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Abstract. In this paper, the problem of classifying a new observation vector
into one of the two normal populations for high-dimensional data is considered.
High-dimensional data means that the total number of observation vectors from
the two groups is less than the dimension of the observation vectors. Recently,
linear discriminant analysis (LDA) for high-dimensional data such as microarray
data has been considered. A simple way is to use the Moore-Penrose inverse
when the sample covariance matrix is singular. In this paper, we suggest another
type LDA approach for high-dimensional data. This method is based on a
ridge type estimator of covariance matrix which was proposed by Srivastava
and Kubokawa (2008). In addition, we derive asymptotic approximation of
EPMC for this method in the situation of n = O(pδ), p → ∞, 0 < δ < 1/2.
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§1. Introduction

We deal with the problem of classifying a p×1 observation vector x as coming
from one of two populations Π1 and Π2. Let Πi, i = 1, 2 have p-variate
normal populations with mean vector μi and the common positive definite
covariance matrix Σ, where μ1 �= μ2. Assume that random sample vectors
xij , j = 1, . . . , Ni from Πi, i = 1, 2 are given. Consider the case in which
all parameters are unknown. linear discriminant analysis (LDA) is one of the
standard classical methods for classifying x into either Π1 or Π2, which is
given as follows:

W = (x̄1 − x̄2)′S−1{x − 1
2 (x̄1 + x̄2)} ≶ 0 =⇒ x ∈ Π1(Π2).
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Here, x̄1, x̄2 and S are the sample mean vectors and the pooled sample co-
variance matrix given by

x̄i = N−1
i

Ni∑
j=1

xij, i = 1, 2,

S = n−1
2∑

i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)′,

respectively, where n = N1+N2−2. It is generally difficult to obtain an explicit
expression for the expected probabilities of misclassification (EPMC), that is,
the probabilities of misclassifying x into Π2 (Π1) when it actually belongs
to Π1 (Π2). So, there are much works for their asymptotic approximations.
Type-I approximations are the ones under a framework such that N1 and N2

are large and p is fixed. For a review of these results, see, e.g., Siotani (1982).
Further, the ones under a framework that N1, N2 and p are all large have also
been studied (see, e.g., Raudys (1972), Fujikoshi and Seo (1998)). Moreover,
Fujikoshi (2000) gave explicit formula of error bounds for approximation of
EPMC proposed by Lachenbruch (1968).

Recently, linear discriminant analysis for high-dimensional data has been
considered. A simple way is to use the Moore-Penrose inverse when the sample
covariance matrix is singular. On the other hand, the usefulness of the ridge
type estimators has been recognized by Srivastava and Kubokawa (2007). In
order to guarantee the nonsingularity of S, we use the following ridge type
estimator instead of S.

Sr = S + λI.

From Srivastava and Kubokawa (2007) and Kubokawa and Srivastava (2008),
the following ridge parameter is chosen by the empirical Bayes method:

λ =
√

pâ1

n
, â1 =

tr(S)
p

.

Using above estimator, we suggest ridge type linear discriminant analysis
(RTLDA);

Wr = (x̄1 − x̄2)′S−1
r {x − 1

2 (x̄1 + x̄2)} ≶ 0 =⇒ x ∈ Π1(Π2).(1.1)

In this paper, we consider an asymptotic approximation of the EPMC for
large p with n = O(pδ), 0 < δ < 1/2. The EPMC for the RTLDA may be
expressed as follows:

e(2|1) = Pr (Wr ≤ 0|x ∈ Π1), e(1|2) = Pr (Wr ≥ 0|x ∈ Π2).
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The organization of this paper is as follows. In Section 2, we give an
asymptotic approximation of EPMC for RTLDA and derive an estimator of
EPMC. Further we evaluate our results in Section 2 numerically by Monte
Carlo simulations in Section 3. In Section 4, we investigate EPMC of RTLDA
for Leukemia dataset which were considered by Dudoit et al. (2002). The
conclusion of our study is summarized in Section 5.

§2. Asymptotic approximation of EPMC for RTLDA

In this section, we consider an asymptotic approximation for RTLDA under
the following assumptions:

A1 : n = O(pδ), Ni = O(pδ), p → ∞, 0 < δ < 1/2, i = 1, 2.

Further, in addition to A1, we assume the following assumptions:

A2 : tr Σi/p → ai0, 0 < ai0 < ∞, i = 1, . . . , 6,
A3 : 0 < δ′δ/p < ∞, δ = μ1 − μ2,

A4 : 0 < δ′Σδ/p < ∞.

The EPMC based on the rule (1.1) are expressed as

e(2|1) = Pr (Wr < 0|x ∈ Π1), e(1|2) = Pr (Wr > 0|x ∈ Π2).

Since e(1|2) is given from e(2|1) by interchanging N1 and N2, we only deal
with e(2|1). Let the statistics V, Z, U be defined as follows (see e.g., Fujikoshi
(2000)):

V = (x̄1 − x̄2)′S−1
r ΣS−1

r (x̄1 − x̄2),

Z = V − 1
2 (x̄1 − x̄2)′S−1

r (x − μ1),
U = (x̄1 − x̄2)′S−1

r (x̄1 − μ1) − 1
2D2.

Here D2 = (x̄1 − x̄2)′S−1
r (x̄1 − x̄2). Then, it may be expressed that

Wr = V −1/2Z − U

under x ∈ Π1. Since Z and (U, V ) are independent, and Z is distributed
according to N(0, 1) (here after, denoted by Z ∼ N(0, 1)),

e(2|1) = E(U,V )[Φ(U/
√

V )],

where Φ(·) denotes the cumulative distribution function of N(0, 1). To evalu-
ate the expectation with respect to U and V explicitly, set

z1 = N− 1
2 (N1x̄1 + N2x̄2 − N1μ1 − N2μ2),

z2 =
(

N

N1N2

)− 1
2

(x̄1 − x̄2 − μ1 + μ2),
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where N = n + 2. Note that zi ∼ Np(0,Σ), i = 1, 2. In addition, z1 and
z2 are independent. We can express U and V in terms of z1 and z2 as the
following:

U = −1
2
δ′S−1

r δ +
1

N
1
2

δ′S−1
r z1 −

(
N1

NN2

) 1
2

δ′S−1
r z2

+
1

(N1N2)
1
2

z′
1S

−1
r z2 − N1 − N2

2N1N2
z′

2S
−1
r z2,

V = δ′S−1
r ΣS−1

r δ + 2
(

N

N1N2

)1
2

δ′S−1
r ΣS−1

r z2 +
N

N1N2
z′

2S
−1
r ΣS−1

r z2.

We propose an approximation of EPMC for RTLDA as follows:

e(2|1) ≈ Φ(ξ),(2.1)

where ξ ∈ R s.t. |Φ(U/
√

V ) − Φ(ξ)| = op(1). Here, the notation op(pi)
denotes a term less than the i-th order with respect to pi. To find ξ, we use
the following lemmas.

Lemma 1 (Srivastava (2005)). Let nS ∼ Wp(Σ, n). Then,

(i) E[âi] = ai for i = 1, 2.

(ii) lim
p→∞ âi = ai0 in probability for i = 1, 2.

(iii) Var(â1) = 2a2/(pn).

Here, â1 = tr(S)/p, â2 = n2/{(n − 1)(n + 2)}{tr(S2)/p − (tr(S))2/(np)}.
Lemma 2 (Srivastava (2007)). Let nS ∼ Wp(Σ, n), n < p, and nS = H ′

1LH1,
where H ′

1H1 = In and L = (�1, . . . , �n), an n × n diagonal matrix which
contains the non-zero eigenvalues of V . Then,

(i) lim
p→∞

L

p
= a10In in probability.

(ii) lim
p→∞H ′

1ΣH1 =
a20

a10
In in probability.

(iii) lim
p→∞H ′

1Σ
2H1 =

a30

a10
In in probability.

(iv) lim
p→∞

a′H1H
′
1a

n
=

a′Σa

p
in probability for a ∈ Rp.

(v) lim
p→∞

a′H1H
′
1Σa

n
=

a′Σ2a

p
in probability for a ∈ Rp.
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For the proofs of Lemma 1 and Lemma 2 except (iii) and (v), see Srivastava
(2005, 2007). About (iii) and (v), we can easily show it by using the method
how is similar to proofs of (ii) and (iv) in Lemma 2. Using Lemmas 1 and 2,
following lemma is derived.

Lemma 3. Under the assumption A1-A4, it holds that

(i) U/pδ+1/2 = − n

2pδ

(
δ′δ
pa10

+
N1 − N2

N1N2

)
+ op(p−1/2).

(ii) V/p2δ =
n2

p2δ

(
δ′Σδ

pa2
10

+
Na20

N1N2a2
10

)
+ op(p−1/2).

The proof of Lemma 3 stated are given in Appendix. From Lemma 3, we
can get ∣∣∣∣ U√

V
− ξ

∣∣∣∣ = op(1),(2.2)

where

ξ = −
√

pu0

2
√

v0
,

u0 =
Δ0

a10
+

N1 − N2

N1N2
, v0 =

Δ1

a2
10

+
Na20

N1N2a2
10

,

Δ0 =
δ′δ
p

, Δ1 =
δ′Σδ

p
.

On the other hand, it is noted that

|Φ(U/
√

V ) − Φ(ξ)|

=
∫ max(U/

√
V ,ξ)

min(U/
√

V ,ξ)

1√
2π

e−
x2

2 dx

≤ |max(U/
√

V , ξ) − min(U/
√

V , ξ)| × 1√
2π

e−
{max(U/

√
V ,ξ)}2

2

≤ |U/
√

V − ξ| × 1√
2π

.

From (2.2), we get following theorem.

Theorem 1. Under the assumption A1-A4, it holds that

lim
p→∞ |Φ(U/

√
V ) − Φ(ξ)| = 0 in probability.
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Further, we consider |e(2|1) − Φ(ξ)|. It can be expressed as

|e(2|1) − Φ(ξ)| = |E[Φ(U/
√

V )] − Φ(ξ)|
= |E[Φ(U/

√
V ) − Φ(ξ)]|

≤ E[|Φ(U/
√

V ) − Φ(ξ)|].

From 0 < E[|Φ(U/
√

V ) − Φ(ξ)|2] < ∞ and Theorem 1,

lim
p→∞ sup

Θ
E[|Φ(U/

√
V ) − Φ(ξ)|] = E[ lim

p→∞ sup
Θ

|Φ(U/
√

V ) − Φ(ξ)|] = 0,

where Θ = {μ1, μ2, Σ|0 < ai0 < ∞, i = 1, . . . , 6, 0 < δ′δ/p < ∞, 0 <
δ′Σδ/p < ∞}. Thus, we can get

lim
p→∞ sup

Θ
|e(2|1) − Φ(ξ)| = 0.

So, we suggest an approximation of e(2|1) as follows:

e(2|1) ≈ Φ (ξ) .(2.3)

Next, we consider an estimator of e(2|1). u0 and v0 include the unknown
parameters ai0, Δi−1 for i = 1, 2, which are estimated by the consistent esti-
mators

â10 =
tr(S)

p
, â20 =

n2

(n − 1)(n + 2)

{
tr(S2)

p
− (tr(S))2

np

}
,

Δ̂0 =
(x1 − x2)′(x1 − x2)

p
− N1 + N2

N1N2
â10,

Δ̂1 =
(x1 − x2)′S(x1 − x2)

p
− N1 + N2

N1N2
â20.

Replacing the unknown values with their consistent estimator, we can propose
an estimator of e(2|1), which is given in the following result:

ê(2|1) = Φ(ξ̂),(2.4)

where

ξ̂ =
√

pû0

2
√

v̂0
, û0 =

Δ̂0

â10
+

N1 − N2

N1N2
, v̂0 =

Δ̂1

â2
10

+
Nâ20

N1N2â2
10

.



RIDGE-TYPE LINEAR DISCRIMINANT ANALYSIS 125

§3. Simulation Studies

We are interested in the accuracy of the asymptotic approximations for EPMC
proposed in (2.3) and estimator for EPMC given in (2.4). We generate the
datasets as follows:

Π1 : x11,x12, . . . ,x1N1

i.i.d.∼ Np(μ1,Σ),

Π2 : x21,x22, . . . ,x2N2

i.i.d.∼ Np(μ2,Σ),

where

Σ = diag(σ1, σ2, . . . , σp)Rdiag(σ1, σ2, . . . , σp); R =
(
ρ|i−j|

)
for ρ = 0.1, 0.4 or 0.8 and σi = 2 + (p − i + 1)/p. Note that the assumption
A2 does not hold for the case ρ = 0.8. The mean vector of the first group was
chosen as

μ1 = (μ1, μ2, . . . , μp)′, μi = (−1)i(c + ui), i = 1, . . . , p

for random variable ui from a uniform distribution on the interval [0, 1] and
c = 0.2 or 0.5. We chose the p dimensional mean vector of the second group
as a zero vector, i.e. μ2 = (0, 0, . . . , 0)′. We report the results corresponding
to: (N1, N2) = (10, 10), (15, 5), (5, 15) when p = 100 or 200. Besides, the
true values of EPMC in tables are average values of 10,000 repetitions. We
consider the following two values:

Approx : Φ(ξ),
Est : E[Φ(ξ̂)].

We examine the effectiveness of this approximation by checking how close
Approx and Est are to the true value.

Table 1. The accuracy of Approx and Est (c = 0.2)

(p,N1, N2) ρ True value Approx Est
(100,10,10) 0.1 0.221 0.207 0.240

0.4 0.210 0.225 0.252
0.8 0.179 0.323 0.381

(100,15,5) 0.1 0.041 0.029 0.054
0.4 0.053 0.042 0.076
0.8 0.084 0.171 0.264

(100,5,15) 0.1 0.634 0.644 0.678
0.4 0.561 0.611 0.619
0.8 0.437 0.582 0.561
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Table 2. The accuracy of Approx and Est (c = 0.5)

(p,N1, N2) ρ True value Approx Est
(100,10,10) 0.1 0.090 0.075 0.098

0.4 0.079 0.069 0.117
0.8 0.017 0.087 0.153

(100,15,5) 0.1 0.019 0.016 0.025
0.4 0.013 0.012 0.024
0.8 0.014 0.077 0.172

(100,5,15) 0.1 0.364 0.372 0.404
0.4 0.327 0.383 0.411
0.8 0.192 0.435 0.461

Table 3. The accuracy of Approx and Est (c = 0.2)

(p,N1, N2) ρ True value Approx Est
(200,10,10) 0.1 0.130 0.124 0.174

0.4 0.127 0.112 0.181
0.8 0.149 0.240 0.354

(200,15,5) 0.1 0.006 0.004 0.021
0.4 0.007 0.007 0.024
0.8 0.048 0.081 0.225

(200,5,15) 0.1 0.673 0.696 0.678
0.4 0.610 0.645 0.621
0.8 0.516 0.616 0.571

Table 4. The accuracy of Approx and Est (c = 0.5)

(p,N1, N2) ρ True value Approx Est
(200,10,10) 0.1 0.033 0.027 0.055

0.4 0.019 0.021 0.045
0.8 0.035 0.101 0.246

(200,5,15) 0.1 0.001 0.001 0.005
0.4 0.001 0.001 0.005
0.8 0.018 0.031 0.153

(200,15,5) 0.1 0.366 0.351 0.395
0.4 0.311 0.359 0.381
0.8 0.265 0.432 0.461
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Through numerical simulations we can see the following tendencies:

(i) As for Est and Approx, their precision deteriorates remarkably when
ρ = 0.8.

(ii) The Est is bigger than the true value in all tables.

§4. Real Example

We apply our method to a real dataset of microarray data.

4.1. Leukemia dataset

Leukemia dataset used by Dudoit et al. (2002) contains gene expression level
of 72 patients either suffering from acute lymphoblastic leukemia (47 cases) or
acute myeloid leukemia (25 cases) and was obtained from Affymetrix oligonu-
cleotide microarrays. Following the protocol in Dudoit et al. (2002), we pre-
process the data by thresholding, filtering, a logarithmic transformation and
standardization, so that the data finally comprise the expression p = 3571
genes. The dataset is publically available at

“http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi”.

The normality assumption of the data set was checked the normality by
QQ-plotting around 50 genes selected randomly in Srivastava and Kubokawa
(2008). The results are nearly satisfactory.

4.2. Performance of ridge type discriminanation methods

In Dudoit et al. (2002), they use BW ratio criterion which is based on the
ratio of the between-group to within-group sums of squares. For a gene j,
BW(j) = bjj/wjj, where B = (N1N2/N)(x̄1 − x̄2)(x̄1 − x̄2)′ = (bij) and W =∑2

i=1

∑Ni
j=1(xij − x̄i)(xij − x̄i)′ = (wij). Let K be the set of k indices with the

largest BW ratios. In this paper, we choose k = 500, 1000, 2000, 3000, 3571.
We investigate the EPMC of ridge type linear discriminant analysis:

RTLDA : Wr = (x̄1 − x̄2)′S−1
r {x − 1

2(x̄1 + x̄2)} ≶ 0 =⇒ x ∈ Π1(Π2).

From (2.4), we can estimate the EPMC of RTLDA as follows:

ê(2|1) = Φ(ξ̂).
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Using the above estimator of EPMC and Leave-One-Out cross validation, we
can check performance of RTLDA (Table 5).

Table 5. The estimator of EPMCs

k ê(1|2) Leave-One-Out ê(2|1) Leave-One-Out
500 0.008 0.080 0.008 0.042
1000 0.010 0.040 0.010 0.040
2000 0.011 0.040 0.011 0.040
3000 0.012 0.040 0.012 0.040
3571 0.012 0.040 0.012 0.040

§5. Conclusion

In this paper, we consider the classification problem for high-dimensional data.
For high-dimensional data classification, due to the small number of observa-
tions and large number of dimension, classical LDA has sub-optimal perfor-
mance corresponding to the singularity and instability of the pooled sample
covariance matrix. Our modified LDA approach is RTLDA based on ridge
type estimator of covariance matrix. Besides, we examined the performance
of this discrimination method based on EPMC. In general, it is generally dif-
ficult to obtain an exact expression for the EPMC. Therefore, we consider
an asymptotic approximation of EPMC under some assumptions about the
parameter. By a results of the simulation, this approximation has good. In
addition, the EPMC of RTLDA depends on the set (Δ0,Δ1, a10, a20) from our
approximation of EPMC. We can say that the EPMC decreases if value of the
ratio of Δ0/Δ

1/2
1 becomes big as a rough guide. We understand that RTLDA

shows the high performance from results on the real dataset. It was concluded
that the RTLDA method can be used as effective classification tools in limited
sample size and high-dimensional microarray classification problems.

Appendix

In this section, we prove Lemma 3 stated in Section 2. But before we begin
these proofs, we state some preliminary results.

A.1. Preliminary results

Lemma A. 1. Let A,B and D be p × p positive definite matrices, and let C
be an p × p positive semi definite matrix. If A = B − C and a is any p × 1
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vector, then for i ∈ N , it holds that

(i) a′(DA)ia ≤ a′(DB)ia.

(ii) tr(DA)i ≤ tr(DB)i.

Proof. Using Theorem 3.26 in Schott (1997), DA and DB are positive
definite matrix and DC is positive semi definite matrix. Thus, we note that

a′(DA)ia = a′DB(DA)i−1a − a′DC(DA)i−1a

≤ a′DB(DA)i−1a

= a′(DB)2(DA)i−2a − a′DBDC(DA)i−2a

≤ a′(DB)2(DA)i−2a

...
= a′(DB)k(DA)i−ka − a′(DB)k−1DC(DA)i−ka

≤ a′(DB)k(DA)i−ka

...
= a′(DB)ia − a′(DB)i−1DCa

≤ a′(DB)ia.

This proves (i) of Lemma A.1. It is noted that

tr(DA)i =
p∑

i=1

a′
i(DA)iai,

where a1 = (1, 0, . . . , 0),a2 = (0, 1, . . . , 0), . . . ,ap = (0, 0, . . . , 1). Using (i) of
Lemma A.1, we can easily check (ii). �

Lemma A. 2 (Srivastava (2005)). Let â1 be as defined in Section 2. Then
under the assumptions A.1 and A.2, asymptotically

√
np(â1 − a10)

d−→ N1(0, 2a20).

Here, the notation “ d−→ ” denotes convergence in distribution.

Proof. The proof is given in Srivastava (2005). �

Lemma A. 3. Let â1 be as defined in Section 2. Then under assumptions
A.1 and A.2, asymptotically

(i)
√

np(1/â1 − 1/a10)
d−→ N1(0, 2a20/a

4
10).

(ii) lim
p→∞ 1/â1 = 1/a10 in probability.
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Proof. Using Lemma A.2 and the delta method, we can easily check (i).
Using Continuous Mapping Theorem and (i) of Lemma 1, we can get (ii). This
proves (ii) of Lemma A.3. �

A.2. Proof of Lemma 3
First, we show (i) of Lemma 3. U/pδ+1/2 can be expressed as

U/pδ+1/2 = − 1
2pδ+1/2

δ′S−1
r δ +

1

N
1
2 pδ+1/2

δ′S−1
r z1(A. 1)

−
(

N1

NN2p2δ+1

) 1
2

δ′S−1
r z2 +

1

(N1N2p2δ+1)
1
2

z′
1S

−1
r z2

− N1 − N2

2N1N2pδ+1/2
z′

2S
−1
r z2.

We note that

S−1
r = n{(√pâ1)−1Ip − (

√
pâ1)−1H1(In + (

√
pâ1)L−1)−1H ′

1}.(A. 2)

Here, nS = H ′
1LH1, where H ′

1H1 = In and L = (�1, . . . , �n), an n×n diagonal
matrix which contains the non-zero eigenvalues of nS. The first term of (A.
1) is expressed

1
2pδ+1/2

δ′S−1
r δ =

n

2pδ+1/2
δ′{(√pâ1)−1Ip

− (
√

pâ1)−1H1(In + (
√

pâ1)L−1)−1H ′
1}δ.

Then we get from Lemmas 1 and 2,

δ′S−1
r δ

2pδ+1/2
=

n

2pδ

(
δ′δ
pa10

)
+ op(p−1/2).(A. 3)

From Lemmas 1 and 2, we also note that

E
[

N1 − N2

2N1N2pδ+1/2
z′

2S
−1
r z2

]
=

(N1 − N2)n
2N1N2pδ

+ o(p−1/2).(A. 4)

Then, it is sufficient to show that

lim
p→∞E

[(
N1 − N2

2N1N2pδ+1/2
z′

2S
−1
r z2 − (N1 − N2)n

2N1N2pδ

)2
]

= 0.(A. 5)

From Lemma A.1, (A.2) and the independency of z2 and â1, it can be expressed
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that (
N1 − N2

2N1N2pδ+1/2

)2

E[(z′
2S

−1
r z2 −√

pn)2]

=
(

N1 − N2

2N1N2pδ+1/2

)2

E[(tr(ΣS−1
r ))2 + 2 tr(ΣS−1

r ΣS−1
r )

− 2
√

pn tr(ΣS−1
r ) + pn2]

≤
(

N1 − N2

2N1N2pδ+1/2

)2

E

[(√
pna1

â1

)2

+
2n2a2

â2
1

− 2
(

pn2a1

â1
− n2 tr((In + (

√
pâ1)L−1)H ′

1ΣH1)
â1

)
+ pn2

]
.

From Lemmas 1, 2 and A.3, we can evaluate(
N1 − N2

2N1N2pδ+1/2

)2

E

[(√
pna1

â1

)2

+
2n2a2

â2
1

− 2
(

pn2a1

â1
− n2 tr((In + (

√
pâ1)L−1)H ′

1ΣH1)
â1

)
+ pn2

]

=
(

N1 − N2

2N1N2pδ+1/2

)2

E
[
(
√

pn)2 +
2n2a2

a2
1

− 2
(

pn2 − n3a2

(1 + 1/
√

p)a2
1

)
+ pn2

]
,

as p → ∞. Therefore,(
N1 − N2

2N1N2pδ+1/2

)2

lim
p→∞E[(z′

2S
−1
r z2 −√

pn)2]

≤
(

N1 − N2

2N1N2pδ+1/2

)2 (
2n2a20

a2
10

− 2n3a2

(1 + 1/
√

p)a2
1

)
= O(p−δ−1).

This proves (A.5). Using (A.4), (A.5) and Marcov’s inequality

Pr
{∣∣∣∣ N1 − N2

2N1N2pδ+1/2
z′

2S
−1
r z2 − (N1 − N2)n

2N1N2pδ

∣∣∣∣ > ε

}

≤ {(N1 − N2)/(2N1N2p
δ+1/2)}2 E[(z′

2S
−1
r z2 −√

pn)2]
ε2

= 0 as p → ∞.

It follows that
N1 − N2

2N1N2pδ+1/2
z′

2S
−1
r z2 =

(N1 − N2)n
2N1N2pδ

+ op(p−1/2).(A. 6)
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With the similar evaluation method of the last term of (A.1), second term,
third term and forth term of the (A.1) are

1

(Np2δ+1)
1
2

δ′S−1
r z1 = op(p−1/2).(A. 7)

(
N1

NN2p2δ+2

) 1
2

δ′S−1
r z2 = op(p−1/2).(A. 8)

1

(N1N2p2δ+1)
1
2

z′
1S

−1
r z2 = op(p−1/2).(A. 9)

Combining (A.3) and (A.6)-(A.9), it holds that

U/pδ+1/2 = − n

2pδ

(
δ′δ
pa10

+
N1 − N2

N1N2

)
+ op(p−1/2).

This proves (i) of Lemma 3.
Next, we show (ii) of Lemma 3. V/p2δ can be expressed as

V/p2δ =
1

p2δ
δ′S−1

r ΣS−1
r δ + 2

(
N

N1N2p4δ

) 1
2

δ′S−1
r ΣS−1

r z2(A. 10)

+
N

N1N2p2δ
z′

2S
−1
r ΣS−1

r z2.

From Lemmas 1 and 2, the first term of (A.10) is evaluated as follows:

1
p2δ

δ′S−1
r ΣS−1

r δ =
n2(δ′Σδ/p)

p2δa2
10

+ op(p−1/2).(A. 11)

From Lemmas 1 and 2, we also note that

E
[

N

N1N2p2δ
z′

2S
−1
r ΣS−1

r z2

]
=

Nn2a20

N1N2p2δa2
10

+ o(p−1/2).(A. 12)

Then, it is sufficient to show that

lim
p→∞E

[(
N

N1N2p2δ
z′

2S
−1
r ΣS−1

r z2 − Nn2a20

N1N2p2δa2
10

)2
]

= 0.(A. 13)

From Lemma A.1, (A.2) and the independency of z2 and â1, it can be expressed
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that (
N

N1N2p2δ

)2

E

[(
z′

2S
−1
r ΣS−1

r z2 − n2a20

a2
10

)2
]

=
(

N

N1N2p2δ

)2

E
[
(tr(ΣS−1

r )2)2 + 2 tr(ΣS−1
r )4

− 2n2a20 tr(ΣS−1
r )2

a2
10

−
(

n2a2

a2
10

)2
]

≤
(

N

N1N2p2δ

)2

E
[
n4a2

2

â4
1

+
2n4a4

pâ4
1

− 2n2a20

a2
10

(
n2a20

â2
1

− 2n2 tr((In + (
√

pâ1)L−1)−1H ′
1Σ

2H1))
pâ2

1

+
n2 tr({(In + (

√
pâ1)L−1)−1H ′

1ΣH1}2)
pâ2

1

)

− n4a2
20

a4
10

]
(≡ C).

From Lemmas 1, 2 and A.3, we can evaluate

C = E

[(
N

N1N2p2δ

)2 (
n4a2

20

a4
10

+
2n4a40

pa4
10

− 2n4a2
20

a4
10

+
4n4a20a30

(1 + 1/
√

p)pa5
10

− 2n4a3
20

(1 + 1/
√

p)pa6
10

+
n4a2

20

a4
10

)]

as p → ∞. Therefore,

(
N

N1N2p2δ

)2

lim
p→∞E

[(
z′

2S
−1
r ΣS−1

r z2 − n2a20

a2
10

)2
]

≤
(

N

N1N2p2δ

)2 (
2n4a40

pa4
10

+
4n4a20a30

(1 + 1/
√

p)pa5
10

− 2n4a3
20

(1 + 1/
√

p)pa6
10

)
= O(p−1−2δ).

This proves (A.13). Using (A.12), (A.13) and Marcov’s inequality

Pr
{∣∣∣∣ N

N1N2p2δ
z′

2S
−1
r ΣS−1

r z2 − Nna20

N1N2p2δa2
10

∣∣∣∣ > ε

}

≤ E[{N/(N1N2p
2δ)z′

2S
−1
r ΣS−1

r z2 − (Nn2a20)/(N1N2p
2δa2

10)}2]
ε2

= 0 as p → ∞.
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Hence, it follows that

N

N1N2p2δ
z′

2S
−1
r z2 =

Nn2a20

N1N2p2δa2
10

+ op(p−1/2).(A. 14)

With the similar evaluation method of the last term of (A.10), second term of
(A.10) is

(
N

N1N2p4δ

) 1
2

δ′S−1
r ΣS−1

r z2 = op(p−1/2).(A. 15)

Combining (A.11), (A.14) and (A.15), it holds that

V/p2δ =
n2

p2δ

(
δ′Σδ

pa2
10

+
Na20

N1N2a2
10

)
+ op(p−1/2).

This proves (ii) of Lemma 3. �
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