying (g0), we define two C1

functionals on X as follows:

I+
(a,0)(u) = ‖u‖p − a‖u+‖p

p − p

∫
Ω

G+(x, u) dx,(2.1)

I−(0,b)(u) = ‖u‖p − b‖u−‖p
p − p

∫
Ω

G−(x, u) dx,(2.2)

where

g±(x, u) :=
{

g(x, u) if ± u > 0,
0 if ± u ≤ 0,

G±(x, u) :=
∫ u

0
g±(x, s) ds .

Then, the following result has been obtained concerning the Cerami condition
or the Palais-Smale condition on the above two functionals.

Lemma 5 ([16, Lemma 16]) Let g satisfy (g0). Then the following assertions
hold:

(i) if a �= λ1, then I+
(a,0) satisfies the Palais–Smale condition;
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(ii) if b �= λ1, then I−(0,b) satisfies the Palais–Smale condition;

(iii) if g satisfies (G++) or (G+−) (resp. (G−+) or (G−−) ), then I+
(a,0)

(resp. I−(0,b)) satisfies the Cerami condition for every a, b ∈ R.

2.2. The boundedness of a Cerami sequence

Under condition (g0), we define C1 functional I(a,b) on X by

(2.3) I(a,b)(u) =
∫

Ω
|∇u|p dx − a

∫
Ω

up
+ dx − b

∫
Ω

up
− dx − p

∫
Ω

G(x, u) dx

for a and b ∈ R. Here, we recall the following results to prove the boundedness
of a Cerami sequence.

Lemma 6 ([16, Lemma 13]) We assume that g satisfies (g0). Let I(a,b) be the
functional defined by (2.3) for a, b ∈ R and suppose that {un} ⊂ X satisfy

‖un‖ → ∞ and ‖I ′(a,b)(un)‖X∗/‖un‖p−1 → 0 as n → ∞.

Then, {un/‖un‖} has a subsequence converging to some v0 ∈ X which is a
non-trivial solution of

−Δpu = aup−1
+ − bup−1

− in Ω, u = 0 on ∂Ω.

Using above result, we can prove the following lemma (see [16, Lemma 19] for
the proof).

Lemma 7 ([16, Lemma 19]) Assume that g satisfies (g0) and (G− −) (resp.
(G+−)). Moreover, let {un} ⊂ X satisfy

lim
n→∞ ‖un‖ ‖

(
I−(0,λ1−1/n)

)′
(un)‖X∗ = 0 and sup

n
I−(0,λ1−1/n)(un) < +∞,(

resp. lim
n→∞ ‖un‖ ‖

(
I+
(λ1−1/n,0)

)′
(un)‖X∗ = 0 and sup

n
I+
(λ1−1/n,0)(un) < +∞

)
,

where I−(0,λ1−1/n) and I+
(λ1−1/n,0) are functionals defined by (2.2) and (2.1) with

the nonlinear term g, respectively. Then, {un} is bounded in X.

The following lemma can be shown by a similar argument as in the proof of
Lemma 7. Here, we give a sketch of the proof for readers’ convenience.
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Lemma 8 Assume that g satisfies (g0) and (G++) (resp. (G−+)). Moreover,
let {un} ⊂ X satisfy

lim
n→∞ ‖un‖ ‖

(
I+
(λ1+1/n,0)

)′
(un)‖X∗ = 0 and inf

n
I+
(λ1+1/n,0)(un) > −∞,(

resp. lim
n→∞ ‖un‖ ‖

(
I−(0,λ1+1/n)

)′
(un)‖X∗ = 0 and inf

n
I−(0,λ1+1/n)(un) > −∞

)
,

where I−(0,λ1+1/n) and I+
(λ1+1/n,0) are functionals defined by (2.2) and (2.1) with

the nonlinear term g, respectively. Then, {un} is bounded in X.

Proof. We prove only the case where g satisfies (g0) and (G++) because
another case is shown by a similar argument. Throughout this proof, we write
I+
n = I+

(λ1+1/n,0) for n ∈ N to simplify the notation.
We prove the boundedness of {un} by contradiction. Thus, supposing that

{un} is not bounded, by taking a subsequence, we may assume that ‖un‖ → ∞
as n → ∞. Setting vn = un/‖un‖, we may suppose that there exists a v ∈ X
such that

vn ⇀ v in X and hence vn → v in Lp

and vn(x) → v(x) for a.e. x ∈ Ω as n → ∞.
Since g+ also satisfies (g0) and

‖
(

I+
(λ1,0)

)′
(un) ‖X∗ ≤ ‖(I+

n )′(un)‖X∗ +
p

λ1n
‖un+‖p−1

holds, Lemma 6 implies that vn strongly converges to v being a non-trivial
solution of −Δpu = λ1u

p−1
+ in Ω, u = 0 on ∂Ω. This yields that v = ϕ1/‖ϕ1‖

because λ1 is simple. Hence un(x) → +∞ for a.e. x ∈ Ω.
Now let us note the inequality

o(1) − inf
m

I+
m(um) =

1
p
〈(I+

n )′(un), un〉 − inf
m

I+
m(um)

≥ 1
p
〈(I+

n )′(un), un〉 − I+
n (un)(2.4)

=
∫

Ω
pG+(x, un) − g+(x, un)un dx.

On the other hand, by (g0) and (G++), we have

ess. inf { pG+(x, t) − g+(x, t)t ; x ∈ Ω, t ∈ R} > −∞
and hence by (G++) and un(x) → +∞ for a.e. x ∈ Ω,

lim inf
n→∞

∫
Ω

pG+(x, un) − g+(x, un)un dx = +∞

by Fatou’s lemma. This gives a contradiction to (2.4).
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2.3. Some key results

In this subsection, we prepare several results for the proofs of Theorems 1
and 2. At first, we state the following result concerning the mountain pass
argument.

Lemma 9 Let f satisfy (F ) and assume that a0 = λ1 and (G0 +−) hold.
Then, there exists a positive constant δ0 satisfying

inf
‖u‖=δ0

I+(u) > 0,

where I+ is the functional defined in section 1.3.

Proof. From (F ) and (G0+−), there exist C1 > 0, C2 > 0 and p < q < r ≤ p∗

such that

G0(x, u) ≤ −C1u
q + C2u

r for every u ≥ 0, a.e. x ∈ Ω.

Therefore,

(2.5) I+(u) ≥ ‖u−‖p + ‖u+‖p − λ1‖u+‖p
p + pC1‖u+‖q

q − pC2‖u+‖r
r

holds for every u ∈ X. In addition, we can get positive constants C3 and C4

satisfying

(2.6) ‖u‖p ≤ C3‖u‖q and ‖u‖r ≤ C4‖u‖ for every u ∈ X

by Höder’s inequality and the continuity of the inclusion by X into Lr(Ω),
respectively.

For every u ∈ X with λ2‖u+‖p
p ≤ ‖u+‖p (where λ2 is the second eigenvalue

of −Δp), we can get the following inequality

I+(u) ≥ ‖u−‖p + ‖u+‖p
(
1 − λ1/λ2 − pC2C

r
4‖u+‖r−p

)
by (2.5) and (2.6). Because of λ2 > λ1 and p < r, there exist positive constants
δ1 and C5 such that

(2.7) I+(u) ≥ ‖u−‖p + C5‖u+‖p ≥ min{1, C5}‖u‖p

for every u ∈ X provided λ2‖u+‖p
p ≤ ‖u+‖p ≤ δp

1 .
Next, let u ∈ X satisfy λ2‖u+‖p

p > ‖u+‖p. Then, noting the inequality

‖u+‖q
q ≥ (‖u+‖p/C3)q > (‖u+‖/(C3λ

1/p
2 ) )q,
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we obtain

I+(u) ≥ ‖u−‖p + ‖u+‖q

(
pC1

Cq
3 λ

q/p
2

− pC2C
r
4‖u+‖r−q

)

by (2.5), (2.6) and ‖u+‖p ≥ λ1‖u+‖p
p, and hence there exist δ2 ∈ (0, 1] and

C6 > 0 such that

(2.8) I+(u) ≥ ‖u−‖p + C6‖u+‖q ≥ min{1, C6}‖u‖q

for every u ∈ X provided ‖u+‖ ≤ δ2 and λ2‖u+‖p
p > ‖u+‖p.

Put δ0 = min{δ1, δ2} > 0. Then, the inequalities (2.7) and (2.8) imply

I+(u) ≥ min{1, C5, C6}‖u‖q = min{1, C5, C6}δq
0 > 0

for every u ∈ X with ‖u‖ = δ0.

Because the following lemma concerning I− defined in section 1.3 can be shown
by a similar argument as for Lemma 9, we omit the proof here.

Lemma 10 Let f satisfy (F ) and we assume that b0 = λ1 and (G0−−) hold.
Then, there exists a positive constant δ0 satisfying

inf
‖u‖=δ0

I−(u) > 0.

A similar result to the following proposition can be found as in [16, Proposition
18]. Here, we sketch the proof for readers’ convenience.

Proposition 11 Assume that f satisfies (F ) with a = λ1 (resp. b = λ1) and
(G+−) (resp. (G−−)). Then, I+ (resp. I−) has a global minimium.

Proof. At first, we consider I+. Let us set

I+
n (u) = I+

(λ1−1/n,0)(u) = I+(u) +
1
n
‖u+‖p

p

for u ∈ X and n ∈ N to simplify the notation.
For each n ∈ N, it is easy to see that I+

n is bounded from below on X
since

∫
Ω G+(x, u) dx = o(‖u+‖p

p) as ‖u+‖p
p → ∞ and ‖u‖p ≥ λ1‖u‖p

p for every
u ∈ X. Moreover, let us note that I+

n satisfies the Palais–Smale condition for
every n ∈ N by Lemma 5. Therefore, by a standard argument ([13, Theorem
4.2]) and by the Palais–Smale condition, for every n ∈ N, there exists a un ∈ X
such that

‖(I+
n )′(un)‖X∗ = 0 and I+

n (un) = inf
X

I+
n ≤ I+

n (0) = 0.
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Since g satisfies (G+−), by Lemma 7, {un} is a bounded sequence in X, and
hence we may assume that there exists a u0 ∈ X such that

un ⇀ u0 in X and un → u0 in Lp

by taking a subsequence. Furthermore, for every w ∈ X and n ∈ N,

I+(un) ≤ I+
n (un) ≤ I+

n (w) = I+(w) +
1
n
‖w+‖p

p

holds (where we use the fact that un is a global minimizer of I+
n in the second

inequality). By taking the limit inferior with respect to n in the above inequal-
ity, I+(u0) ≤ I+(w) holds for every w ∈ X since I+ is weakly sequentially
lower semi-continuous. This shows that u0 is a global minimum point of I+.

Next, we consider I−. By using I−(0,λ1−1/n) (see (2.2) for the definition)
instead of I+

(λ1−1/n,0), we can obtain a bounded sequence {un} such that un

is a global minimum point of I−(0,λ1−1/n) for each n. Because Lemma 7 gives
the boundedness of {un}, we may assume that {un} weakly converges to some
u0 ∈ X, by choosing a subsequence. Then, by the same argument as that for
I+, we can prove that u0 is a global minimizer of I−.

§3. Proofs of Theorems

3.1. Proof of Theorem 1

Now, we start to prove Theorem 1.

Proof of Theorem 1. Case (i) a = λ1 < a0 and (G+−) hold: In this case,
we note that I+ has a global minimum point u0 ∈ X by Proposition 11. So,
we shall prove that infX I+ is negative to obtain u0 �= 0.

From (F ), for any ε and r satisfying 0 < ε < (a0 − λ1)/p and r > p, there
exists a C > 0 such that

G0(x, u) ≥ −ε|u|p − C|u|r for every u ∈ R, a.e. x ∈ Ω.

Thus, we have for t > 0

I+(tϕ1) ≤ tp
( ‖ϕ1‖p − a0‖ϕ1‖p

p + εp‖ϕ1‖p
p + pCtr−p‖ϕ1‖r

r

)
= tp

(
λ1 − a0 + εp + pCtr−p‖ϕ1‖r

r

)
.

Because λ1 − a0 + εp < 0 and r > p, this inequality shows that I+(tϕ1) < 0
for sufficiently small t > 0, and hence I+(u0) = infX I+ < 0. Therefore, (P)
has a positive solution (see Remark 3).
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Case(ii) a = λ1 > a0 and (G++) hold: In this case, by applying the
mountain pass theorem to

I+
−n(u) := I+(u) − 1

n
‖u+‖p

p = I+
(λ1+1/n,0)(u) for u ∈ X

(see (2.1) for the definition of I+
(λ1+1/n,0) with g), we shall construct a Cerami

sequence for I+.
Since

∫
Ω G0+(x, u) dx = o(‖u+‖p) as ‖u+‖ → 0, we have I+(u) ≥ ‖u−‖p +

(1 − a0/λ1)‖u+‖p − o(‖u+‖p) as ‖u+‖ → 0. Thus, there exists a positive
constant δ0 satisfying

α := inf{I+(u) ; ‖u‖ = δ0 } > 0

since a0 < λ1.
On the other hand, noting that for each n ∈ N

I+
−n(tϕ1) =

∫
Ω

G(x, tϕ1) dx − tp

n
= o(tp) − tp

n
as t → +∞,

we obtain a Tn > δ0/‖ϕ1‖ such that I+
−n(Tnϕ1) < 0. Define

Γn := { γ ∈ C([0, 1],X) ; γ(0) = 0, γ(1) = Tnϕ1 }

and

cn := inf
γ∈Γn

max
t∈[0,1]

I+
−n(γ(t))

for n ∈ N. Let us note that δ0 < ‖Tnϕ1‖ and

inf{I+
−n(u) ; ‖u‖ = δ0} ≥ inf{I+(u) ; ‖u‖ = δ0 } − δp

0

nλ1
= α − δp

0

nλ1
,

and so inf{I+
−n(u) ; ‖u‖ = δ0} > 0 for n > δp

0/(αλ1). Hence, by the mountain
pass theorem, for each n > δp

0/(αλ1), we have that cn is a critical value of I+
−n

since I+
−n satisfies the Palais–Smale condition by Lemma 5 (note λ1 + 1/n �=

λ1). Therefore, there exists a un ∈ X such that

(I+
−n)′(un) = 0 and I+

−n(un) = cn ≥ inf{I+
−n(u) ; ‖u‖ = δ0} ≥ α − δp

0

nλ1
.

Because {un} is bounded in X by Lemma 8 (note I+
−n = I+

(λ1+1/n,0)), we may
assume that there exists a u0 ∈ X such that un weakly converges to u0 in X by
taking a subsequence. Also, by choosing a subsequence again, we may suppose
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that {cn} is a convergent sequence since cn ∈ [0, I(un)] and I is bounded on
any bounded subsets of X.

Furthermore, the following inequality

‖(I+)′(un)‖X∗ = ‖(I+)′(un) − (I+
−n)′(un)‖X∗ ≤ p

nλ1
‖un+‖p−1

shows ‖(I+)′(un)‖X∗ → 0 as n → ∞. Thus, {un} is a bounded Palais–Smale
sequence of I+, that is to say that {un} is a Cerami sequence of I+. Since I+

satisfies the Cerami condition by Lemma 5, un strongly converges to a critical
point u0 of I+.

In addition, the following inequality

I+(un) = I+
−n(un) +

1
n
‖un+‖p

p ≥ cn ≥ α − δp
0

nλ1

implies I+(u0) ≥ limn→∞ cn ≥ α > 0, and hence u0 is a non-trivial critical
point of I+.

Case(iii) a < λ1 = a0 and (G0++) hold: From (F ), we have
∫
Ω G+(x, u) dx =

o(‖u+‖p
p) as ‖u+‖p

p → ∞. Hence, the following inequality

I+(u) = ‖u‖p − a‖u+‖p
p − p

∫
Ω

G+(x, u) dx

≥ ‖u−‖p + (1 − a

λ1
)‖u+‖p − o(‖u+‖p

p) as ‖u+‖p
p → ∞

and a < λ1 show that I+ is coercive and bounded from below on X. Moreover,
it is easy to see that I+ is weakly lower semi-continuous. It follows from the
standard argument (cf. [13, Theorem 1.1]) that I+ has a global minimum
point.

On the other hand, for t > 0 such that ‖tϕ1‖∞ ≤ δ where δ is a positive
constant described in (G0++), we obtain

I+(tϕ1) = −p

∫
Ω

G0(x, tϕ1) dx < 0,

and hence infX I+ < 0. Therefore, I+ has a non-trivial critical point u0

satisfying I+(u0) = minX I+ < 0.
Case(iv) a > λ1 = a0 and (G0 +−) hold: It follows from Lemma 9 that

there exists a δ0 > 0 satisfying inf{I+(u) ; ‖u‖ = δ0 } > 0. On the other hand,
we have for t > 0

I+(tϕ1) = (λ1 − a)tp‖ϕ1‖p
p − o(tp) → −∞ as t → +∞

by λ1 − a < 0 and
∫
Ω G+(x, tϕ1) dx = o(tp) as t → +∞. Thus, we can choose

a positive constant T such that T > δ0/‖ϕ1‖ and I+(Tϕ1) < 0. So, we define

Γ := { γ ∈ C([0, 1],X) ; γ(0) = 0, γ(1) = Tϕ1 }
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and

c := inf
γ∈Γ

max
t∈[0,1]

I+(γ(t)).

Then, by mountain pass theorem, c is a critical value of I+ with

c ≥ inf{I+(u) ; ‖u‖ = δ0 } > 0

because I+(= I+
(a,0)) satisfies the Palais–Smale condition by Lemma 5. So, I+

has a non-trivial critical point.
Case(v) a = a0 = λ1, (G+−) and (G0++) hold: In this case, we note that

I+ has a global minimum point by Proposition 11. Hence, we shall show that
the minimum value of I+ is negative.

Let δ be a positive constant described in (G0++). For t > 0 with ‖tϕ1‖∞ ≤
δ, we get I+(tϕ1) = −p

∫
Ω G0(x, tϕ1) dx < 0, which implies that infX I+ < 0

holds, and so I+ has a non-trivial critical point.
Case(vi) a = a0 = λ1, (G++) and (G0+−) hold: Recall the definition of

the approximate functional I+
−n setting in case (ii) as follows:

I+
−n(u) := I+(u) − 1

n
‖u+‖p

p = I+
(λ1+1/n,0)(u) for u ∈ X

Let δ0 be a positive constant obtained by Lemma 9, that is, δ0 satisfies

α := inf{I+(u) ; ‖u‖ = δ0 } > 0.

By the same argument as in case (ii), we can obtain a un ∈ X for each
n > δp

0/(αλ1) such that

(3.1) (I+
−n)′(un) = 0 and I+

−n(un) ≥ inf{I+
−n(u) ; ‖u‖ = δ0} ≥ α − δp

0

nλ1
.

Furthermore, it can be shown that there exists a subsequence of {un} (we
write this subsequence again by {un}) that is a Cerami sequence at some level
c ∈ R by the same argument as in case (ii) by Lemma 8. Since I+ satisfies the
Cerami condition by Lemma 5, {un} has a subsequence strongly converging
to some critical point u0 of I+. By taking a limit with respect to n in (3.1),
we have I+(u0) ≥ α > 0, and hence u0 is a non-trivial critical point of I+.

3.2. Proof of Theorem 2

Next, we start to prove Theorem 2 which can be shown by a similar argument
to Theorem 1. We give only a sketch of the proof.
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Proof of Theorem 2. Case(i) b = λ1 < b0 and (G−−) hold: In this case,
it follows from Proposition 11 that I− has a global minimizer. On the other
hand, because we have for t > 0

I−(−tϕ1) = tp(λ1 − b0) − p

∫
Ω

G0(x,−tϕ1) dx

and
∫
Ω G0(x,−tϕ1) dx = o(tp) as t → +0 by (F ), minX I− < 0 holds (note

λ1 < b0). Hence I− has a non-trivial critical point corresponding to a negative
solution of (P) (see Remark 3).

Case(ii) b = λ1 > b0 and (G−+) hold: We shall construct a bounded
Palais–Smale sequence for I− by using the approximate functional I−n defined
as follows:

I−n (u) := I−(u) − 1
n
‖u−‖p

p = I−(0,λ1+1/n)(u) for u ∈ X, n ∈ N

(see (2.2) for the definition of I−
(0,λ1+1/n)

with g).
From

∫
Ω G0−(x, u) dx = o(‖u−‖p) as ‖u−‖ → 0 and b0 < λ1, we can obtain

a positive constant δ0 satisfying α := {I−(u) ; ‖u‖ = δ0 } > 0. Then, by
applying the mountain pass theorem to I−n (note that for each n, we have
I−n (−tϕ1) → −∞ as t → ∞), we can get a Palais–Smale sequence {un} such
that

(3.2) I−(un) = I−n (un) +
1
n
‖un−‖p

p ≥ α − δp
0

nλ1

for n > δp
0/(αλ1) and we have that {un} is bounded by Lemma 8 (see the

proof of Theorem 1 (ii) for details). Since I− satisfies the Cerami condition by
Lemma 5, we may assume, by taking a subsequence, that un strongly converges
to some critical point u0 of I−. In addition, by taking n → ∞ in (3.2), we
have I−(u0) ≥ α > 0 and so u0 is a non-trivial critical point of I−.

Case(iii) b < λ1 = b0 and (G0−+) hold: From b < λ1 and
∫
Ω G−(x, u) dx =

o(‖u−‖p
p) as ‖u−‖p → ∞, we can easily show that I− is coercive and bounded

from below on X. Because I− is weakly lower semi-continuous, I− has a
global minimum point (cf. [13, Theorem 1.1]). Let δ be a positive con-
stant as in (G0−+) and let t > 0 satisfy ‖tϕ1‖∞ ≤ δ. Then I−(−tϕ1) =
−p
∫
Ω G0(x,−tϕ1) dx < 0 holds, whence the minimum value of I− is negative,

that is, the global minimum point of I− is a non-trivial critical point.
Case(iv) b > λ1 = b0 and (G0−−) hold: Let δ0 be a positive constant

obtained in Lemma 10, that is, δ0 is a number such that inf{I−(u) ; ‖u‖ =
δ0 } > 0 holds. Because it follows from b > λ1 and (F ) that I−(−tϕ1) → −∞
as t → ∞, there exists a T > 0 such that T > δ0/‖ϕ1‖ and I−(−Tϕ1) < 0.
Since I− satisfies the Palais–Smale condition by Lemma 5, we can obtain a
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critical value c of I− with c ≥ inf{I−(u) ; ‖u‖ = δ0 } > 0 by the mountain
pass theorem (see the proof of case (iv) in Theorem 1 for details).

Case(v) b = b0 = λ1, (G−−) and (G0−+) hold: In this case, we already
get a global minimum point of I− by Proposition 11. Furthermore, if we take
a t > 0 satisfying ‖tϕ1‖∞ ≤ δ where δ is a positive constant described in
(G0−+), then we have I−(−tϕ1) = −p

∫
Ω G0(x,−tϕ1) dx < 0. Hence, the

minimum value of I− is negative, and so I− has a non-trivial critical point.
Case(vi) b = b0 = λ1, (G−+) and (G0−−) hold: Let δ0 be a constant as in

Lemma 10, that is, α := inf{I−(u) ; ‖u‖ = δ0 } > 0. Recall the definition of
the approximate function I−n introducing in case (ii) as follows:

I−n (u) := I−(u) − 1
n
‖u−‖p

p = I−(0,λ1+1/n)(u) for u ∈ X, n ∈ N.

Then, for each n ∈ N there exists a number Tn > 0 satisfying ‖Tnϕ1‖ > δ0 and
I−n (−Tnϕ1) < 0 by (F ). Therefore, we can construct a bounded Palais–Smale
sequence {un} for I− such that

(3.3) I−(un) = I−n (un) +
1
n
‖un−‖p

p ≥ α − δp
0

nλ1
for n >

δp
0

αλ1

by applying the mountain pass theorem to I−n and by Lemma 8 (see the proof
of case (vi) or (ii) in Theorem 1 for details). Since I− satisfies the Cerami
condition by Lemma 5 and {I−(un)} is bounded by the boundedness of {un},
we may assume that un strongly converges to some critical point u0 of I−

by choosing a subsequence. In addition, by taking n → ∞ in (3.3), we have
I−(u0) ≥ α > 0 and hence u0 is a non-trivial critical point of I−.
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