On Kenmotsu manifolds satisfying certain curvature conditions

Ahmet Yıldız, Uday Chand De and Bilal Eftal Acet

(Received July 3, 2009; Revised December 3, 2009)

Abstract. The object of the present paper is to study some curvature conditions on Kenmotsu manifolds. Also, we classify Kenmotsu manifolds which satisfy $P \cdot \tilde{C} = 0$, $\tilde{C} \cdot \tilde{C} = 0$, $\tilde{Z} \cdot \tilde{C} = 0$, $\tilde{C} \cdot \tilde{Z} = 0$ and $C \cdot \tilde{C} = 0$, where P is the projective curvature tensor, \tilde{Z} is the concircular curvature tensor, \tilde{C} is the quasi-conformal curvature tensor and C is the conformal curvature tensor.

AMS 2000 *Mathematics Subject Classification.* 53C25, 53C35, 53D10

Key words and phrases. Kenmotsu manifolds, η-Einstein manifolds, quasiconformal curvature tensor, projective curvature tensor, concircular curvature tensor, conformal curvature tensor.

*§***1. Introduction**

The product of an almost contact manifold M and the real line $\mathbb R$ carries a natural almost complex structure. However if one takes M to be an almost contact metric manifold and supposes that the product metric G on $M \times \mathbb{R}$ is Kaehlerian, then the structure on M is cosymplectic $([6])$ and not Sasakian. On the other hand Oubina [9] pointed out that if the conformally related metric $e^{2t}G$, t being the coordinate on \mathbb{R} , is Kaehlerian, then M is Sasakian
and conversely and conversely.

In [11], S. Tanno classified connected almost contact metric manifolds whose automorphism groups possess the maximum dimension. For such a manifold M, the sectional curvature of plane sections containing ξ is a constant, say c. If $c > 0$, M is a homogeneous Sasakian manifold of constant sectional curvature. If $c = 0$, M is the product of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature. If $c < 0$, M is a warped product space $\mathbb{R} \times_f \mathbb{C}^n$. In 1971, Kenmotsu studied a class of contact Riemannian manifolds satisfying some special conditions ([8]). We call it Kenmotsu manifold.

The notion of the *quasi-conformal curvature tensor* was given by Yano and Sawaki [12]. According to them a quasi-conformal curvature tensor \tilde{C} is defined by

(1.1)
$$
\tilde{C}(X,Y)Z = aR(X,Y)Z + b[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY] - \frac{\tau}{n}[\frac{a}{n-1} + 2b][g(Y,Z)X - g(X,Z)Y],
$$

where a and b are constants and R, S, Q and τ are the Riemannian curvature tensor type of $(1,3)$, the Ricci tensor of type $(0,2)$, the Ricci operator defined by $g(QX, Y) = S(X, Y)$ and scalar curvature of the manifold respectively. If $a = 1$ and $b = -\frac{1}{n-2}$ then (1.1) takes the form

$$
\tilde{C}(X,Y)Z = R(X,Y)Z
$$
\n(1.2)\n
$$
-\frac{1}{n-2}[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY]
$$
\n
$$
+\frac{\tau}{(n-1)(n-2)}[g(Y,Z)X - g(X,Z)Y]
$$
\n
$$
= C(X,Y)Z,
$$

where C is the conformal curvature tensor ([5]). Thus the conformal curvature tensor C is a particular case of the tensor \tilde{C} . For this reason \tilde{C} is called the quasi-conformal curvature tensor. A manifold (M^n, g) , $n > 1$, shall be called quasi-conformally flat if the quasi-conformal curvature tensor $\tilde{C}=0$. It is known ([2]) that the quasi-conformally flat manifold is either conformally flat if $a \neq 0$ or, Einstein if $a = 0$ and $b \neq 0$. Since, they give no restrictions for manifolds if $a = 0$ and $b = 0$, it is essential for us to consider the case of $a \neq 0$ manifolds if $a = 0$ and $b = 0$, it is essential for us to consider the case of $a \neq 0$ or $b \neq 0$.
We perform

We next define endomorphisms $R(X, Y)$ and $X \wedge_A Y$ of $\chi(M)$ by

$$
R(X,Y)W = \nabla_X \nabla_Y W - \nabla_Y \nabla_X W - \nabla_{[X,Y]} W,
$$

$$
(X \wedge_A Y)W = A(Y, W)X - A(X, W)Y,
$$

respectively, where $X, Y, W \in \chi(M)$ and A is the symmetric $(0, 2)$ −tensor.

On the other hand, the *projective curvature tensor* P and the *concircular curvature tensor* \tilde{Z} in a Riemannian manifold (M^n, g) are defined by

(1.3)
$$
P(X,Y)W = R(X,Y)W - \frac{1}{n-1}(X \wedge_S Y)W,
$$

(1.4)
$$
\tilde{Z}(X,Y)W = R(X,Y)W - \frac{\tau}{n(n-1)}(X \wedge_g Y)W,
$$

respectively.

An almost contact metric manifold is said to be an $n-$ Einstein manifold if the Ricci tensor S satisfies the condition

$$
S(X,Y) = \lambda_1 g(X,Y) + \lambda_2 \eta(X)\eta(Y),
$$

where λ_1, λ_2 are certain scalars. A Riemannian or a semi-Riemannian manifold is said to semisymmetric if $R(X, Y) \cdot R = 0$, where $R(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold for the tangent vectors X, Y .

Kenmotsu manifolds have been studied by many authors such as De and Pathak [3], Jun, De and Pathak [7], Ozgür and De [10] and many others.

In the present paper we have studied some curvature conditions on Kenmotsu manifolds. We have classified Kenmotsu manifolds which satisfy $P \cdot C =$ $0, \tilde{C} \cdot \tilde{C} = 0, \tilde{Z} \cdot \tilde{C} = 0, \tilde{C} \cdot \tilde{Z} = 0$ and $C \cdot \tilde{C} = 0$, where P is the projective curvature tensor, \tilde{Z} is the concircular curvature tensor, \tilde{C} is the quasi-conformal curvature tensor and C is the conformal curvature tensor.

*§***2. Preliminaries**

Let $(M^n, \phi, \xi, \eta, g)$ be an *n*-dimensional (where $n = 2m + 1$) almost contact metric manifold, where ϕ is a (1,1)–tensor field, ξ is the structure vector field, η is a 1−form and g is the Riemannian metric. It is well known that the (ϕ, ξ, η, g) structure satisfies the conditions ([1])

(2.1)
$$
\phi^2 X = -X + \eta(X)\xi, \ g(X,\xi) = \eta(X), \n\phi\xi = 0, \ \eta(\phi X) = 0, \ \eta(\xi) = 1, \ng(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),
$$

for any vector fields X and Y on M^n .

If moreover

$$
(\nabla_X \phi)Y = -g(X, \phi Y)\xi - \eta(Y)\phi X,
$$

$$
\nabla_X \xi = X - \eta(X)\xi,
$$

where ∇ denotes the Riemannian connection of g hold, then $(M^n, \phi, \xi, \eta, g)$ is called a Kenmotsu manifold. In this case, it is well known ([8]) that

(2.2)
$$
R(X,Y)\xi = \eta(X)Y - \eta(Y)X,
$$

92 A. YILDIZ, U.C. DE & B.E. ACET

(2.3)
$$
S(X,\xi) = -(n-1)\eta(X),
$$

where S denotes the Ricci tensor. From (2.2) , it easily follows that

(2.4)
$$
R(X,\xi)Y = g(X,Y)\xi - \eta(Y)X,
$$

(2.5)
$$
R(X,\xi)\xi = \eta(X)\xi - X.
$$

In a Kenmotsu manifold, using (2.3) and (2.4), equations (1.3), (1.4), (1.2), and (1.1) reduce to

(2.6)
$$
P(\xi, X)Y = -g(X, Y)\xi - \frac{1}{n-1}S(X, Y)\xi,
$$

(2.7)
$$
\tilde{Z}(\xi, X)Y = (1 + \frac{\tau}{n(n-1)})(-g(X, Y)\xi + \eta(Y)X),
$$

(2.8)
$$
C(\xi, Y)W = \frac{n-1+\tau}{(n-1)(n-2)} \{g(Y, W)\xi - \eta(W)Y\} - \frac{1}{n-2} \{S(Y, W)\xi - \eta(W)QY\},
$$

(2.9)
$$
\tilde{C}(\xi, Y)W = K\{\eta(W)Y - g(Y, W)\xi\} + b\{S(Y, W)\xi - \eta(W)QY\},
$$

respectively, where $K = a + (n-1)b + \frac{7}{n}(\frac{a}{n-1} + 2b)$.
Let $f \circ \lambda$ $(1 \le i \le n)$ be an orthonormal basis of

Let ${e_i}$ $(1 \le i \le n)$ be an orthonormal basis of the tangent space at any point. Then the Ricci tensor and the scalar curvature of M are defined by

$$
S(X, Y) = \sum_{i=1}^{n} g(R(e_i, X)Y, e_i),
$$

and

$$
\tau = \sum_{i=1}^{n} S(e_i, e_i),
$$

respectively.

Since $S(X, Y) = g(QX, Y)$, we have

$$
S(\phi X, \phi Y) = g(Q\phi X, \phi Y),
$$

where Q is the Ricci operator. Using the properties $g(X, \phi Y) = -g(\phi X, Y)$, $Q\phi = \phi Q$, (2.1) and (2.3), we get

$$
S(\phi X, \phi Y) = S(X, Y) + (n - 1)\eta(X)\eta(Y).
$$

Also we have $([1])$

$$
(\nabla_X \eta)Y = g(X,Y) - \eta(X)\eta(Y).
$$

A Kenmotsu manifold M^n is said to be an η -Einstein manifold if its Ricci tensor S is of the form

$$
S(X,Y) = \lambda_1 g(X,Y) + \lambda_2 \eta(X)\eta(Y),
$$

for any vector fields X and Y, where $\lambda_1 = 1 + \frac{\tau}{n-1}$ and $\lambda_2 = -(n + \frac{\tau}{n-1})$.

Now, we define $P(X, Y) \cdot \tilde{C}$, $\tilde{Z}(X, Y) \cdot \tilde{C}$, $\tilde{C}(X, Y) \cdot \tilde{C}$, $\tilde{C}(X, Y) \cdot \tilde{Z}$ and $C(X, Y) \cdot \tilde{C}$ as

$$
(P(X,Y)\cdot\tilde{C})(U,V)W = P(X,Y)\tilde{C}(U,V)W - \tilde{C}(P(X,Y)U,V)W
$$

(2.10)

$$
-\tilde{C}(U,P(X,Y)V)W - \tilde{C}(U,V)P(X,Y)W,
$$

$$
\begin{array}{rcl}\n(\tilde{Z}(X,Y)\cdot\tilde{C})(U,V)W & = & \tilde{Z}(X,Y)\tilde{C}(U,V)W - \tilde{C}(\tilde{Z}(X,Y)U,V)W \\
& & -\tilde{C}(U,\tilde{Z}(X,Y)V)W - \tilde{C}(U,V)\tilde{Z}(X,Y)W,\n\end{array}
$$

$$
\begin{array}{rcl}\n(\tilde{C}(X,Y)\cdot\tilde{C})(U,V)W & = & \tilde{C}(X,Y)\tilde{C}(U,V)W - \tilde{C}(\tilde{C}(X,Y)U,V)W \\
& & -\tilde{C}(U,\tilde{C}(X,Y)V)W - \tilde{C}(U,V)\tilde{C}(X,Y)W,\n\end{array}
$$

$$
\begin{array}{rcl}\n(\tilde{C}(X,Y)\cdot\tilde{Z})(U,V)W & = & \tilde{C}(X,Y)\tilde{Z}(U,V)W - \tilde{Z}(\tilde{C}(X,Y)U,V)W \\
&- \tilde{Z}(U,\tilde{C}(X,Y)V)W - \tilde{Z}(U,V)\tilde{C}(X,Y)W,\n\end{array}
$$

$$
(C(X,Y)\cdot \tilde{C})(U,V)W = C(X,Y)\tilde{C}(U,V)W - \tilde{C}(C(X,Y)U,V)W
$$

(2.14)

$$
-\tilde{C}(U,C(X,Y)V)W - \tilde{C}(U,V)C(X,Y)W,
$$

respectively, where $X, Y, U, V, W \in \chi(M)$.

§3. Kenmotsu manifolds satisfying $P(\xi, Y) \cdot \tilde{C} = 0$

In this section we consider a Kenmotsu manifold $Mⁿ$ satisfying the condition

(3.1)
$$
P(\xi, Y) \cdot \tilde{C} = 0.
$$

From (2.10) , we have

$$
(P(\xi, Y) \cdot \tilde{C})(Z, U)W = P(\xi, Y)\tilde{C}(Z, U)W - \tilde{C}(P(\xi, Y)Z, U)W
$$

(3.2)

$$
-\tilde{C}(Z, P(\xi, Y)U)W - \tilde{C}(Z, U)P(\xi, Y)W = 0.
$$

Taking the inner product with X and using (2.6) in (3.2) , we have

(3.3)
\n
$$
g(Y, \tilde{C}(Z, U)W)\eta(X) - g(Y, Z)g(\tilde{C}(\xi, U)W, X)
$$
\n
$$
-g(Y, U)g(\tilde{C}(Z, \xi)W, X) - g(Y, W)g(\tilde{C}(Z, U)\xi, X)
$$
\n
$$
+\frac{1}{n-1}\{S(Y, \tilde{C}(Z, U)W)\eta(X) - S(Y, Z)g(\tilde{C}(\xi, U)W, X)
$$
\n
$$
-S(Y, U)g(\tilde{C}(Z, \xi)W, X) - S(Y, W)g(\tilde{C}(Z, U)\xi, X)\} = 0.
$$

Taking $U = \xi$ in (3.3), we have

(3.4)
$$
g(Y, \tilde{C}(Z,\xi)W)\eta(X) - g(Y,W)g(\tilde{C}(Z,\xi)\xi, X) + \frac{1}{n-1}\{S(Y, \tilde{C}(Z,\xi)W)\eta(X) - S(Y,W)g(\tilde{C}(Z,\xi)\xi, X)\} = 0.
$$

Using (2.9) in (3.4) , we get

(3.5)
\n
$$
K\{g(Y, Z)\eta(X)\eta(W) + \frac{1}{n-1}S(Y, Z)\eta(X)\eta(W)
$$
\n
$$
+g(Y, W)\eta(X)\eta(Z) - g(Y, W)g(X, Z)
$$
\n
$$
+ \frac{1}{n-1}S(Y, W)\eta(X)\eta(Z) - \frac{1}{n-1}S(Y, W)g(X, Z)\}
$$
\n
$$
-b\{S(Y, Z)\eta(X)\eta(W) + \frac{1}{n-1}S(QY, Z)\eta(X)\eta(W)
$$
\n
$$
-S(X, Z)g(Y, W) - (n-1)g(Y, W)\eta(X)\eta(Z)
$$
\n
$$
- \frac{1}{n-1}S(Y, W)S(X, Z) - S(Y, W)\eta(X)\eta(Z)\} = 0,
$$

where $S(QY, Z) = S^2(Y, Z)$.

Let ${e_i}$ $(1 \le i \le n)$ be an orthonormal basis of the tangent space at any point. Then the sum for $1 \leq i \leq n$ of the relation (3.5) for $Y = W = e_i$ gives (3.6) $\{\tau + n(n-1)\}[bS(X, Z) - Kg(X, Z) + \{K + (n-1)b\}\eta(X)\eta(Z)] = 0.$ Let U_1 and U_2 be a part of M satisfying $\tau + n(n-1) = 0$ and

$$
(3.7) \t\t bS(X,Z) - Kg(X,Z) + \{K + (n-1)b\}\eta(X)\eta(Z) = 0,
$$

respectively. In the case of $\tau + n(n-1) \neq 0$, if $b = 0$, from (3.7) we get $a = 0$.
This is the contradiction. Thus we find $b \neq 0$. By virtue of (3.7), we obtain This is the contradiction. Thus we find $b \neq 0$. By virtue of (3.7), we obtain $\frac{K}{C} = 1 + \frac{\tau}{c}$ which yields $\frac{K}{b} = 1 + \frac{\tau}{n-1}$, which yields

$$
S(X, Z) = (1 + \frac{\tau}{n-1})g(X, Z) - (n + \frac{\tau}{n-1})\eta(X)\eta(Z).
$$

Hence we have the following:

Theorem 1. Let M^n be an n-dimensional $(n > 1)$ Kenmotsu manifold satis*fying the condition* $P(\xi, Y) \cdot \tilde{C} = 0$. *Then M is a part of*

- *1.* $\tau = -n(n-1)$ *, that is, the scalar curvature is the negative constant, or*
- *2. an* η−*Einstein manifold.*

§4. Kenmotsu manifolds satisfying $\tilde{C}(\xi, Y) \cdot \tilde{C} = 0$

In this section we consider a Kenmotsu manifold $Mⁿ$ satisfying the condition

$$
\tilde{C}(\xi, Y) \cdot \tilde{C} = 0.
$$

From (2.12) , we have

$$
\begin{array}{rcl}\n(\tilde{C}(\xi,Y)\cdot\tilde{C})(U,V)W & = & \tilde{C}(\xi,Y)\tilde{C}(U,V)W - \tilde{C}(\tilde{C}(\xi,Y)U,V)W \\
(4.1) & & -\tilde{C}(U,\tilde{C}(\xi,Y)V)W - \tilde{C}(U,V)\tilde{C}(\xi,Y)W = 0.\n\end{array}
$$

Taking the inner product with X and using $U = \xi$ in (4.1), we obtain

(4.2)
$$
g(\tilde{C}(\xi, Y)\tilde{C}(\xi, V)W, X) - g(\tilde{C}(\tilde{C}(\xi, Y)\xi, V)W, X) - g(\tilde{C}(\xi, \tilde{C}(\xi, Y)V)W, X) - g(\tilde{C}(\xi, V)\tilde{C}(\xi, Y)W, X) = 0.
$$

Let $\{e_i\}$ $(1 \leq i \leq n)$ an orthonormal basis of the tangent space at any point.
Now we put $X - W = e_i$ in (4.2). Straightforwardly we calculate the equation Now we put $X = W = e_i$ in (4.2). Straightforwardly we calculate the equation $\sum_{i=1}^{n} a_i (\tilde{C}(\xi, V), \tilde{C})(\xi, \epsilon_i) W_{\xi}(x) = 0$. Then we obtain $\sum_{i=1}^{n} g((\tilde{C}(\xi, Y) \cdot \tilde{C})(\xi, e_i)W, e_i) = 0.$ Then we obtain

(4.3)
$$
g(\tilde{C}(\xi, Y)\tilde{C}(\xi, e_i)W, e_i) - g(\tilde{C}(\tilde{C}(\xi, Y)\xi, e_i)W, e_i) - g(\tilde{C}(\xi, \tilde{C}(\xi, Y)e_i)W, e_i) - g(\tilde{C}(\xi, e_i)\tilde{C}(\xi, Y)W, e_i) = 0.
$$

Using (1.1) and (2.9) in (4.3) , we get

$$
{a + (n-2)b}[bS(QY, W) - \frac{1}{n(n-1)}{a(\tau + n(n-1))} + 2(n-1)b\tau}S(Y, W)
$$

-(n-1)Kg(Y, W)] = 0.

Thus we have $a + (n-2)b = 0$, or

(4.4)
$$
bS(QY, W) - \frac{1}{n(n-1)} \{a(\tau + n(n-1)) + 2(n-1)b\tau\} S(Y, W) - (n-1)Kg(Y, W) = 0.
$$

If $b = 0$, then we get

$$
a\{\tau + n(n-1)\}\{S(Y,W) + (n-1)g(Y,W)\} = 0.
$$

We can easily verify that

$$
S(Y, W) = -(n-1)g(Y, W).
$$

Therefore we have the following:

Theorem 2. Let M^n be an *n*-dimensional $(n > 1)$ *Kenmotsu manifold satisfying the condition* $\tilde{C}(\xi, Y) \cdot \tilde{C} = 0$. *Then we get*

1. $a + (n-2)b = 0$, *or*

2. we find

i) *if* $b = 0$, *then* M *is an Einstein manifold,* \boldsymbol{ii}) if $b \neq 0$, then we get

$$
S(QY, W) = \left(\frac{K}{b} - n + 1\right)S(Y, W) + (n - 1)\frac{K}{b}g(Y, W).
$$

Now we need the following:

Lemma 1. ([4]) Let A be a symmetric $(0, 2)$ -tensor at a point x of a semi-Riemannian manifold (M^n, g) , $n > 1$, and let $T = g \bar{\wedge} A$ be the Kulkarni-
Nomizu product of a and A. Then, the relation *Nomizu product of* g *and* A*. Then, the relation*

$$
T \cdot T = \alpha Q(g, T), \quad \alpha \in \mathbb{R}
$$

is satisfied at x *if and only if the condition*

$$
A^2 = \alpha A + \lambda g, \quad \lambda \in \mathbb{R}
$$

holds at x*.*

From Theorem 2 and Lemma 1 we get the following:

Corollary 1. *Let* M^n *be an n-dimensional* $(n > 1)$ *Kenmotsu manifold satisfying the condition* $\tilde{C}(\xi, Y) \cdot \tilde{C} = 0$, *then* $T \cdot T = \alpha Q(g, T)$, *where* $T = g \bar{\wedge} A$
and $\alpha = \frac{K}{g} - n + 1$ $and \alpha = \frac{K}{b} - n + 1.$

§5. Kenmotsu manifolds satisfying $\tilde{Z}(\xi, Y) \cdot \tilde{C} = 0$

In this section we consider a Kenmotsu manifold $Mⁿ$ satisfying the condition

$$
\tilde{Z}(\xi, Y) \cdot \tilde{C} = 0.
$$

From (2.11) , we have

$$
\begin{array}{rcl}\n(\tilde{Z}(\xi,Y)\cdot\tilde{C})(U,V)W & = & \tilde{Z}(\xi,Y)\tilde{C}(U,V)W - \tilde{C}(\tilde{Z}(\xi,Y)U,V)W \\
(5.1) & & -\tilde{C}(U,\tilde{Z}(\xi,Y)V)W - \tilde{C}(U,V)\tilde{Z}(\xi,Y)W = 0.\n\end{array}
$$

Now using $U = \xi$ in (5.1), we have

(5.2)
$$
\tilde{Z}(\xi, Y)\tilde{C}(\xi, V)W - \tilde{C}(\tilde{Z}(\xi, Y)\xi, V)W - \tilde{C}(\xi, \tilde{Z}(\xi, Y)V)W - \tilde{C}(\xi, V)\tilde{Z}(\xi, Y)W = 0.
$$

Taking the inner product with X in (5.2) and using (2.7) , we get

(5.3)
\n
$$
\{1 + \frac{\tau}{n(n-1)}\} \{g(X,Y)\eta(\tilde{C}(\xi,V)W) - g(Y,\tilde{C}(\xi,V)W)\eta(X)
$$
\n
$$
-g(X,\tilde{C}(Y,V)W) + g(\tilde{C}(\xi,V)W,X)\eta(Y)
$$
\n
$$
-g(\tilde{C}(\xi,Y)W,X)\eta(V) - g(\tilde{C}(\xi,V)Y,X)\eta(W)
$$
\n
$$
+g(Y,W)g(\tilde{C}(\xi,V)\xi,X)\} = 0.
$$

Again from (2.7), we have $\tau \neq -n(n-1)$. Thus

$$
g(X,Y)\eta(\tilde{C}(\xi,V)W) - g(Y,\tilde{C}(\xi,V)W)\eta(X) - g(X,\tilde{C}(Y,V)W)
$$

(5.4)
$$
+g(\tilde{C}(\xi,V)W,X)\eta(Y) - g(\tilde{C}(\xi,Y)W,X)\eta(V) - g(\tilde{C}(\xi,V)Y,X)\eta(W)
$$

$$
+g(Y,W)g(\tilde{C}(\xi,V)\xi,X) = 0.
$$

Using (2.9) in (5.4) , we get

$$
-a\{g(X,Y)g(V,W) + g(R(Y,V)W,X) - g(X,V)g(Y,W)\}
$$

\n
$$
-b(n-1)\{g(X,Y)g(V,W) - g(X,Y)\eta(V)\eta(W) - g(X,V)g(Y,W)\}
$$

\n(5.5)
$$
+g(Y,W)\eta(X)\eta(V)\} + b\{S(Y,W)g(X,V) - S(X,Y)g(V,W)\}
$$

\n
$$
-S(Y,W)\eta(X)\eta(V) + S(X,Y)\eta(V)\eta(W)\} = 0.
$$

Let $\{e_i\}$ $(1 \leq i \leq n)$ be an orthonormal basis of the tangent space at any point. Then the sum for $1 \leq i \leq n$ of the relation (5.5) for $V - W - e_i$ gives point. Then the sum for $1 \leq i \leq n$ of the relation (5.5) for $Y = W = e_i$ gives

(5.6)
$$
(b-a)S(X,V) = \{(n-1)a + (n-1)^2b + b\tau\}g(X,V) -b\{\tau+n(n-1)\}\eta(X)\eta(V).
$$

If $a = b \neq 0$, then we have $a\{\tau + n(n-1)\}\{g(X, V) - \eta(X)\eta(V)\} = 0$.
Because of (2.7) we find $\tau + n(n-1) \neq 0$. Thus $a \neq b$ holds. We obtain Because of (2.7), we find $\tau + n(n-1) \neq 0$. Thus $a \neq b$ holds. We obtain ${a+(n-2)b}{\tau+n(n-1)} = 0$ from (5.6), which means that $a+(n-2)b=0$. Thus equation (5.6) can be rewritten as follows:

$$
S(X, V) = (1 + \frac{\tau}{n-1})g(X, Y) - (n + \frac{\tau}{n-1})\eta(X)\eta(Y).
$$

Hence we have the following:

Theorem 3. *An* n −*dimensional* ($n > 1$) *Kenmotsu manifold* M^n *satisfying the condition* $\tilde{Z}(\xi, Y) \cdot \tilde{C} = 0$ *is an* η –*Einstein manifold.*

§6. Kenmotsu manifolds satisfying $\tilde{C}(\xi, Y) \cdot \tilde{Z} = 0$

In this section we consider a Kenmotsu manifold $Mⁿ$ satisfying the condition

$$
\tilde{C}(\xi, Y) \cdot \tilde{Z} = 0.
$$

From (2.13), we have

$$
\begin{array}{rcl}\n(\tilde{C}(\xi,Y)\cdot\tilde{Z})(U,V)W & = & \tilde{C}(\xi,Y)\tilde{Z}(U,V)W - \tilde{Z}(\tilde{C}(\xi,Y)U,V)W \\
(6.1) & & -\tilde{Z}(U,\tilde{C}(\xi,Y)V)W - \tilde{Z}(U,V)\tilde{C}(\xi,Y)W = 0.\n\end{array}
$$

Putting $U = \xi$ in (6.1), we have

(6.2)
$$
\tilde{C}(\xi, Y)\tilde{Z}(\xi, V)W - \tilde{Z}(\tilde{C}(\xi, Y)\xi, V)W \n- \tilde{Z}(\xi, \tilde{C}(\xi, Y)V)W - \tilde{Z}(\xi, V)\tilde{C}(\xi, Y)W = 0.
$$

Taking the inner product with $X \in \chi(M)$ in (6.2) and using (2.9), we get

$$
K\{g(Y, \tilde{Z}(\xi, V)W)\eta(X) - \eta(\tilde{Z}(\xi, V)W)g(Y, X) - g(\tilde{Z}(\xi, V)W, X)\eta(Y) + g(\tilde{Z}(Y, V)W, X) + g(\tilde{Z}(\xi, Y)W, X)\eta(V) - g(Y, W)g(\tilde{Z}(\xi, V)\xi, X) + g(\tilde{Z}(\xi, V)Y, X)\eta(W)\} - b\{S(Y, \tilde{Z}(\xi, V)W)\eta(X) - \eta(\tilde{Z}(\xi, V)W)S(Y, X) + (n-1)g(\tilde{Z}(\xi, V)W, X)\eta(Y) + g(\tilde{Z}(QY, V)W, X) + g(\tilde{Z}(\xi, QY)W, X)\eta(V) - S(Y, W)g(\tilde{Z}(\xi, V)\xi, X) + g(\tilde{Z}(\xi, V)QY, X)\eta(W)\} = 0.
$$

Using (1.4) and (2.7) in the above equation, we obtain

(6.3)
$$
K\{g(R(Y, V)W, X) + g(Y, X)g(V, W) - g(X, V)g(Y, W)\} - b\{g(R(QY, V)W, X) + S(Y, X)g(V, W) - S(Y, W)g(X, V)\} = 0.
$$

Let ${e_i}$ $(1 \le i \le n)$ be an orthonormal basis of the tangent space at any point. Then the sum for $1 \leq i \leq n$ of the relation (6.3) for $X = V = e_i$ gives

$$
K\{S(Y,W) + (n-1)g(Y,W)\} - b\{S^2(Y,W) + (n-1)S(Y,W)\} = 0.
$$

When $b = 0$, the above equation can be rewritten as follows:

$$
K\{S(Y,W) + (n-1)g(Y,W)\} = 0,
$$

which means that $K\{\tau + n(n-1)\} = 0$. From (2.7), we find $\tau + n(n-1) \neq 0$.
Thus we get $K = 0$ pamely $a = 0$. Therefore we get $b \neq 0$ and Thus we get $K = 0$, namely, $a = 0$. Therefore we get $b \neq 0$ and

(6.4)
$$
S(QY, W) = \left(\frac{K}{b} - n + 1\right)S(Y, W) + (n - 1)\frac{K}{b}g(Y, W).
$$

This leads to the following:

Theorem 4. In an n-dimensional $(n > 1)$ Kenmotsu manifold M if the condition $\tilde{C}(\xi, Y) \cdot \tilde{Z} = 0$ *holds on* M, *then the equation* (6.4) is satisfied on M.

From Theorem 4 and Lemma 1 we get the following:

Corollary 2. Let M be an *n*-dimensional $(n > 1)$ *Kenmotsu manifold satisfying the condition* $\tilde{C}(\xi, Y) \cdot \tilde{Z} = 0$, *then* $T \cdot T = \alpha Q(g, T)$, *where* $T = g \bar{\wedge} A$ $and \alpha = \frac{K}{b} - n + 1.$

§7. Kenmotsu manifolds satisfying $C(\xi, Y) \cdot \tilde{C} = 0$

In this section we consider a Kenmotsu manifold $Mⁿ$ satisfying the condition

$$
C(\xi, Y) \cdot \tilde{C} = 0.
$$

From (2.14), we have

$$
(C(\xi, Y) \cdot \tilde{C})(U, V)W = C(\xi, Y)\tilde{C}(U, V)W - \tilde{C}(C(\xi, Y)U, V)W
$$

(7.1)

$$
-\tilde{C}(U, C(\xi, Y)V)W - \tilde{C}(U, V)C(\xi, Y)W = 0.
$$

Taking the inner product with X and using $U = \xi$ in (7.1), we obtain

(7.2)
$$
g(C(\xi, Y)\tilde{C}(\xi, V)W, X) - g(\tilde{C}(C(\xi, Y)\xi, V)W, X) - g(\tilde{C}(\xi, C(\xi, Y)V)W, X) - g(\tilde{C}(\xi, V)C(\xi, Y)W, X) = 0.
$$

Let ${e_i}$ $(1 \le i \le n)$ be an orthonormal basis of the tangent space at any point. Now we put $X = V = e_i$ in (7.2). Straightforwardly we calculate the equation $\sum_{i=1}^{n} g((C(\xi, Y) \cdot \tilde{C})(\xi, e_i)W, e_i) = 0$. Then from (1.1), (2.8) and (2.9) we obtain (2.9) , we obtain

$$
\{\frac{a}{n-2} + b\} \{ S(QY, W) - [1 + \frac{\tau}{n-1} - (n-1)]S(Y, W) - [\tau + n - 1]g(Y, W) \} = 0.
$$

Let U_1 and U_2 be a part of M satisfying $a + b(n-2) = 0$ and

(7.3)
$$
S(QY, W) = \left[\frac{\tau}{n-1} + 2 - n\right]S(Y, W) + \left[\tau + n - 1\right]g(Y, W).
$$

This leads to the following:

Theorem 5. In n-*dimensional* $(n > 1)$ *Kenmotsu manifold* M^n *satisfying the condition* $C(\xi, Y) \cdot \tilde{C} = 0$. *Then we get*

- *1.* $a + (n-2)b = 0$, *or*
- 2. $a + b(n-2) \neq 0$, then the equation (7.3) holds on M.

From Theorem 5 and Lemma 1 we get the following:

Corollary 3. *Let* M *be an* n−*dimensional* (n > 1) *Kenmotsu manifold satisfying the condition* $C(\xi, Y) \cdot \tilde{C} = 0$, *then* $T \cdot T = \alpha Q(g, T)$, *where* $T = g \bar{\wedge} A$ *and* $\alpha = \frac{\tau}{n-1} + 2 - n$ *.*

Acknowledgements: The authors are grateful to the referees for their comments and valuable suggestions for improvement of this work.

References

- [1] Blair, D. E., C*ontact manifolds in Riemannian geometry,* Lecture Notes in Math. 509(1976), Berlin-Heidelberg-New York.
- [2] Amur, K. and Maralabhavi, Y. B., *On quasi-conformally flat spaces*, Tensor N.S. 31(1977), no.2, 194-198.
- [3] De, U. C. and Pathak, G., *On 3-dimensional Kenmotsu manifolds,* Indian J. Pure Applied Math., **35**(2004), 159-165.
- [4] Deszcz, R., Verstraelen, L. and Yaprak, S¸., *Warped Products realizing a certain condition of Pseudosymmetry type imposed on the Weyl curavture tensor*, Chin J. Math. 22 (1994), no.2, 139-157.
- [5] Eisenhart, L. P., *Riemannian Geometry*, Princeton University Press, Princeton, N. J., (1949).
- [6] Ianus, S. and Smaranda, D., *Some remarkable structures on the product of an almost contact metric manifold with the real line,* Papers from the National Coll. on Geometry and Topology, Univ. Timisoara, (1997), 107-110.
- [7] Jun, J-B., De, U. C. and Pathak, G., *On Kenmotsu manifolds,* J. Korean Math. Soc., 42(2005), 435-445.
- [8] Kenmotsu, K., *A class of almost contact Riemannian manifolds*, Tohoku Math. J., **24**(1972), 93-103.
- [9] Oubina, A., *New classes of contact metric structures*, Publ. Math. Debrecen, **32(3- 4)**(1985), 187-193.
- [10] Özgür, C. and De, U. C., *On the quasi-conformal curvature tensor of a Kenmotsu manifold,* Mathematica Pannonica, 17/2, (2006), 221-228.
- [11] Tanno, S., *The automorphism groups of almost contact Riemannian manifolds*, Tohoku Math. J., **21**(1969), 21-38.
- [12] Yano, K. and Sawaki, S., *Riemannian manifolds admitting a conformal transformation group*, J. Differential Geometry 2(1968), 161-184.

Ahmet Yıldız Art and Science Faculty Department of Mathematics Dumlupınar University Kütahya, TURKEY E-mail:ayildiz44@yahoo.com

Uday Chand De Department of Pure Mathematics University of Calcutta 35, B.C. Road, Kolkata 700019 West Bengal, INDIA E-mail:uc de@yahoo.com

Bilal Eftal Acet Art and Science Faculty Department of Mathematics Adıyaman University Adıyaman, TURKEY E-mail:eacet@adiyaman.edu.tr