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Abstract. We investigate a poly-modal logic S5nC which has n-modalities
(n > 1) satisfying the axioms of S5 and has axioms expressing permutability
of modalities. We show that the logic S5nC is complete concerning Kripke

semantics, has the finite model property and is decidable, however we prove
S5nC is not locally finite. A main result consists of an algorithmic criterion
for recognizing the admissibility of inference rules in S5nC, i.e. the logic S5nC

is decidable with respect to the admissibility.
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§1. Introduction

Semantics and deductive properties of many mono-modal logics are inves-
tigated very deeply. We mean the results concerning completeness and decid-
ability of logics for the representative and rich classes, the results concerning
the finite model property and the local finiteness, the results on the descrip-
tion of corresponding Kripke models. Mentioned results are related to the
equational modal logics. But results about inference rules for modal logics
belong to the quasi-equational logics, the theory of quasi-identities of modal
algebras. The problems concerning inference rules for mono-modal logics are
investigated rather profoundly.

These questions appeared in the study of intuitionistic logic by Moscow
logical school headed by P.S.Novikov in forties, and then by Leningrad
school in works of G.E.Mints and others, and in Kishinev school in works
of A.V.Kuznetsov and his followers.

The main point of these studies was two related problems: (a) the Har-
vey Friedman problem (problem 40,[1]): about the existence of an algo-
rithm for recognizing the admissibility of inference rules; (b) the problem
of A.V.Kuznetsov about the existence of finite bases for admissible inference
rules of the intuitionistic logic.

*The investigation was supported by Grant Center of Novosibirsk State University,
Krasnoyarsk Regional Fund of Science, RFFI grant 96-01-00228.
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These problems were answered by V.V.Rybakov affirmatively for Friedman
problem, but negatively for Kuznetsov question, using solutions of similar
questions for the modal logics S4 and Grz [2,3]. Also a complete descrip-
tion of the bases of admissible inference rules of the modal logic S4.3 was
obtained, and it was proved that these logics are decidable with respect to the
admissibility of inference rules [4].

Therefore there are a number of results concerning the admissibility of
inference rules for individual logics. Recently V.V.Rybakov [6] obtained a
general theorem for the description of classes of mono-modal logics concerning
the existence of algorithms for recognizing the admissibility of inference rules.
A complete description of the hereditarily structurally complete modal logics
over K4 was found in [5]. Thus the problem of the admissibility of inference
rules for mono-modal logics is studied in detail. As to poly-modal logics, the
above mentioned problems of equational logics and especially the problems of
quasi-equational logics are investigated not so deeply. It is quite natural, using
the methods of mono-modal logics if possible, to investigate the corresponding
and related problems for poly-modal logics.

A semantic investigation of poly-modal logics has been initiated with works
of K.Segerberg (see for example [10]). A study of poly-modal logics has an
independent theoretical and practical interest, and is important(see for ex-
ample an interconnection discovered by M.Rennie [11]). However, in general
case, poly-modal logics have as a rule more complicate structures comparing to
mono-modal logics (see for instance [8]). Nevertheless it is possible sometimes
to obtain rather strong positive results regarding poly-modal logics. For ex-
ample, V.B.Shechtman [9] proved theorems of general character for semantic
characterization of poly-modal logics, from which the completeness, the finite
model property and the decidability follow for many logics.

The aim of this paper is a study of inference rules for the poly-modal logic
S5nC which has commutative modalities. Namely, the logic S5nC is a logic
with n modalities ¤1, . . . , ¤n, which have all axioms of S5 and besides the
following axioms: ¤i¤jp ≡ ¤j¤ip, i, j = 1, . . . , n. The problem is interesting
since on the one hand this logic promises positive results and, on the other
hand, among the extensions of S5nC there are logics which are not decidable
(see V.V.Rybakov [7]). In this paper we show that the logic S5nC is complete
concerning Kripke semantics, has the finite model property and is decidable,
however we prove that S5nC is not locally finite for n > 1. A main result
consists of an algorithmic criterion for recognizing the admissibility in S5nC,
i.e. the logic S5nC is decidable with respect to the admissibility of inference
rules.

We are grateful to V.V.Rybakov for offering this problem and for valuable
discussions.
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§2. Definitions and preliminary results

A normal modal n-logic is an extension of the classical propositional calculus
by adding n modalities ¤1, . . . , ¤n, which has axioms ¤i(p → q) → (¤ip →
¤iq) (i = 1, . . . , n), and the rules ` A ⇒` ¤iA (i = 1, . . . , n) and, possibly,
other additional axioms. A weak product of the normal modal logics L1 and L2

with modalities ¤1, . . . , ¤n and ¤n+1, . . . , ¤n+m is a normal logic L1×L2 with
modalities ¤1, . . . , ¤n,¤n+1, . . . , ¤n+m, which contains all axioms of L1 and
L2 and the axioms ¤i¤jp ≡ ¤j¤ip, ♦i¤jp → ¤j♦ip (1 ≤ i ≤ n < j ≤ n+m).

The language of the propositional logic S5nC extends the language of the
classical propositional calculus with modalities ¤1, . . . , ¤n. The logic S5nC
has axioms

¤i(p → q) → (¤ip → ¤iq), i = 1, . . . , n,

¤ip → p, i = 1, . . . , n,

♦i¤ip → p, i = 1, . . . , n,

¤ip → ¤i¤ip, i = 1, . . . , n,

¤i¤jp ≡ ¤j¤ip, i, j = 1, . . . , n,

and the following inference rules:

` A,` A → B ⇒` B, ` A ⇒` ¤iA(i = 1, . . . , n).

A logic λ is called locally finite if, for any m, there exist only a finite num-
ber of pairwise nonequivalent formulas of m propositional variables. An
n-frame is the structure 〈U,R1, . . . , Rn〉, where U is a nonempty set and
R1, . . . , Rn are binary relations on the set U . A Kripke n-model is a structure
〈U,R1, . . . , Rn, V 〉, where 〈U,R1, . . . , Rn〉 is an n-frame and V is a function
from a set of propositional variables to the powerset of U (we call this function
as valuation). When there is no risk to confuse, we will speak of <<Kripke
model>> instead of <<Kripke n-model>>. The truth value of a formula can
be defined in poly-modal case quite similarly as the mono-modal case. Let M
be a Kripke model with a valuation defined on m-elements set Pm of propo-
sitional variables. We say that M is m-characterizing for the logic λ, if for
any formula ϕ with variables from Pm, ϕ ∈ λ ⇐⇒ M ° ϕ. An element v of
the model 〈U,R1, . . . , Rn, V 〉 is definable if there is a formula α such that for
any w ∈ U w °V α ⇐⇒ w = v. In this case we say that α defines v. Let
M = 〈U,R1, . . . , Rn, V 〉 be a Kripke model and let W be a new valuation of
some propositional variables on the frame of the model M. The valuation W
is called definable, if for any variable pi from the domain of W , there exists a
formula αi such that W (pi) = {x ∈ U |x °V αi}.

Suppose M1 = 〈U ′, R′
1, . . . , R

′
n, V ′〉 and M2 = 〈U ′′, R′′

1 , . . . , R′′
n, V ′′〉 are

Kripke models. We call the model M = 〈U,R1, . . . , Rn, V 〉 a disjoint union



4 P. A. ALEXEEV AND M. I. GOLOVANOV

of models M1 and M2 (M = M1 tM2) if the following hold: U = U ′ ∪ U ′′,
U ′ ∩ U ′′ = ∅, Ri |U ′= R′

i, Ri |U ′′= R′′
i and V |U ′= V ′, V |U ′′= V ′′. Let

F = 〈U,R1, . . . , Rn〉 be an n-frame. Assume Ux is the smallest subset of U
containing x and satisfying the condition: if y ∈ Ux and (y, z) ∈ Ri for some
i, 1 ≤ i ≤ n, then z ∈ Ux. We use the denotation Rx

i = Ri|Ux . We say a
subframe F x = 〈Ux, Rx

1 , . . . , Rx
n〉 of a frame F is the cone of F with the root

x.
Let M = 〈U,R1, . . . , Rn, V 〉 be an n-model and x ∈ U . Denote by Mx the

submodel 〈Ux, Rx
1 , . . . , Rx

n, V ′〉, where the frame 〈Ux, Rx
1 , . . . , Rx

n〉 is a cone of
a frame 〈Ux, Rx

1 , . . . , Rx
n〉 with a root x and V ′(pi) = V (pi) ∩ Ux. By E we

denote a one-element model that is a model with one element universe and
with all relations Ri (1 ≤ i ≤ n) reflexive. Note that, in case of n proposi-
tional variables, there are 2n different one-element models. We call the frame
F1 × F2 = 〈U1 × U2, R̂1, . . . , R̂n, Ŝ1, . . . , Ŝm〉 as cartesian product of frames
F1 = 〈U1, R1, . . . , Rn〉 and F2 = 〈U2, S1, . . . , Sm〉, where (x1, y1)R̂i(x2, y2), if
x1Rix2 and y1 = y2; (x1, y1)Ŝi(x2, y2), if x1 = x2 and y1Siy2. The composition
of frames F1 = 〈U,R1, . . . , Rn〉 and F2 = 〈U, S1, . . . , Sm〉 is the frame

F1 ∗ F2 = 〈U,R1, . . . , Rn, S1, . . . , Sm〉.

If F1 and F2 are certain classes of n-frames and m-frames, respectively, then
F1 ×F2 = {F1 ×F2|F1 ∈ F1, F2 ∈ F2}, F1 ∗F2 = {F1 ∗F2|F1 ∈ F1, F2 ∈ F2}.

If F is a class of n-frames, then by S(F) we denote an n-modal logic which
contains all modal formulas which are true on the class F .

Let V1 be a class of all 1-frames. V1∩D is the class of all countable 1-frames
or finite 1-frames, REF , SY M , TR, NE, E are defined by axioms ¤p → p,
♦¤p → p, ¤p → ¤¤p, ♦>, ♦> → ♦¤⊥ respectively.

Theorem 2.1 ([9], theorem 3). Let G be the semigroup generated
by the classes of frames of a free semigroup of classes of frames (where
the multiplication is the composition ∗) generated by classes V1, V1 ∩
D,REF, SY M, TR,NE,E and nonempty intersections of these classes. Let
F , F ′ be certain elements of G. Then the following holds

S(F × F ′) = S(F) × S(F ′).

Since in the logic S5nC each inference rule of type A1, . . . , Ak/B is equiv-
alent to the rule A1 ∧ · · · ∧Ak/B, we presuppose that each inference rule is of
the form A/B. We say that an inference rule A(p1, . . . , pm)/B(p1, . . . , pm)
is admissible in a logic λ if, for any formulas φ1, . . . , φm, the condition
A(φ1, . . . , φm) ∈ λ entails B(φ1, . . . , φm) ∈ λ. We will also consider the logical
connective ”possible”: ♦i, which is defined as an abbreviation for ¬¤i¬. Note
that, ¤iϕ ≡ ¬♦i¬ϕ and ♦iϕ ≡ ¬¤i¬ϕ for every formula ϕ in S5nC for any
n.
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§3. Main results

From our definitions above we immediately infer

Lemma 3.1. A frame 〈U,R1, . . . , Rn〉 is adequate to the logic S5nC ⇐⇒
Ri is reflexive, symmetric, transitive and RiRj = RjRi (i, j = 1, . . . , n).

Theorem 3.2. The logic S5nC has the property of completeness for Kripke
semantics and the finite model property.

To prove this theorem we need the following denotation and lemma. Denote
by F1 the set of all finite reflexive and transitive clusters (remind, a cluster is
a frame of the kind 〈U,R〉 ∈ F1 ⇐⇒ ∀x, y ∈ U [(x, y) ∈ R]). It is well known
that F1 is a characterizing class for S5.

Lemma 3.3. S5nC = S(F1 × · · · × F1︸ ︷︷ ︸
n

)

Proof. By induction on n. For n = 1 the lemma holds. Let the lemma be
proved for every k ≤ n and let k = n+1. Applying Theorem 2.1 and the induc-
tive hypothesis we have: S5n+1C = S5nC×S5 = S(F1 × · · · × F1︸ ︷︷ ︸

n

)×S(F1) =

S((F1 × · · · × F1︸ ︷︷ ︸
n

) ×F1) = S(F1 × · · · × F1︸ ︷︷ ︸
n+1

). Lemma 3.3 is proved. ¤

Theorem 3.2 follows immediately from Lemma 3.3.

Thus Fn
1 is a characterizing class of frames for S5nC. Let Charm be a

disjoint union of all possible models of type 〈F,R1, . . . , Rn, V 〉, where F =
M1 × M2 × · · · × Mn, (x1, . . . , xn)Ri(y1, . . . , xy) ⇐⇒ x1 = y1, . . . , xi−1 =
yi−1, xi+1 = yi+1, . . . , xn = yn, M1, . . . ,Mn are any finite sets and V is any
valuation of variables p1, . . . , pm on the frame F . According to Lemma 3.3 the
model Charm is an m-characterizing model for S5nC.

Next theorem follows from the Theorem 3.2 and the fact that logic S5nC
is finitely axiomatizable.

Theorem 3.4. The logic S5nC is decidable.

Theorem 3.5. The logic S5nC for n > 1 is not locally finite.

Proof. We introduce a model in the following way. We take the set N × N
as a universe of our model and define the relations of accessibility R1, . . . , Rn

as follows: (r, s)R1(q, t) iff s = t; (r, s)R2(q, t) iff r = q; (r, s)Rk(q, t) iff
(r = q) ∧ (s = t) (k = 3, 4, . . . , n). The valuation of the single variable p on
this model is following one: V (p) = {(i, j)| i ≤ j}. Now we introduce the set
of formulas inductively :

α = p ∧ ♦2¬p,
β0 = ¤2p,
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γ0 = ¤1¬α,
β1 = ¤2(γ0 ∨ α) ∧ ¬β0,
γ1 = ¤1(β0 ∨ β1 ∨ ¬α) ∧ ¬γ0,
. . . . . .

βi+1 = ¤2(
∨i

j=0 γj ∨ α) ∧
∧i

j=0 ¬βj ,
γi+1 = ¤1(

∨i+1
j=0 βj ∨ ¬α) ∧

∧i
j=0 ¬γj .

It is clear that the formulas γi and βj are valid only on the elements of the
sets {(k, i)|k ∈ N} and {(j, k)|k ∈ N} respectively. This yields that there exist
an infinite set of pairwise nonequivalent formulas with one propositional vari-
able. Hence the logic S5nC is not locally finite and Theorem 3.5 is proved. ¤

Theorem 3.6. An inference rule A(p1 . . . , pm)/B(p1 . . . , pm) is not admissi-
ble in S5nC iff the following hold:
1) (¤1 . . . ¤nA → B) /∈ S5nC,
2) there exists a valuation on one-element model E such that E ° A.

Proof. Necessity. Suppose an inference rule A(p1, . . . , pm)/B(p1, . . . , pm)
is not admissible in S5nC. Hence there exist formulas φ1, . . . , φm such that
A(φ1, . . . , φm) ∈ S5nC, B(φ1, . . . , φm) /∈ S5nC. Therefore

¤1 . . . ¤nA(φ1, . . . , φm) ∈ S5nC.

According to Lemma 3.3 there is a certain frame F in Fn
1 such that the formula

B(φ1, . . . , φm) is false on F . Let V be a valuation which disproves the formula
B(φ1, . . . , φm) on the frame F . Since ¤1 . . . ¤nA(φ1, . . . , φm) ∈ S5nC we
have F °V ¤1 . . . ¤nA(φ1, . . . , φm). Now we introduce a new valuation V ′

on the frame F in the following way: V ′(pi) = {x|x ° φi}. By induction on
the length of formula we can prove F °V ′ ¤1 . . . ¤nA(p1, . . . , pm) and F 1V ′

B(p1, . . . , pm). Therefore (¤1 . . . ¤nA(p1, . . . , pm) → B(p1, . . . , pm)) /∈ S5nC
and 1) is proved.

Since the one-element frame E with reflexive relations R1, . . . , Rn is ade-
quate to S5nC we have E °V A(φ1, . . . , φm) for any valuation V . We fix the
valuation V and introduce on E the new valuation V ′(pi) = {x|x °V φi},
then E °V ′ A(p1 . . . , pm) and 2) hold.
Sufficiency. Suppose the conditions 1) and 2) of our theorem hold. Then
there exists a model M, which is a cone of Charm, such that M 1 (¤1 . . . ¤nA
→ B). Let the power of the model M is k. We define an extension of
the valuation V of variables p1, . . . , pm on the model M to the valuation
of p1, . . . , pm+k such that, for i = m + 1, . . . ,m + k, the set V (pi) contains
exactly one element of the model M and if i, j ∈ {m + 1, . . . ,m + k}, i 6= j
then V (pi) ∩ V (pj) = ∅. Under the valuation V , extended in such a manner,
all elements of the model M are definable, M is a submodel of the model
Charm+k and M 1 (¤1 . . . ¤nA → B) holds. We define V (pi) on E for
i = m + 1, . . . ,m + k in such a way that, E 1 pi. According to the definition
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of V , all elements of the model N = MtE are definable. Now we obtain that
the model N = Mt E is a submodel of the model Charm+k.

Further we construct a definable valuation W on the model Charm+k. De-
note the elements of N = M t E as a1, . . . , ak+1, where ak+1 is Ri max-
imal element for any Ri. The model M contains the elements a1, . . . , ak

and ak+1 is the element of the model E . Suppose h1, . . . , hk+1 are the for-
mulas defining the elements a1, . . . , ak+1 in the model N ,respectively. Put
fi = hi ∧

∧
j,j 6=i,k+1 ¬hj , i = 1, . . . , k, fk+1 =

∧k
j=1 ¬hj . Now the formu-

las f1, . . . , fk+1 define the elements a1, . . . , ak+1 in the model N , respectively.
Consider following formulas :

(1) ga = fa ∧
∧
i

(
∧

aRiy

♦ify) ∧
∧
i

(¤i

∨
aRiy

fy),

(2) ϕa = ga ∧ (
∧

x∈M

¤1 . . . ¤n(fx → gx)),

where a ∈ {a1, . . . , ak}.

(3) ϕak+1 = ¬(
∨

a∈M

ϕa).

Note that the elements a1, . . . , ak+1 are defined by the formulas
ϕa1 , . . . ϕak+1 on MtE , respectively. We will prove that, for any x ∈ Charm,
if x °V ϕa and x °V ϕb then a = b. If a = ak+1 or b = ak+1 then the
statement follows from the formula (3). Let a, b ∈ {a1, . . . , ak} and a 6= b.
Then according to (2) and (1) we have x °V fa, x °V fb. By construction of
fa and fb we have x °V ha ∧ ¬hb and x °V hb ∧ ¬ha, a contradiction.

We introduce the following formulas :

(4) Φi =
∨

a∈N ,a°pi

ϕa (i = 1, . . . ,m).

If, for some i, ∀a ∈ Na 1V pi then we put by definition Φi = pi ∧ ¬pi.
Now we define a new valuation W on the frame of Charm+s as follows:

W (pi) = {x | x °V Φi }.

This valuation is defined by the formulas Φi (1 ≤ i ≤ n) and W (pi) = V (pi)
on the model N . It means Charm+s 1W B(p1, . . . , pm). We need to show
that Charm+s °W A(p1, . . . , pm). For this it is necessary to prove
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Lemma 3.7. Let α(p1, . . . , pm) be an n-modal formula. Suppose an element
x from the characterizing model Charm+s is such that x °V ϕa, where a is
an element of the model N = Mt E . Then

x °W α ⇐⇒ a °V α.

Proof. Induction on the length of the formula α. Let α = pj . If a °V pj ,
then by the formula (4) Φj contains ϕa as a disjunctive part, hence according
to the condition of lemma: x °V Φj and by the definition of W x °W pj .
Suppose x °W pj , then according to the definition of the valuation W there
exists some disjunctive term ϕb in Φj where b ∈ N for which x °V ϕb. As
stated above this implies b = a. Therefore a °V pj by the definition of Φj .
We accomplished the first step of our inductive proof.

The proof for logical connectives ∨,∧,¬,→ is trivial.
Now consider the case α = ¤iβ.
a) Put a = ak+1, i.e. x ° ¬(

∨
a∈M ϕa). Let K = {z|xRiz}. Then ∀z ∈

K z °V ¬(
∨

a∈M ϕa). For, if not, there exists an element b ∈ M, for which
z °V ϕb. According to the definition of K and the properties of the relation
Ri we have (z, x) ∈ Ri. Since ¤i(

∨
bRiy

fy) is a conjunctive member of the
formula ϕb there is an element c ∈ M for which x °V fc. From (2) it follows
x °V ϕc, but this contradicts with the condition x °V ϕak+1 . Therefore in
our case if V |E = {ak+1} then W (pi) ⊃ K otherwise W (pi) ∩ K = ∅ holds,
i.e. the valuation W does not distinguish the elements of the set K. It means
∀γ∀y ∈ K[y °W γ ⇐⇒ ak+1 °V γ]. Thus in this case our lemma is proved.

b) Let a 6= ak+1. Suppose x °W ¤iβ. Let b be some element for which the
relation aRib holds. Since the relation aRib holds the formula ϕa contains ♦ifb

as a conjunctive term. Now the condition x °V ϕa yields x °V ♦ifb. Hence
∃t[(xRit) ∧ (t °V fb)]. Since the formula ¤1 . . . ¤n(fb → gb) is a conjunctive
term of the formula ϕa and the relation xRit holds, the assertion t °V gb

follows from the facts x °V ϕa and t °V fb. Now from this assertion and the
construction of the formula ϕb we have t °V ϕb. The relation xRit and the
condition x °W ¤iβ yield t °W β. Therefore b °V β holds by the inductive
hypotheses. Since this holds for any element b, for which the relation aRib
holds we have a °V ¤iβ.

Vice versa, let a °V ¤iβ. That is ∀b ∈ M : (aRib) → (b °V β). Note
x °V ϕa by hypotheses, ϕa contains ¤i

∨
aRiy

fy, hence ∀z : (xRiz) → (z °V∨
aRiy

fy). Let xRiz. This yields ∃b[(aRib)∧ (z °V fb)]. Because the formula
ϕa contains the formula ¤1 . . . ¤n(fb → gb) as a conjunctive term, we have
z °V gb, that yields z °V ϕb. So we get (b °V β) ∧ (z °V ϕb), therefore by
inductive hypothesis z °W β. And since z is any element for which xRiz we
have x °W ¤iβ. The lemma is proved. ¤

Proof. To complete the proof of Theorem 3.6 we put A(p1, . . . , pm) instead of
the formula α in Lemma 3.7. Note that ∀x ∈ Charm+k if ∀a ∈ Mx 1V ϕa
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then according to (3) x °V ϕak+1 , that is ∀x ∈ Charm+s∃a ∈ N (x °V

ϕa). Since according to the hypothesis N °V A(p1, . . . , pm) applying Lemma
3.7 we arrive at: Charm+k °W A(p1, . . . , pm). Remind that Charm+k 1W

B(p1, . . . , pm). The model Charm+k is (m + k)-characterizing model of the
logic S5nC and the valuation W is definable. Therefore the inference rule
A(p1, . . . , pm)/B(p1, . . . , pm) is not admissible in logic S5nC. The Theorem
3.6 is proved. ¤

Using this theorem we can construct an algorithm for verifying the admis-
sibility of the inference rules in the logic S5nC. Hence we have

Corollary 3.8. The logic S5nC is decidable with respect to admissibility of
the inference rules.
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