
SUT Journal of Mathematics
Vol. 45, No. 2 (2009), 89–101

On Kenmotsu manifolds satisfying certain
curvature conditions

Ahmet Yıldız, Uday Chand De and Bilal Eftal Acet

(Received July 3, 2009; Revised December 3, 2009)

Abstract. The object of the present paper is to study some curvature con-
ditions on Kenmotsu manifolds. Also, we classify Kenmotsu manifolds which
satisfy P · C̃ = 0, C̃ · C̃ = 0, Z̃ · C̃ = 0, C̃ · Z̃ = 0 and C · C̃ = 0, where P is
the projective curvature tensor, Z̃ is the concircular curvature tensor, C̃ is the
quasi-conformal curvature tensor and C is the conformal curvature tensor.
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§1. Introduction

The product of an almost contact manifold M and the real line R carries a
natural almost complex structure. However if one takes M to be an almost
contact metric manifold and supposes that the product metric G on M ×R is
Kaehlerian, then the structure on M is cosymplectic ([6]) and not Sasakian.
On the other hand Oubina [9] pointed out that if the conformally related
metric e2tG, t being the coordinate on R, is Kaehlerian, then M is Sasakian
and conversely.

In [11], S. Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension. For such a manifold
M , the sectional curvature of plane sections containing ξ is a constant, say c. If
c > 0, M is a homogeneous Sasakian manifold of constant sectional curvature.
If c = 0, M is the product of a line or a circle with a Kaehler manifold of con-
stant holomorphic sectional curvature. If c < 0, M is a warped product space
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R×f C
n. In 1971, Kenmotsu studied a class of contact Riemannian manifolds

satisfying some special conditions ([8]). We call it Kenmotsu manifold.
The notion of the quasi-conformal curvature tensor was given by Yano

and Sawaki [12]. According to them a quasi-conformal curvature tensor C̃ is
defined by

C̃(X,Y )Z = aR(X,Y )Z + b[S(Y,Z)X − S(X,Z)Y(1.1)
+g(Y,Z)QX − g(X,Z)QY ]

− τ

n
[

a

n − 1
+ 2b][g(Y,Z)X − g(X,Z)Y ],

where a and b are constants and R, S, Q and τ are the Riemannian curvature
tensor type of (1, 3), the Ricci tensor of type (0, 2), the Ricci operator defined
by g(QX,Y ) = S(X,Y ) and scalar curvature of the manifold respectively. If
a = 1 and b = − 1

n−2 then (1.1) takes the form

C̃(X,Y )Z = R(X,Y )Z

− 1
n − 2

[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ](1.2)

+
τ

(n − 1)(n − 2)
[g(Y,Z)X − g(X,Z)Y ]

= C(X,Y )Z,

where C is the conformal curvature tensor ([5]). Thus the conformal curvature
tensor C is a particular case of the tensor C̃. For this reason C̃ is called the
quasi-conformal curvature tensor. A manifold (Mn, g), n > 1, shall be called
quasi-conformally flat if the quasi-conformal curvature tensor C̃ = 0. It is
known ([2]) that the quasi-conformally flat manifold is either conformally flat
if a �= 0 or, Einstein if a = 0 and b �= 0. Since, they give no restrictions for
manifolds if a = 0 and b = 0 , it is essential for us to consider the case of a �= 0
or b �= 0.

We next define endomorphisms R(X,Y ) and X ∧A Y of χ(M) by

R(X,Y )W = ∇X∇Y W −∇Y ∇XW −∇[X,Y ]W,

(X ∧A Y )W = A(Y,W )X − A(X,W )Y,

respectively, where X,Y,W ∈ χ(M) and A is the symmetric (0, 2)−tensor.
On the other hand, the projective curvature tensor P and the concircular

curvature tensor Z̃ in a Riemannian manifold (Mn, g) are defined by

P (X,Y )W = R(X,Y )W − 1
n − 1

(X ∧S Y )W,(1.3)
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Z̃(X,Y )W = R(X,Y )W − τ

n(n − 1)
(X ∧g Y )W,(1.4)

respectively.
An almost contact metric manifold is said to be an η−Einstein manifold if

the Ricci tensor S satisfies the condition

S(X,Y ) = λ1g(X,Y ) + λ2η(X)η(Y ),

where λ1, λ2 are certain scalars. A Riemannian or a semi-Riemannian manifold
is said to semisymmetric if R(X,Y ) ·R = 0, where R(X,Y ) is considered as a
derivation of the tensor algebra at each point of the manifold for the tangent
vectors X, Y .

Kenmotsu manifolds have been studied by many authors such as De and
Pathak [3], Jun, De and Pathak [7], Ozgür and De [10] and many others.

In the present paper we have studied some curvature conditions on Ken-
motsu manifolds. We have classified Kenmotsu manifolds which satisfy P ·C̃ =
0, C̃ · C̃ = 0, Z̃ · C̃ = 0, C̃ · Z̃ = 0 and C · C̃ = 0, where P is the projective cur-
vature tensor, Z̃ is the concircular curvature tensor, C̃ is the quasi-conformal
curvature tensor and C is the conformal curvature tensor.

§2. Preliminaries

Let (Mn, φ, ξ, η, g) be an n-dimensional (where n = 2m + 1) almost contact
metric manifold, where φ is a (1, 1)−tensor field, ξ is the structure vector
field, η is a 1−form and g is the Riemannian metric. It is well known that the
(φ, ξ, η, g) structure satisfies the conditions ([1])

(2.1) φ2X = −X + η(X)ξ, g(X, ξ) = η(X),

φξ = 0, η(φX) = 0, η(ξ) = 1,

g(φX,φY ) = g(X,Y ) − η(X)η(Y ),

for any vector fields X and Y on Mn.
If moreover

(∇Xφ)Y = −g(X,φY )ξ − η(Y )φX,

∇Xξ = X − η(X)ξ,

where ∇ denotes the Riemannian connection of g hold, then (Mn, φ, ξ, η, g) is
called a Kenmotsu manifold. In this case, it is well known ([8]) that

R(X,Y )ξ = η(X)Y − η(Y )X,(2.2)
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S(X, ξ) = −(n − 1)η(X),(2.3)

where S denotes the Ricci tensor. From (2.2), it easily follows that

R(X, ξ)Y = g(X,Y )ξ − η(Y )X,(2.4)

R(X, ξ)ξ = η(X)ξ − X.(2.5)

In a Kenmotsu manifold, using (2.3) and (2.4), equations (1.3), (1.4), (1.2),
and (1.1) reduce to

P (ξ,X)Y = −g(X,Y )ξ − 1
n − 1

S(X,Y )ξ,(2.6)

Z̃(ξ,X)Y = (1 +
τ

n(n − 1)
)(−g(X,Y )ξ + η(Y )X),(2.7)

C(ξ, Y )W =
n − 1 + τ

(n − 1)(n − 2)
{g(Y,W )ξ − η(W )Y }(2.8)

− 1
n − 2

{S(Y,W )ξ − η(W )QY },

C̃(ξ, Y )W = K{η(W )Y − g(Y,W )ξ}(2.9)
+b{S(Y,W )ξ − η(W )QY },

respectively, where K = a + (n − 1)b + τ
n( a

n−1 + 2b).
Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at any

point. Then the Ricci tensor and the scalar curvature of M are defined by

S(X,Y ) =
n∑

i=1

g(R(ei,X)Y, ei),

and

τ =
n∑

i=1

S(ei, ei),

respectively.
Since S(X,Y ) = g(QX,Y ), we have

S(φX,φY ) = g(QφX,φY ),
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where Q is the Ricci operator. Using the properties g(X,φY ) = −g(φX, Y ),
Qφ = φQ, (2.1) and (2.3), we get

S(φX,φY ) = S(X,Y ) + (n − 1)η(X)η(Y ).

Also we have ([1])

(∇Xη)Y = g(X,Y ) − η(X)η(Y ).

A Kenmotsu manifold Mn is said to be an η-Einstein manifold if its Ricci
tensor S is of the form

S(X,Y ) = λ1g(X,Y ) + λ2η(X)η(Y ),

for any vector fields X and Y , where λ1 = 1 + τ
n−1 and λ2 = −(n + τ

n−1).

Now, we define P (X,Y ) · C̃, Z̃(X,Y ) · C̃, C̃(X,Y ) · C̃, C̃(X,Y ) · Z̃ and
C(X,Y ) · C̃ as

(P (X,Y ) · C̃)(U, V )W = P (X,Y )C̃(U, V )W − C̃(P (X,Y )U, V )W
−C̃(U,P (X,Y )V )W − C̃(U, V )P (X,Y )W,(2.10)

(Z̃(X,Y ) · C̃)(U, V )W = Z̃(X,Y )C̃(U, V )W − C̃(Z̃(X,Y )U, V )W
−C̃(U, Z̃(X,Y )V )W − C̃(U, V )Z̃(X,Y )W,(2.11)

(C̃(X,Y ) · C̃)(U, V )W = C̃(X,Y )C̃(U, V )W − C̃(C̃(X,Y )U, V )W
−C̃(U, C̃(X,Y )V )W − C̃(U, V )C̃(X,Y )W,(2.12)

(C̃(X,Y ) · Z̃)(U, V )W = C̃(X,Y )Z̃(U, V )W − Z̃(C̃(X,Y )U, V )W
−Z̃(U, C̃(X,Y )V )W − Z̃(U, V )C̃(X,Y )W,(2.13)

(C(X,Y ) · C̃)(U, V )W = C(X,Y )C̃(U, V )W − C̃(C(X,Y )U, V )W
−C̃(U,C(X,Y )V )W − C̃(U, V )C(X,Y )W,(2.14)

respectively, where X,Y,U, V,W ∈ χ(M).
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§3. Kenmotsu manifolds satisfying P (ξ, Y ) · C̃ = 0

In this section we consider a Kenmotsu manifold Mn satisfying the condition

P (ξ, Y ) · C̃ = 0.(3.1)

From (2.10), we have

(P (ξ, Y ) · C̃)(Z,U)W = P (ξ, Y )C̃(Z,U)W − C̃(P (ξ, Y )Z,U)W
−C̃(Z,P (ξ, Y )U)W − C̃(Z,U)P (ξ, Y )W = 0.(3.2)

Taking the inner product with X and using (2.6) in (3.2), we have

g(Y, C̃(Z,U)W )η(X) − g(Y,Z)g(C̃(ξ, U)W,X)
−g(Y,U)g(C̃(Z, ξ)W,X) − g(Y,W )g(C̃(Z,U)ξ,X)(3.3)

+
1

n − 1
{S(Y, C̃(Z,U)W )η(X) − S(Y,Z)g(C̃(ξ, U)W,X)

−S(Y,U)g(C̃(Z, ξ)W,X) − S(Y,W )g(C̃(Z,U)ξ,X)} = 0.

Taking U = ξ in (3.3), we have

g(Y, C̃(Z, ξ)W )η(X) − g(Y,W )g(C̃(Z, ξ)ξ,X)(3.4)

+
1

n − 1
{S(Y, C̃(Z, ξ)W )η(X) − S(Y,W )g(C̃(Z, ξ)ξ,X)} = 0.

Using (2.9) in (3.4), we get

K{g(Y,Z)η(X)η(W ) +
1

n − 1
S(Y,Z)η(X)η(W )

+g(Y,W )η(X)η(Z) − g(Y,W )g(X,Z)

+
1

n − 1
S(Y,W )η(X)η(Z) − 1

n − 1
S(Y,W )g(X,Z)}(3.5)

−b{S(Y,Z)η(X)η(W ) +
1

n − 1
S(QY,Z)η(X)η(W )

−S(X,Z)g(Y,W ) − (n − 1)g(Y,W )η(X)η(Z)

− 1
n − 1

S(Y,W )S(X,Z) − S(Y,W )η(X)η(Z)} = 0,

where S(QY,Z) = S2(Y,Z).
Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at any

point. Then the sum for 1 ≤ i ≤ n of the relation (3.5) for Y = W = ei gives

{τ + n(n − 1)}[bS(X,Z) − Kg(X,Z) + {K + (n − 1)b}η(X)η(Z)] = 0.(3.6)

Let U1 and U2 be a part of M satisfying τ + n(n − 1) = 0 and

bS(X,Z) − Kg(X,Z) + {K + (n − 1)b}η(X)η(Z) = 0,(3.7)
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respectively. In the case of τ +n(n−1) �= 0, if b = 0, from (3.7) we get a = 0.
This is the contradiction. Thus we find b �= 0. By virtue of (3.7), we obtain
K
b = 1 + τ

n−1 , which yields

S(X,Z) = (1 +
τ

n − 1
)g(X,Z) − (n +

τ

n − 1
)η(X)η(Z).

Hence we have the following:

Theorem 1. Let Mn be an n-dimensional (n > 1) Kenmotsu manifold satis-
fying the condition P (ξ, Y ) · C̃ = 0. Then M is a part of

1. τ = −n(n − 1), that is, the scalar curvature is the negative constant, or

2. an η−Einstein manifold.

§4. Kenmotsu manifolds satisfying C̃(ξ, Y ) · C̃ = 0

In this section we consider a Kenmotsu manifold Mn satisfying the condition

C̃(ξ, Y ) · C̃ = 0.

From (2.12), we have

(C̃(ξ, Y ) · C̃)(U, V )W = C̃(ξ, Y )C̃(U, V )W − C̃(C̃(ξ, Y )U, V )W
−C̃(U, C̃(ξ, Y )V )W − C̃(U, V )C̃(ξ, Y )W = 0.(4.1)

Taking the inner product with X and using U = ξ in (4.1), we obtain

g(C̃(ξ, Y )C̃(ξ, V )W,X) − g(C̃(C̃(ξ, Y )ξ, V )W,X)(4.2)
−g(C̃(ξ, C̃(ξ, Y )V )W,X) − g(C̃(ξ, V )C̃(ξ, Y )W,X) = 0.

Let {ei} (1 ≤ i ≤ n) an orthonormal basis of the tangent space at any point.
Now we put X = W = ei in (4.2). Straightforwardly we calculate the equation∑n

i=1 g((C̃(ξ, Y ) · C̃)(ξ, ei)W, ei) = 0. Then we obtain

g(C̃(ξ, Y )C̃(ξ, ei)W, ei) − g(C̃(C̃(ξ, Y )ξ, ei)W, ei)(4.3)
−g(C̃(ξ, C̃(ξ, Y )ei)W, ei) − g(C̃(ξ, ei)C̃(ξ, Y )W, ei) = 0.

Using (1.1) and (2.9) in (4.3), we get

{a + (n − 2)b}[bS(QY,W ) − 1
n(n − 1)

{a(τ + n(n − 1)) + 2(n − 1)bτ}S(Y,W )

−(n − 1)Kg(Y,W )] = 0.
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Thus we have a + (n − 2)b = 0, or

bS(QY,W ) − 1
n(n − 1)

{a(τ + n(n − 1)) + 2(n − 1)bτ}S(Y,W )(4.4)

−(n − 1)Kg(Y,W ) = 0.

If b = 0, then we get

a{τ + n(n − 1)}{S(Y,W ) + (n − 1)g(Y,W )} = 0.

We can easily verify that

S(Y,W ) = −(n − 1)g(Y,W ).

Therefore we have the following:

Theorem 2. Let Mn be an n-dimensional (n > 1) Kenmotsu manifold satis-
fying the condition C̃(ξ, Y ) · C̃ = 0. Then we get

1. a + (n − 2)b = 0, or

2. we find

i) if b = 0, then M is an Einstein manifold,

ii) if b �= 0, then we get

S(QY,W ) = (
K

b
− n + 1)S(Y,W ) + (n − 1)

K

b
g(Y,W ).

Now we need the following:

Lemma 1. ([4]) Let A be a symmetric (0, 2)-tensor at a point x of a semi-
Riemannian manifold (Mn, g), n > 1, and let T = g � A be the Kulkarni-
Nomizu product of g and A. Then, the relation

T · T = αQ(g, T ), α ∈ R

is satisfied at x if and only if the condition

A2 = αA + λg, λ ∈ R

holds at x.

From Theorem 2 and Lemma 1 we get the following:

Corollary 1. Let Mn be an n−dimensional (n > 1) Kenmotsu manifold sat-
isfying the condition C̃(ξ, Y ) · C̃ = 0, then T · T = αQ(g, T ), where T = g � A
and α = K

b − n + 1.
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§5. Kenmotsu manifolds satisfying Z̃(ξ, Y ) · C̃ = 0

In this section we consider a Kenmotsu manifold Mn satisfying the condition

Z̃(ξ, Y ) · C̃ = 0.

From (2.11), we have

(Z̃(ξ, Y ) · C̃)(U, V )W = Z̃(ξ, Y )C̃(U, V )W − C̃(Z̃(ξ, Y )U, V )W
−C̃(U, Z̃(ξ, Y )V )W − C̃(U, V )Z̃(ξ, Y )W = 0.(5.1)

Now using U = ξ in (5.1), we have

Z̃(ξ, Y )C̃(ξ, V )W − C̃(Z̃(ξ, Y )ξ, V )W(5.2)
−C̃(ξ, Z̃(ξ, Y )V )W − C̃(ξ, V )Z̃(ξ, Y )W = 0.

Taking the inner product with X in (5.2) and using (2.7), we get

{1 +
τ

n(n − 1)
}{g(X,Y )η(C̃(ξ, V )W ) − g(Y, C̃(ξ, V )W )η(X)

−g(X, C̃(Y, V )W ) + g(C̃(ξ, V )W,X)η(Y )(5.3)
−g(C̃(ξ, Y )W,X)η(V ) − g(C̃(ξ, V )Y,X)η(W )
+g(Y,W )g(C̃(ξ, V )ξ,X)} = 0.

Again from (2.7), we have τ �= −n(n − 1). Thus

g(X,Y )η(C̃(ξ, V )W ) − g(Y, C̃(ξ, V )W )η(X) − g(X, C̃(Y, V )W )
+g(C̃(ξ, V )W,X)η(Y ) − g(C̃(ξ, Y )W,X)η(V ) − g(C̃(ξ, V )Y,X)η(W )(5.4)
+g(Y,W )g(C̃(ξ, V )ξ,X) = 0.

Using (2.9) in (5.4), we get

−a{g(X,Y )g(V,W ) + g(R(Y, V )W,X) − g(X,V )g(Y,W )}
−b(n − 1){g(X,Y )g(V,W ) − g(X,Y )η(V )η(W ) − g(X,V )g(Y,W )
+g(Y,W )η(X)η(V )} + b{S(Y,W )g(X,V ) − S(X,Y )g(V,W )(5.5)
−S(Y,W )η(X)η(V ) + S(X,Y )η(V )η(W )} = 0.

Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at any
point. Then the sum for 1 ≤ i ≤ n of the relation (5.5) for Y = W = ei gives

(b − a)S(X,V ) = {(n − 1)a + (n − 1)2b + bτ}g(X,V )(5.6)
−b{τ + n(n − 1)}η(X)η(V ).
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If a = b(�= 0), then we have a{τ + n(n − 1)}{g(X,V ) − η(X)η(V )} = 0.
Because of (2.7), we find τ + n(n − 1) �= 0. Thus a �= b holds. We obtain
{a+(n−2)b}{τ +n(n−1)} = 0 from (5.6), which means that a+(n−2)b = 0.
Thus equation (5.6) can be rewritten as follows:

S(X,V ) = (1 +
τ

n − 1
)g(X,Y ) − (n +

τ

n − 1
)η(X)η(Y ).

Hence we have the following:

Theorem 3. An n−dimensional (n > 1) Kenmotsu manifold Mn satisfying
the condition Z̃(ξ, Y ) · C̃ = 0 is an η−Einstein manifold.

§6. Kenmotsu manifolds satisfying C̃(ξ, Y ) · Z̃ = 0

In this section we consider a Kenmotsu manifold Mn satisfying the condition

C̃(ξ, Y ) · Z̃ = 0.

From (2.13), we have

(C̃(ξ, Y ) · Z̃)(U, V )W = C̃(ξ, Y )Z̃(U, V )W − Z̃(C̃(ξ, Y )U, V )W
−Z̃(U, C̃(ξ, Y )V )W − Z̃(U, V )C̃(ξ, Y )W = 0.(6.1)

Putting U = ξ in (6.1), we have

C̃(ξ, Y )Z̃(ξ, V )W − Z̃(C̃(ξ, Y )ξ, V )W
−Z̃(ξ, C̃(ξ, Y )V )W − Z̃(ξ, V )C̃(ξ, Y )W = 0.(6.2)

Taking the inner product with X ∈ χ(M) in (6.2) and using (2.9), we get

K{g(Y, Z̃(ξ, V )W )η(X) − η(Z̃(ξ, V )W )g(Y,X) − g(Z̃(ξ, V )W,X)η(Y )

+ g(Z̃(Y, V )W,X) + g(Z̃(ξ, Y )W,X)η(V ) − g(Y,W )g(Z̃(ξ, V )ξ,X)

+ g(Z̃(ξ, V )Y,X)η(W )} − b{S(Y, Z̃(ξ, V )W )η(X) − η(Z̃(ξ, V )W )S(Y,X)

+ (n − 1)g(Z̃(ξ, V )W,X)η(Y ) + g(Z̃(QY, V )W,X) + g(Z̃(ξ,QY )W,X)η(V )

− S(Y,W )g(Z̃(ξ, V )ξ,X) + g(Z̃(ξ, V )QY,X)η(W )} = 0.

Using (1.4) and (2.7) in the above equation, we obtain

K{g(R(Y, V )W,X) + g(Y,X)g(V,W ) − g(X,V )g(Y,W )}(6.3)
−b{g(R(QY, V )W,X) + S(Y,X)g(V,W ) − S(Y,W )g(X,V )} = 0.
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Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at any
point. Then the sum for 1 ≤ i ≤ n of the relation (6.3) for X = V = ei gives

K{S(Y,W ) + (n − 1)g(Y,W )} − b{S2(Y,W ) + (n − 1)S(Y,W )} = 0.

When b = 0, the above equation can be rewritten as follows:

K{S(Y,W ) + (n − 1)g(Y,W )} = 0,

which means that K{τ + n(n− 1)} = 0. From (2.7), we find τ + n(n− 1) �= 0.
Thus we get K = 0, namely, a = 0. Therefore we get b �= 0 and

S(QY,W ) = (
K

b
− n + 1)S(Y,W ) + (n − 1)

K

b
g(Y,W ).(6.4)

This leads to the following:

Theorem 4. In an n-dimensional (n > 1) Kenmotsu manifold M if the con-
dition C̃(ξ, Y ) · Z̃ = 0 holds on M, then the equation (6.4) is satisfied on
M.

From Theorem 4 and Lemma 1 we get the following:

Corollary 2. Let M be an n-dimensional (n > 1) Kenmotsu manifold satis-
fying the condition C̃(ξ, Y ) · Z̃ = 0, then T · T = αQ(g, T ), where T = g � A
and α = K

b − n + 1.

§7. Kenmotsu manifolds satisfying C(ξ, Y ) · C̃ = 0

In this section we consider a Kenmotsu manifold Mn satisfying the condition

C(ξ, Y ) · C̃ = 0.

From (2.14), we have

(C(ξ, Y ) · C̃)(U, V )W = C(ξ, Y )C̃(U, V )W − C̃(C(ξ, Y )U, V )W
−C̃(U,C(ξ, Y )V )W − C̃(U, V )C(ξ, Y )W = 0.(7.1)

Taking the inner product with X and using U = ξ in (7.1), we obtain

g(C(ξ, Y )C̃(ξ, V )W,X) − g(C̃(C(ξ, Y )ξ, V )W,X)(7.2)
−g(C̃(ξ, C(ξ, Y )V )W,X) − g(C̃(ξ, V )C(ξ, Y )W,X) = 0.

Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at any
point. Now we put X = V = ei in (7.2). Straightforwardly we calculate
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the equation
∑n

i=1 g((C(ξ, Y ) · C̃)(ξ, ei)W, ei) = 0. Then from (1.1), (2.8) and
(2.9), we obtain

{ a

n − 2
+ b}{S(QY,W ) − [1 +

τ

n − 1
− (n − 1)]S(Y,W )

− [τ + n − 1]g(Y,W )} = 0.

Let U1 and U2 be a part of M satisfying a + b(n − 2) = 0 and

S(QY,W ) = [
τ

n − 1
+ 2 − n]S(Y,W ) + [τ + n − 1]g(Y,W ).(7.3)

This leads to the following:

Theorem 5. In n−dimensional (n > 1) Kenmotsu manifold Mn satisfying
the condition C(ξ, Y ) · C̃ = 0. Then we get

1. a + (n − 2)b = 0, or

2. a + b(n − 2) �= 0, then the equation (7.3) holds on M.

From Theorem 5 and Lemma 1 we get the following:

Corollary 3. Let M be an n−dimensional (n > 1) Kenmotsu manifold satis-
fying the condition C(ξ, Y ) · C̃ = 0, then T · T = αQ(g, T ), where T = g � A
and α = τ

n−1 + 2 − n.
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