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Abstract. Let G be a finite group with O(G) = 1. We show that if G con-
tains a subgroup A isomorphic to E64 such that CG(A) = O(NG(A)) × A,
NG(A)/CG(A) ∼= Sp(6, 2), and NG(A)/O(NG(A)) splits over (O(NG(A))A)/
O(NG(A)), then either G ∼= M(22) or G = NG(A).
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§1. Introduction

This paper is concerned with a 2-local characterization of M(22), Fischer’s
group of order 217 · 39 · 52 · 7 · 11 · 13.

In the study of finite groups having a standard subgroup L isomorphic to a
group of Lie type with rank at least 4 over a field of characteristic 2, the case
where L ∼= Ω+(8, 2) is exceptional. In fact, when Seitz [18] tried to classify all
such groups, the case where L ∼= Ω+(8, 2) remained unsettled, and it was later
settled in [7]. In [7], a 2-local characterization of M(22), which is stated in
[4], plays a crucial role. However, the proof given in [4] is erroneous. In fact,
the 2-structure described in Sections 2 through 4 of [4] does not coincide with
the actual 2-structure of M(22). The purpose of this paper is to remedy the
argument in [4], and prove the following theorem.

Main Theorem. Let G be a finite group with O(G) = 1, and suppose that G
contains a subgroup A isomorphic to E64 such that CG(A) = O(NG(A)) × A
and NG(A)/CG(A) ∼= Sp(6, 2). Suppose further that NG(A)/O(NG(A)) splits
over (O(NG(A))A)/O(NG(A)). Then either G ∼= M(22) or G = NG(A).

In passing, we mention that in Section 5 of [4], it is proved that if NG(A)/
O(NG(A)) does not split over (O(NG(A))A)/O(NG(A)), then G = NG(A).
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Our notation is standard possibly except for the following:
E(X) : the product of the quasisimple subnormal subgroups of X,
X∞ : the final term of the derived series of X,
X o Y : the wreath product of X by Y ,
X ∗ Y : a central product of X and Y ,
Zn : the cyclic group of order n,
En : the elementary abelian grouyp of order n,
D8 : the dihedral group of order 8,
Q8 : the quaternion group,
Σn : the symmetric group of degree n,
Σ′n : the alternating group of degree n,

ΓL(2, 4) : Z3 × SL(2, 4) together with an automotphism of order 2 in-
verting Z3 and inducing Aut(SL(2, 4)) on SL(2, 4),

ΓU(4, 2) : Z3 × SU(4, 2) together with an automorphism of order 2
inverting Z3 and inducing Aut(SU(4, 2)) on SU(4, 2),

GF (q) : the field with q elements,
Mn(q) : the set of n× n matrices with entries in GF (q).

If we write X = Y Z, it means that Y C X and X = 〈Y, Z〉. If Y ∩ Z = 1
and if an emphasis is to be placed on that fact, then we write X = Y · Z.

If X is a 2-group, then by J(X), we denote the usual Thompson subgroup
generated by the abelian subgroups of maximum order.

Let G be a group isomorphic to Σ′5 (resp. Σ5). Suppose that G acts on a
group V isomorphic to E16. If the order of the centralizer in V of an element
of order 3 of G is 4, then we refer to this action as a “standard action as
Ω−(4, 2) (resp. O−(4, 2)).” If the action of an element of order 3 of G is fixed-
point-free, then we refer to this action as a “standard action as SL(2, 4) (resp.
Aut(SL(2, 4))).”

We use the “bar” convertion for homomorphic images. Thus if G is a group,
N is a normal subgroup and Ḡ denotes the factor group G/N , then, for any
subset X of G, X̄ denotes the image of X under the natural projection G→ Ḡ.
Similarly we use the “double bar” convention and the “tilde” convertion.

§2. Preliminary Results

In this section, we collect a number of preliminary lemmas to be used in later
sections.

The first two lemmas are easy to verify and their proofs are omitted.

Lemma 2.1. Let z be an involution actiong on a group Y , and let a be an
element of Y such that [a, z] is an involution. Then z centralizes [a, z].
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Lemma 2.2. Let x be an involution acting on an elementary abelian 2-group
C. Then the following hold.

(1) |CC(x)|2 ≥ |C|.
(2) If A is a subgroup of CC(x), then |CC/A(x)| ≥ |[C, x]|.
(3) If A is an x-invariant subgroup of C, then |CC(x)| ≥ |CC/A(x)|.
Lemma 2.3. Let R be a Sylow 2-subgroup of a group G, and let C be an
abelian subgroup of R which is weakly closed in R with respect to G. Let R̄ =
R/C, Γ = {E | E is a subgroup of R not contained in C such that Eg ⊆ C
for some g ∈ G.}, γ′ = max{|Ē| | E ∈ Γ}.
(1) If E ∈ Γ, then there exists g ∈ G such that Eg ⊆ C and NR(E)g ⊆ R.

(2) Suppose that x is an involution of R such that 〈x〉 ∈ Γ. Then |[C, x]| ≤ γ′2
and, if C is elementary abelian, then |[C, x]| ≤ γ′.

Throughout the rest of the statement of this lemma, we assume that C is
elementary abelian, and set γ = max{|E| | E ∈ Γ}.
(3) If E ∈ Γ and |E| = γ, then |CC/(C∩E)(x̄)| ≤ |Ē| for every involution x̄ of

Ē.

(4) If E ∈ Γ and |E| = γ, then |C/(C ∩ E)| ≤ |Ē|2.

(5) If E ∈ Γ and |E| = γ, then |[C, x̄]| ≤ |Ē| for every involution x̄ of Ē.

(6) If E ∈ Γ and |E| = γ, then |C/((C ∩E)[C, x̄])| ≤ |Ē| for every involution
x̄ of Ē.

Proof. Statement(1) is (9.3) of Goldschmidt [9], and (2) is Corollary 4 (2) of
[9]. Statement(3) follows from (1), and an equivalent statement can be found
in the proof of Corollary 4 (1) of [9]. Now (4) follows from (3) and Lemma
2.2(1), and is essentially the same as Corollary 4 (1) of [9]. Similarly(5) follows
from (3) and Lemma 2.2(2), and (6) follows from (3) and Lemma 2.2(3).

Lemma 2.4. Let F be a special 2-group of order 22n+1 with a subgroup B
such Z(F ) = Φ(F ) ∼= E2n, Z(F ) ⊆ B ∼= E2n+1 and [B,F ] = Z(F ). Set
‹F = F/Z(F ), and F̄ = F/B. Suppose that an involution x acts on F and B
is x-invariant. Then CF̄ (x) = C

F̃
(x).

Proof. From the assumption that [B,F ] = Z(F ), it follows that for each
element y of Z(F ), there exists an element t(y) of F such that [B, t(y)] = 〈y〉,
and such an element is uniquely determined modulo B. Note that the bijection
between Z(F ) and F which associates t(y) with y is an x-isomorphism. Let
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z be an involution of B − Z(F ). Now suppose that the lemma is false. Then
there exists an element y of CZ(F )(x) such that [fit(y), x] = z̃. By Lemma
2.1, t(y) /∈ [F , x]. Hence y /∈ [Z(F ), x]. By a suitable choice of z, we may
assume [t(y), x] = z. Then again by Lemma 2.1, [z, x] = 1. Calculating in
the semi-direct product F · 〈x〉, we get 1 = [(t(y)x)2, t(y)x] = [t(y)2z, t(y)x] ∈
y[Z(F ), x]. Since y /∈ [Z(F ), x], this is a contradiction.

Lemma 2.5. Let P be a group. Set C = O2(P ), and suppose that the following
three conditions hold.

(1) Φ(Φ(C)) = 1.

(2) C/Φ(C) is isomorphic to Φ(C) as a P -module.

(3) Either

(31) there exists a P -orbit {aP } of Φ(C) such that CΦ(C)(CP (a)) = 〈a〉 and
Φ(C) = 〈x| both x and ax are in {aP }〉; or

(32) Φ(C) ∼= E16 and P/C ∼= E9, and P/C acts faithfully on C/Φ(C).

Then C is homocyclic abelian of exponent 4.

Proof. If (31) is satisfied, then this is virtually the same as Proposition 1.4 of
[6]. Thus assume (32) holds, and let K be a complement of C in P . Let C =
C/Φ(C). Write K = L×M with [C,L] ∼= [C,M ] ∼= E4. Since Φ(C) ⊆ Z(C) by
(2) and since |[C,L]| = 4, |[C,L]′| ≤ 2. Since [C,L]′ is K-invariant, this means
[C,L]′ = 1. Therefore [C,L] = C[C,L](L) × [C,L,L]. Since [C,L,L] = [C,L],
this implies C[C,L](L) = 1, and hence |[C,L]| = 16. Similarly |[C,K]| = 16.
Consequently [C,L] ∩ [C,K] = 1. Since [C,L] and [C,K] are both normal in
C, the desired conclusion immediately follows from this.

Lemma 2.6. Let A be a vector space of even dimension over GF (2) with a
quadratic form.

(1) Assume either that the dimension is greater than or equal to 4 or that the
quadratic form is of minus type. Then A = 〈x | x is non-singular 〉.

(2) Assume either that the dimension is greater than or equal to 4 or that the
quadratic form is of plus type. Then A = 〈x | x is singular 〉.

Proof. This is easy to verify.

Lemma 2.7. Let G = Z2 oΣ′n, n ≥ 5. Let P = (G/Z(G))′ (thus P ∼= E2n−1 ·Σ′n
or E2n−2 ·Σ′n according as n is odd or even). Then there are one or two classes
of complements of O2(P ) in P according as n is odd or even (note that in the
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case where n is even, this implies that if I ∼= E2n−1, I ⊇ I0
∼= E2n−2, Σ′n acts

on I, I0 is Σ′n-invariant, and the action of Σ′n on I0 is the same as that of
P/O2(P ) on O2(P ), then there are two possibilities for the action of Σ′n on I,
one of which is decomposable and the other one is indecomposable).

Proof. See Lemma 11.3 of Aschbacher [3].

The following lemmas is verified by straightforward calculations.

Lemma 2.8. Let C = E16 and M = Sp(4, 2), and let M act on C in a
standard way. Then the following hold for every elementary abelian subgroup
E of order 8 of M .

(1) |CC(E)| ≤ 4.

(2) [C, x] ⊆ CC(E) for every involution x of E such that |[C, x]| = 2.

Arguing as in [1] and [2], we obtains the following two lemmas.

Lemma 2.9. Let M = Aut(SU(4, 2)). Let a be an involution of M −M ′ such
that CM ′(a) ∼= Sp(4, 2). Set D = CM ′(a). Let C = 〈ei, fi | 3 ≤ i ≤ 6〉 ∼= E256.
Suppose that M act on C, [fi, a] = ei for each i, 〈ei | 3 ≤ i ≤ 6〉 and
〈fi | 3 ≤ i ≤ 6〉 are D-invariant, and D acts on 〈ei | 3 ≤ i ≤ 6〉 as Sp(4, 2)
so that it fixes the alternating form θ defined by θ(ei, ej) = δi,9−j, where δi,9−j
is Kronecker’s delta. Set I = CD(〈e3, e4〉). Let J be an elementary abelian
subgroup of order 16 of M ′ such that J ⊇ I, and set N = NM (J). Then the
following hold.

(1) M has four classes of involutions, and |[C, x]| ≥ 4 for every involution x
of M .

(2) For every noncentral involution x of M , |[C, x]| = 16; for every central
involution x of M , |[C, x]| = 4.

(3) If E is an elementary abelian subgroup of order 4 of M , then E contains
a noncentral involution, and hence |CC(E)| ≤ 16 by (2).

(4) O2(N) = J , and N/O2(N) ∼= Σ5.

(5) [C,O2(N)] = CC(O2(N)) = 〈e3, f3, e4, f4〉, and N/O2(N) acts as
Aut(SL(2, 4)) in a standard way on both 〈e3, f3, e4, f4〉 and
C/〈e3, f3, e4, f4〉.

(6) N/O2(N) acts on O2(N) as O−(4, 2) in a standard way. Hence by Lemma
2.6, O2(N) = 〈x ∈ O2(N) | x is noncentral 〉 and O2(N) = 〈x ∈ O2(N) | x
is central 〉.
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(7) O2(N) is the unique elementary abelian subgroup of order 16 of N ′.

(8) If E is an elementary abelian subgroup of order 16 of M containing a,
then E ⊆ 〈a〉 × D and CC(E) ⊆ CC(a) = 〈ei | 3 ≤ i ≤ 6〉, and hence
by Lemma 2.8, |CC(E)| ≤ 4, and |〈CC(E), [C, x]〉| ≤ 8 for every central
involution x contained in E.

(9) If E is an elementary abelian subgroup of order 16 of M not contained
in M ′, then E contains an involution conjugate to a, and hence by (8),
|CC(E)| ≤ 4, and |〈CC(E), [C, x]〉| ≤ 8 for every central involution x
contained in E.

(10) For each element v of C − 〈e3, f3, e4, f4〉, |[v,O2(N)]| = 8.

(11) There exist elements e′5, f ′5, e′6, f ′6 of C with e′i〈e3, f3, e4, f4〉 = ei〈e3, f3,
e4, f4〉 and f ′i〈e3, f3, e4, f4〉 = fi〈e3, f3, e4, f4〉 for each i = 5, 6 such that
if we regard C as a vector space of dimension 4 over GF (4) such that an
element α( 6= 0, 1) of GF (4) acts so that e′i

α = fi for each i, and define
a hermitian form ϕ by ϕ(e′i, e

′
j) = δi,9−j (here for i = 3, 4, we let e′i = ei

and f ′i = fi), then M acts on C in a standard way.

Lemma 2.10. Let M = Aut(GL(4, 2)). Let a be an involution of M−M ′ such
that CM ′(a) ∼= Sp(4, 2). Set D = CM ′(a). Let C = 〈ei, fi | 3 ≤ i ≤ 6〉 ∼= E256.
Suppose that M act on C, [fi, a] = ei for each i, 〈ei | 3 ≤ i ≤ 6〉 and
〈fi | 3 ≤ i ≤ 6〉 are D-invariant, and D acts on 〈ei | 3 ≤ i ≤ 6〉 as Sp(4, 2)
so that it fixes the alternating form θ defined by θ(ei, ej) = δi,9−j, where δi,9−j
is Kronecker’s delta. Set I = CD(〈e3, e4〉). Let J be an elementary abelian
subgroup of order 16 of M ′ such that J ⊇ I, and set N = NM (J). Then the
following hold.

(1) M has four classes of involutions, and |[C, x]| ≥ 4 for every involution x
of M .

(2) For every noncentral involution x of M , |[C, x]| = 16; for every central
involution x of M , |[C, x]| = 4.

(3) If E is an elementary abelian subgroup of order 4 of M , then |CC(E)| ≤ 32;
if E is an elementary abelian subgroup of order 8 of M , then |CC(E)| ≤ 16.

(4) O2(N) = J , and N/O2(N) ∼= GL(2, 2) o Z2
∼= O+(4, 2).

(5) [C,O2(N)] = CC(O2(N)) = 〈e3, f3, e4, f4〉, and N/O2(N) acts on
〈e3, e4, f3, f4〉, C/〈e3, e4, f3, f4〉 and O2(N) in a standard way (note that
the standard action of GL(2, 2)oZ2 is the same as that of O+(4, 2)). Hence
by Lemma 2.6, O2(N) = 〈x ∈ O2(N) | x is noncentral 〉 and O2(N) =
〈x ∈ O2(N) | x is central 〉.
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(6) If E is an elementary abelian subgroup of order 16 of N with E 6= O2(N),
then |CC(E)| ≤ 8.

Lemma 2.11. Let N be a group with N/O(N) ∼= PSL(3, 4). Suppose that
N acts faithfully and irreducibly on an elementary abelian 2-group J with
28 ≤ |J | ≤ 210. Let s,t be elements of N such that sO(N) has order 5 in
N/O(N) and tO(N) has order 3 in N/O(N), and suppose that |[J, s]| = 28

and |[J, t]| = 26. Then |J | = 512 and N ∼= PSL(3, 4).

Proof. Let
O(N) = P0 ⊇ P1 ⊇ P2 ⊇ · · · ⊇ Pk = 1

be a characteristic composition series of O(N) (namely, for each i, Pi−1 is
a minimal characteristic subgroup of O(N) properly containing Pi). In gen-
eral, if p is an odd prime, then the 2-rank of GL(n, p) is n and every ele-
mentary abelian 2-subgroup of order 2n contains the involution of the center
of GL(n, p). On the other hand, since N is isomorphic to a subgroup of
GL(10, 2), the rank of Pi−1/Pi is less than or equal to 4 for each i, and hence
N∞ acts on Pi−1/Pi trivially. By the three-subgroup lemma, [O(N), N∞] =
[O(N), N∞, . . . , N∞, N∞] = 1. Thus N∞ ∼= PSL(3, 4) or SL(3, 4). Now we
obtain the desired conclusion by arguing as in [1] and [2].

The following lemma also follows from [1] and [2].

Lemma 2.12. Let N ,J be as in Lemma 2.11, and let R ∈ Syl2(N). Then the
following hold.

(1) R contains precisely two elementary abelian subgroups A,B of order 16.

(2) N acts on J irreducibly.

(3) The order of the centralizer in J of one of A or B is 16, while that of the
other is 2. We choose our notation so that |CJ(A)| = 16 and |CJ(B)| = 2

(4) |[J,A]| = 256, [J,A,A] = CJ(A), |[J,B]| = 32, [J,B,B] = CJ(B).

(5) N has only one class of involutions, and |[J, x]| = 16 for every involution
x of N .

Lemma 2.13. Let N be a group such that N/O(N) ∼= M22. Suppose N acts
faithfully on an elementary abelian group J of order 1024. Then N ∼= M22,
and the lengths of the N -orbits of involutions of J are either

(1) 22,231 and 770; or

(2) 77,330 and 616.
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Proof. Arguing as in Lemma 2.12, we obtain N ∼= M22 or 3M22. Hence the
desired conclusion follows from Hunt [15] and Smith [19].

Lemma 2.14. Let N = M22, and let N act faithfully on an elementary abelian
group J of order 1024. Suppose the action is the same as the one described in
Lemma 2.13(1). Let R ∈ Syl2(N). Then

(1) R contains precisely two elementary abelian subgroups A,B of order 16.
We choose our notation so that NN (A)/A ∼= Σ′6 and NN (B)/B ∼= Σ5. N
has only one class of involutions.

(2) Let a, b and c be elements of J such that |{aN}| = 22, |{bN}| = 231 and
|{cN}| = 770, respectively. Then CN (a) ∼= PSL(3, 4), CN (b) ∼= E16 ·Σ5 and
CN (c) ∼= E16 · (E9 · Z4). We choose our notation so that O2(CN (b)) = B
and O2(CN (c)) = A.

(3) |CJ(x)| = 64 for every involution x of N .

(4) |CJ(A)| = 32, |[CJ(A), NN (A)]| = 16, and NN (A) acts on CJ(A) inde-
composably. |[CJ(A), x]| = 4 for every involution x of NN (A)−A.

(5) All involutions of [CJ(A), NN (A)] are conjugate to b under the action of
N . Six of the involutions of CJ(A)− [CJ(A), NN (A)] are conjugate to a.
The remaining ten involutions of CJ(A) − [CJ(A), NN (A)] are conjugate
to c.

(6) Let X be the set of pairs (x, y) of involutions of CJ(A) such that x ∈ {bN}
and y ∈ {cN}. Then X splits into two NN (A)-orbits.

(7) |[J/CJ(A), A]| = 16, [J/CJ(A), A] = CJ/CJ (A)(A), and [J/CJ(A), A] and
A are isomorphic as an NN (A)/A-module.

(8) Under the action of CN (a), the involutions of J/〈a〉 split into three orbits.

Proof. Statements(1) and (2) are well-known, and (3) follows from (2) by a
counting argument. By (3), |CJ(A)| ≤ 64. By (2), CN (x) contains some
conjugate of A for every involution x of J (see Lemma 2.12(1)), and hence
CJ(A) contains some involution of each of the three orbits. In view of the
action of NN (A)/A on CJ(A), this implies |CJ(A)| ≥ 32. If |CJ(A)| = 64, then
by Lemma 2.7, at least one involution of CJ(A) is centralized by NN (A), which
contradicts (2) (note that arguing as in [1], we see that if Σ′6 ∼= Sp(4, 2)′ acts
faithfully and irreducibly on an elementary abelian 2-group I0 of order at most
64, then |I0| = 16, and the action is the standard action of Sp(4, 2)′, which
is the same as the action described in Lemma 2.7). Thus |CJ(A)| = 32. The
other assertions in (4) also follow from the fact that no involution of CJ(A) is
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centralized by NN (A). Since all involutions of [CJ(A), NN (A)] are centralized
by a Sylow 2-subgroup of NN (A), they belong to {bN}. Since CJ(A) splits into
three orbits of involutions under the action of NN (A), different orbits under
this action must correspond to different N -orbits. Let y be an involution of
CJ(A)− [CJ(A), NN (A)] such that |{yNN (A)}| = 6. Then since 5||CNN (A)(y)|
and since y does not belong to {bN}, y must belong to {aN}. This also shows
that an involution z of CJ(A) − [CJ(A), NN (A)] such that |{zNN (A)}| = 10
belongs to {cN}. Thus (5) is proved. Since [CJ(A), NN (A)] splits into two
orbits of involutions with lengths 6 and 9 under the action of CNN (A)(c) (=
CN (c)), (6) follows. If we choose the element a so that CN (a) contains both
A and B and consider the action of CN (a) on J/〈a〉, then by Lemma 2.12(3),
A and B of this lemma correspond to A and B of Lemma 2.12, respectively.
Hence |[J/〈a〉, A]| = 256. Therefore |[J/CJ(A), A]| = 16 and, if we let dCJ(A)
denote a fixed element of J/CJ(A)− [J/CJ(A), A], then the bijection from A
to [J/CJ(A), A] which associates [dCJ(A), x] ∈ [J/CJ(A), A] with x ∈ A gives
an (NN (A)/A)-isomorphism. Since the action of NN (A) on A is irreducible,
this also implies [J/CJ(A), A] = CJ/CJ (A)(A). Finally (8) follows from (2),
(3), (5) and Lemma 2.12.

§3. Notation and Initial Reduction

Throughout the rest of this paper, we let G, A be as in the Main Theorem.
Let Y be a complement of A in NG(A), i.e., NG(A) = A ·Y . Then CY (A) =

O(Y ) = O(NG(A)) and NG(A)/O(NG(A)) = (O(NG(A))A/O(NG(A))) · (Y/
O(Y )) ∼= E64 · Sp(6, 2). Write A = 〈ei | 2 ≤ i ≤ 7〉 (we here let i range
from 2 to 7 so that the notation will be consistent with that in [7]). By a
result of Dempwolff [5], the action of Y/O(Y ) on A is uniquely determined.
In particular, we may assume that Y leaves invariant the alternating form θ
on A defined by θ(ei, ej) = δi,9−j , where δi,9−j is Kronecker’s delta.

We fix the following notation.

Notation 1. Let f2 be an involution of Y such that

[e7, f2] = e2, [ek, f2] = 1 for k 6= 7.

For 3 ≤ i ≤ 6, let fi be an involution of Y such that

[e7, fi] = ei, [e9−i, fi] = e2,

[ek, fi] = 1 for k 6= 7, 9− i.
Let g3 be an involution of Y such that

[e6, g3] = e3, [ek, g3] = 1 for k 6= 6.
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For 4 ≤ i ≤ 5, let gi be an involution of Y such that

[e6, gi] = ei, [e9−i, gi] = e3,

[ek, gi] = 1 for k 6= 6, 9− i.

Let h be an involution of Y such that

[e5, h] = e4, [ek, h] = 1 for k 6= 5.

We choose these involutions so that S = 〈fi, gj , h | 2 ≤ i ≤ 6, 3 ≤ j ≤ 5〉 is a
Sylow 2-Subgroup of Y .

Lemma 3.1. (1) Each involution of the coset f2A is conjugate to either f2

or f2e3 in NG(A).

(2) Each involution of the coset f3A is conjugate to either f3 or f3e4 in NG(A).

(3) Each involution of the coset f2g3A is conjugate to either f2g3 or f2g3e4 in
NG(A).

(4) Each involution of the coset f2g3hA is conjugate to f2g3h in NG(A).

Proof. This immediately follows from Notation 1.

Let C1 = 〈ei, fj | 2 ≤ i ≤ 6, 3 ≤ j ≤ 6〉 and C = 〈C1, f2〉. Then C1 =
〈e3, f6〉 ∗ 〈e4, f5〉 ∗ 〈e5, f4〉 ∗ 〈e6, f3〉, C = 〈f2〉×C1, and 〈ei, f9−i〉 ∼= D8 for each
3 ≤ i ≤ 6. In the rest of this section, we determine possible structures for
NG(C)/C in the following sequence of lemmas.

Lemma 3.2. The group generated by all the involutions of 〈C, e7〉 − C is A.

Proof. Let e7x be an involution of 〈C, e7〉 − C. Since C/〈e2〉 is elementary
abelian, x〈e2〉 ∈ CC/〈e2〉(e7) = 〈ei, f2 | 2 ≤ i ≤ 6〉/〈e2〉, and hence x ∈ 〈ei, f2 |
2 ≤ i ≤ 6〉. But 〈ei, f2 | 2 ≤ i ≤ 6〉 is also elementary abelian, and hence
x ∈ C〈ei,f2|2≤i≤6〉(e7) = 〈ei | 2 ≤ i ≤ 6〉. Therefore x ∈ A. On the other hand,
A = 〈e7x | x ∈ 〈ei | 2 ≤ i ≤ 6〉〉. Thus the lemma is proved.

Set F = CY (〈e2, e7〉) ∩NY (〈fi | 2 ≤ i ≤ 6〉). Then O(Y )F/O(Y )
= CY (〈e2, e7〉)/O(Y ) ∼= Sp(4, 2) ∼= Σ6. Set M = NG(C) and D = M ∩NG(A).
Then O(D) = O(F ), and [C,O(D)] = 1 and D = C ·(〈e7〉×F ). Set M̄ = M/C,
then D̄/O(D̄) ∼= Z2 × Σ6.

Lemma 3.3. CM (e7) = D

Proof. This follows from Lemma 3.2.

Let H = CM (C/Z(C)).
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Lemma 3.4. |H| is odd.

Proof. This is because |CH(e7)| = |O(D)| is odd by Lemma 3.3.

Let Aut(C) = Aut(C)/CAut(C)(C/Z(C)). Then Aut(C) ∼= O+(8, 2). We

also let M = M/H, and regard M as a subgroup of Aut(C).

Lemma 3.5. M/O(M) ∼= Z2 × Σ6, Σ8 or Aut(SU(4, 2)).

Proof. Since C
M

(e7) = CM (e7) = D = 〈e7〉 × F by Lemmas 3.4 and 3.3,

C
M

(e7) ∼= Z2 × Σ6. By Harris and Solomon [14], E(M/O(M)) is isomorphic
to one of the following groups:

(1) Σ′6 or Σ′6 × Σ′6;

(2) Σ′8, SU(4, 2), SL(5, 2), SU(5, 2) or Sp(4, 4);

(3) PSU(4, 3).

By considering the orders of these groups and O+(8, 2), we can eliminate
SL(5, 2), SU(5, 2), Sp(4, 4) and PSU(4, 3). In O+(8, 2), no element of order 5
is centralized by a subgroup isomorphic to Σ′6 (see Frame [8]). Hence we can
eliminate Σ′6 × Σ′6. Thus the lemma follows.

We examine the three cases of Lemma 3.5 separately in subsequent sections.

§4. Conjugacy Classes of Involutions

In this section and the next section, we assume that M/O(M) ∼= Aut(SU(4, 2))
and prove that G ∼= M(22). The principal aim of this section is to show that
G has three classes of involutions.

Lemma 4.1. M is isomorphic to Aut(SU(4, 2)) or ΓU(4, 2) (∼= (Z3×
SU(4, 2)) · Z2).

Proof. Since 5 divides | SU(4, 2)| and |O(M)| divides 3·5·7, (O(M)C
M

(O(M)))/

O(M) ⊇ E(M/O(M)). Now the lemma follows from the class list of O+(8, 2)
([8]).

Lemma 4.2. Every involution of M is conjugate to some involution of 〈e7〉×F
in M .

Proof. M has 4 classes of involutions, and their representatives are g3(inner
central), g4(inner non-central), e7(field) and e7g3((field) × (inner)), which are
all contained in 〈e7〉 × F .
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Having Lemma 2.9 in mind, we fix the following notation.

Notation 2. Let x1 be an element of M ′ such that 〈g3, g4, h, x1〉 ∼= E16.
Then N

M
(〈g3, g4, h, x1〉)/〈g3, g4, h, x1〉 is isomorphic to either Aut(SL(2, 4)) or

ΓL(2, 4) (∼= (Z3 × SL(2, 4)) · Z2). This factor group acts both on
(Z(C)〈e3, f3, e4, f4〉)/Z(C) and on C/(Z(C)〈e3, f3, e4, f4〉) in a standard way
as Aut(SL(2, 4)) or ΓL(2, 4), whereas the action on 〈g3, g4, h, x1〉 is the same
as that of O−(4, 2) on a standard module. Thus we can choose x1 so that x1,
g3x1 and hx1 are noncentral involutions. Then x1 is conjugate to g4. Since g4

is an involution, we can choose x1 as an involution. Let x2 be an element of
M ′ such that

[e4, x2] ∈ f3Z(C), [f4, x2] ∈ e3f3Z(C),
[〈e3, f3〉, x2] ⊆ Z(C) .

We choose x2 so that 〈g5, x2〉 ∼= E4 and x2 is an involution. Moreover, we
choose x1 and x2 so that 〈AS, x1, x2〉 is a Sylow 2-subgroup of M . Set R =
〈AS, x1, x2〉.

We prove R ∈ Syl2(G) in the following sequence of lemmas.

Lemma 4.3. If x is an element of M such that x2 ∈ 〈e2〉 and x is a non-
central involution of E(M), then CC(x) contains an abelian subgroup of order
64.

Proof. By taking a suitable conjugate of x, we may assume x = g4. Since
x2 ∈ 〈e2〉, x = g4y, where y〈e2〉 ∈ CC/〈e2〉(g4) = 〈ei, fi | 2 ≤ i ≤ 4〉/〈e2〉.
Consequently CC(x) contains 〈ei, fi | 2 ≤ i ≤ 4〉, as desired.

Lemma 4.4. C is weakly closed in R with respect to CG(e2).

Proof. By way of contradiction, let C2 be a subgroup of R such that C2 6=
C, C2

∼= C and C ′2 = 〈e2〉. Then C2/〈e2〉 ∼= E512. If |C2| = 2, then, by
Lemma 2.9(1), |CC/〈e2〉(C2)| ≤ 2 · 64. This means that |C2/〈e2〉| ≤ |C2| ·
|CC/〈e2〉(C2)| ≤ 256, which is a contradiction. If 4 ≤ |C2| ≤ 8, then by
Lemma 2.9(3), |CC/〈e2〉(C2)| ≤ 2 · 16, which leads to a similar contradiction.
Thus |C2| = 16. If C2 6= 〈g3, g4, h, x1〉, then by (7) and (9) of Lemma 2.9,
|CC/〈e2〉(C2)| ≤ 2 · 4, which again leads to the same kind of contradiction.
Consequently C2 = 〈g3, g4, h, x1〉. We also have |C2 ∩ C| = 1024/16 = 64.
Since |CC/〈e2〉(g4)| ≤ 2 · 16 = 32, this means that C2 3 g4 and C2/〈e2〉 ⊇
CC/〈e2〉(g4). On the other hand, by Lemma 4.3, the group generated by g4

and the inverse image of CC/〈e2〉(g4) contains an abelian subgroup of order
128. Since C2

∼= C ∼= Z2 × (D8 ∗D8 ∗D8 ∗D8), this is a contradiction.
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Lemma 4.5. R ∈ Syl2(G).

Proof. Since Z(R) = 〈e2〉, this immediately follows from Lemma 4.4.

We next determine J(R) and NG(J(R)). Set J = 〈ei, fi, g3, g4, h, x1 | 2 ≤
i ≤ 4〉. We prove J = J(R).

Lemma 4.6. J ∼= E1024

Proof. Let M̃ = M/Z(C). Also set J0 = 〈ei, fi | 2 ≤ i ≤ 4〉, J1 = 〈J0, g3, g4, h〉
and J2 = 〈J0, g3, h, x1〉. Calculating in NG(A), we see that J1

∼= E512. We
show that J2

∼= E512. By Lemma 2.9(6), there exists y ∈ NM (J0) such that
g3
y = g3, hy = h and g4

y = x1. Note that [‹C, g3h] = [‹C, x1] = J̃0. Since
both ‹g4

ỹ and x̃1 are involutions, we get gy4 ∈ x1J0. Similarly (g3h)y ∈ g3hJ0.

Since [g̃3h
ỹ
, ‹g3

ỹ] = [g̃3h
ỹ
, h̃ỹ] = 1, we also obtain gy3 ∈ g3J0 and hy ∈ hJ0.

Consequently Jy1 = J2, and hence J2
∼= J1

∼= E512. Note that this implies
[J0, g4] = [J0, x1] = 1.

Now in order to prove J ∼= E1024, it suffices to show that [g4, x1] = 1. Note
that g3g4, g3h and g4h are noncentral involutions of M , and g4, x1 and g4x1

are also noncentral involutions of M . Hence by Lemma 2.9(6), there exists z ∈
NM (J0) such that g3g4

z = g4 and g3h
z = x1. As before, we have (g3g4)z ∈ g4J0

and (g3h)z ∈ x1J0. On the other hand, [(g3g4)z, (g3h)z] = [g3g4, g3h]z = 1.
Since [J0, g4] = [J0, x1] = 1, we now obtain [g4, x1] = [(g3g4)z, (g3h)z] = 1, as
desired.

Lemma 4.7. Let M̃ = M/Z(C). Then Ĩ ⊆ J̃ for every abelian subgroup Ĩ of
‹R such that I = J .

Proof. Let Ĩ be an abelian subgroup of ‹R such that I = J . First note that
Ĩ ∩ ‹C ⊆ C

C̃
(〈g3, g4, h, x1〉) = ‹C ∩ J̃ . With each element x of 〈g3, g4, h, x1〉, we

associate an element ϕ(x) of C such that ‡xϕ(x) ∈ Ĩ. Then for any elements x, y
of 〈g3, g4, h, x1〉, we have [flϕ(x), ỹ] = [flϕ(y), x̃] because [‡xϕ(x),‡yϕ(y)] = 1. Now
let a be an element of 〈g3, g4, h, x1〉 such that a is a central involution of E(M).

Suppose that flϕ(a) 6∈ ‹C ∩ J̃ . Then, by Lemma 2.9(10), |[flϕ(a), Â�〈g3, g4, h, x1〉]| =
8. Since [flϕ(y), ã] = [flϕ(a), ỹ] must hold for every y ∈ 〈g3, g4, h, x1〉, [‹C, ã] ⊇
[flϕ(a), Â�〈g3, g4, h, x1〉]. But since a is central, |[‹C, ã]| = 4 by Lemma 2.9(2), a
contradiction. Thus flϕ(a) ∈ J̃ . Since a is arbitrary, the desired conclusion
follows from Lemma 2.9(6).

Lemma 4.8. J = J(R)
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Proof. Let I be an abelian subgroup of order at least 1024 of R. We have only
to show that I ⊆ J . Arguing as in Lemma 4.4, we can easily show that I = J .
Therefore I ⊆ J by Lemma 4.7.

Lemma 4.9. NG(J)/CG(J) ∼= M22, and the action is the same as the one
studied in Lemma 2.14.

Proof. Let ·�NG(J) = NG(J)/CG(J). Since NM (J) contains a Sylow 2-subgroup
of G, NM (J) contains a Sylow 2-subgroup of NG(J). Note that O2( ·�NM (J))

= Â�〈e5, e6, f5, f6〉, and ·�NM (J)/O2( ·�NM (J)) is isomorphic to either Aut(SL(2, 4))
or ΓL(2, 4), where the action on O2( ·�NM (J)) is the same as that on a standard
module. Hence a Sylow 2-subgroup of ·�NG(J) is isomorphic to a Sylow 2-
subgroup of M22. Note also that e2 ∼ e3 in G. Thus in view of Lemmas 4.8,
2.11 and 2.13, it follows from Gorenstein and Harada [11] that ·�NG(J) ∼= M22.
By Lemma 2.14(1), this implies ·�NM (J)/O2( ·�NM (J)) ∼= Aut(SL(2, 4)) ∼= Σ5

(so M ∼= Aut(SU(4, 2))). Suppose that the action of ·�NG(J) on J is the same
as the one described in Lemma 2.13(2). Then since CflNG(J)

(e2) ⊇ ·�NM (J)

and |·�NG(J) : ·�NM (J)| = |M22|/24|Aut(SL(2, 4))| = 231, we have |·�NG(J) :

CflNG(J)
(e2)| = 77, i.e., |C‡NM (J)

(e2) : ·�NM (J)| = 3. This implies ·�NM (J)
′
�

CflNG(J)
(e2). Consequently Â�〈e5, e6, f5, f6〉 = O2( ·�NM (J)

′
) � CflNG(J)

(e2), which

contradicts the structure of M22 described in Lemma 2.14(1). Thus the desired
conclusion follows from Lemma 2.13.

Lemma 4.10. G has precisely three classes of involutions.

Proof. In view of Lemmas 4.8 and 4.9, it suffices to show that each involution
of G is conjugate to an involution of C. Let x be an involution. Since R is
a Sylow 2-subgroup of G, we may assume x ∈ R. Then x ∈ M . By Lemma
4.2, we may assume x ∈ NG(A). If x ∈ A, x is conjugate to e2. Thus we may
assume x 6∈ A. Note that NG(A)/A has four classes of involution and their
representatives are f2A, f3A, f2g3A and f2g3hA. The desired conclusion now
follows from Lemma 3.1.

We proceed to determine the structures of the centralizers of involutions.
We include the proof of the following lemma in this section.

Lemma 4.11. CG(e2) = O(CG(e2))NG(C).

Proof. Let ·�CG(e2) = CG(e2)/〈e2〉. We show ‹C is strongly closed in ‹R with
respect to CG(e2). By Lemma 4.4, ‹C is weakly closed. Let Γ, γ be as in Lemma
2.3. Let ‹E be an element of Γ such that |‹E| = γ. First suppose that |E| = 2,
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and let x be the involution of E. Then by Lemma 2.9(1), |[‹C, x]| ≥ 4, which
contradicts Lemma 2.3(5). Next suppose that 8 ≥ |E| ≥ 4. Then by Lemma
2.9(3), there exists an involution x of E such that |[‹C, x]| = 16. This again
contradicts Lemma 2.3(5). Thus |E| = 16. Suppose that E 6⊆ M ′. Then by
Lemma 2.9(9), there exists an involution x of E such that |〈C

C̃
(E), [‹C, x]〉| ≤

2 · 8 = 16, which contradicts Lemma 2.3(6). Thus E ⊆M ′. By Lemma 2.9(7)
and Notation 2, E = 〈g3, g4, h, x1〉. If |‹C ∩ ‹E| ≤ 2, then by Lemma 2.9(2),
|〈(‹C ∩ ‹E), [‹C, x]〉| ≤ 16 for every central involution x contained in E, which
contradicts Lemma 2.3(6). Thus |‹C ∩ ‹E| ≥ 4, which implies |E| ≥ 128, where
E denotes the full inverse image of ‹E. But by Lemma 4.7, E ⊆ J , and hence
E is elementary abelian, which is a contradiction because C does not contain
an elementary abelian subgroup of order 128. Consequently ‹C is strongly
closed in ‹R with respect to ·�CG(e2). Since N

G̃
(‹C) controls the fusion of ‹C,

we obtain (O(CG(e2))〈e2〉)〈f2〉/(O(CG(e2))〈e2〉)�CG(e2)/(O(CG(e2))〈e2〉) by
Glauberman’s Z∗-Theorem.

Now let ·�CG(e2) = CG(e2)/(O(CG(e2))〈e2, f2〉). Considering the action of
F on ‹C, we see that each involution of ‹C is conjugate to ‹e3, f̃3, fie3f3, fie3f4 or
fie3f6. In view of the action of N

M
(J)/J , it follows that each involution of ‹C

is conjugate to ‹e3 or fie3f6. Therefore by the main theorem of Goldschmidt [9],
‹C � ·�CG(e2), as desired.

§5. Centralizers of Involutions

We continue with the notation of the preceding section, and complete the
proof for the case where M/O(M) ∼= Aut(SU(4, 2)).

Our aim is to show that O(CG(e2)) = 1. For this purpose, we need to
determine the structure of CG(e3f2) and CG(f2). Before this is done, we make
some more preparations. Let I = 〈e2, f2, e3, f3, g3〉.

Lemma 5.1. Let ·�NG(J) = NG(J)/CG(J). Then the following hold:

(1) ‹R contains exactly two elementary abelian subgroups Â�〈e5, f5, e6, f6〉,
Â�〈e5, f5, g5, x2〉 of order 16.

(2) NflNG(J)
( Â�〈e5, f5, e6, f6〉) ∼= E16 · Aut(SL(2, 4)), NflNG(J)

( Â�〈e5, f5, g5, x2〉) ∼=
E16 · Sp(4, 2)′, where the actions are standard.

(3) CJ( Â�〈e5, f5, g5, x2〉) = I.

(4) e2,f2 and e3f2 are the representatives of the three conjugacy classes of
involutions of G.
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(5) If x, y are elements of I such that x ∈ {eG2 } and y ∈ {(e3f2)G}, then

there exists an element g̃ ∈ NflNG(J)
( Â�〈e5, f5, g5, x2〉) such that xg̃ = e2 and

yg̃ = e3f2 or such that xg̃ = e2 and yg̃ = e2g3.

(6) O2(CflNG(J)
(e3f2)) = Â�〈e5, f5, g5, x2〉.

(7) I � CNG(J)(e3f2).

Proof. Statement(1) follows from Lemma 2.14(1) and Notation 2. As noted

in the proof of Lemma 4.9, ·�NM (J)/ Â�〈e5, f5, e6, f6〉 ∼= Σ5. Hence (2) follows
from Lemma 2.14(1). We now prove (3). By Lemma 2.9(5), [C/Z(C), J ] =
CC/Z(C)(J) = 〈ei, fi | 2 ≤ i ≤ 4〉/Z(C). Hence it follows from Lemma
2.9(2) that if x is an involution of J which centralizes Z(C)〈e5, f5〉/Z(C),
then x is central. In view of Lemma 2.9(6), it follows form the choice of
x1 that every involution in 〈g4, h, x1〉 − 〈h〉 is noncentral. Since h does not
centralize Z(C)〈e5, f5〉/Z(C) and g3 centralizes Z(C)〈e5, f5〉/Z(C), we get
CJ(Z(C)〈e5, f5〉/Z(C)) = 〈g3〉. Consequently, calculating in M , we obtain
CJ(〈e5, f5〉) = 〈e2, f2, e3, f3, g3〉. On the other hand, by Lemma 2.14(4),

|CJ( Â�〈e5, f5, g5, x2, 〉)| = 32. Therefore (3) holds. We proceed to the proof
of (4). In view of Lemmas 4.8 and 4.10, it suffices to show that e2 6∼ f2 6∼
e3f2 6∼ e2 in NG(J). Set ‹X = NflNG(J)

( Â�〈e5, f5, g5, x2〉). We first prove [I, ‹X] =

〈e2, f3, f2f3, f2g3〉. Clearly e2 = [f2, e7] ∈ [I, ‹R] ⊆ [I, ‹X]. Since e2 ∼ e3

in NG(A), e2 ∼ e3 in NG(J) by Lemma 4.8. Hence e3 ∈ [I, ‹X] by Lemma
2.14(5). Suppose that f2f3 6∈ [I, ‹X]. Then since f2f3 ∼ f2g3 in Y (re-
call that Y is a complement of A in NG(A)), it follows from Lemmas 4.8
and 2.14(5) that f2g3 6∈ [I, ‹X]. Since |I : [I, ‹X]| = 2 by Lemma 2.14(4),
this implies f3g3 = (f2f3)(f2g3) ∈ [I, ‹X]. But since f3g3 ∼ f2f3, this is
a contradiction. Thus f2f3 ∈ [I, ‹X], and hence f2g3 ∈ [I, ‹X]. Therefore
[I, ‹X] = 〈e2, e3, f2f3, f2g3〉. By Lemma 2.14(5), this implies e2 6∼ f2 and
e2 6∼ e3f2 in NG(J). We have f2 ∼ e2f2 ∼ g3 ∼ e3g3 ∼ f2f3g3 ∼ e2e3f2f3g3,
e3f2 ∼ e2e3f2 ∼ e2g3 ∼ e2e3g3 ∼ e2f2f3g2 ∼ e3f2f3g3 and f3 ∼ e2f3 ∼ e3f3 ∼
e2e3f3 in NG(A). In view of Lemma 2.14(5), this implies f2 6∼ e3f2. Note

that CflNG(J)
(f2) contains ·�NM (J)

′
. By (2) and (5) of Lemma 2.14, this means

that f2 corresponds to the element a in Lemma 2.14 and e3f2 corresponds to
c (so f2 6∼ f3 and e3f2 ∼ f3). Recall that e3f2 ∼ e2g3. On the other hand,
it follows from Lemma 4.11 that e3f2 and e2g3 are not conjugate in CG(e2).
Consequently (5) follows from Lemma 2.14(6). Now (6) follows from Lemma
2.14(2), and (7) follows from (3) and (6).

Lemma 5.2. O(CG(〈e2, e3f2〉))I � CG(〈e2, e3f2)
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Proof. Let ·�CG(e2) = CG(e2)/(O(CG(e2))Z(C)). Clearly Â�CG(〈e2, e3f2〉) ⊆
C‡CG(e2)

(‹e3). In the sense of Lemma 2.9(11), ·�〈e3, f3〉 is the “1-dimensional

subspace of ‹C over GF (4) spanned by ‹e3. ” Hence ·�〈e3, f3〉 � C‡CG(e2)
(‹e3).

Since ‹g3 is the “transvection with respect to ·�〈e3, f3〉,” ‹C〈‹g3〉 � C‡CG(e2)
(‹e3).

By way of contradiction, suppose that Ĩ 6 Â�CG(〈e2, e3f2〉). Then there ex-
ists an element x of CG(〈e2, e3f2〉) such that gx3 = g3a where a ∈ C, and
ã ∈ C

C̃
(‹g3)−[‹C, ‹g3]. Since the full inverse image of C

C̃
(‹g3) = 〈‹ei,‹fi | 2 ≤ i ≤ 5〉

in CG(e2)/O(CEG(e2)) is centralized by g3O(CE(G)(e2)) and since g3 and
g3a are both involutions, aO(CG(e2)) is an involution. Hence there exists
an element g of CY (〈e2, e3, f2, g3〉) (⊆ CY (〈e2, e3f2〉) ∩ CY (g3)) such that
ag ∈ 〈ei, fi | 2 ≤ i ≤ 4〉. Thus this fusion must occur in NCG(〈e2,e3f2〉)(J).
But this contradicts Lemma 5.1(7).

The proof of Lemma 5.3 is similar to and easier than that of Lemma 5.2,
and so it is omitted.

Lemma 5.3. O(CG(〈e2, e2g3〉))I � CG(〈e2, e2g3〉).
Lemma 5.4. If x, y are elements of I such that x ∈ {eG2 } and y ∈ {(e3f2)G},
then

O(CG(〈x, y〉))I � CG(〈x, y〉).
Proof. This follows from (3) and (5) of Lemma 5.1 and Lemmas 5.2 and 5.3.

We now determine the structure of CG(e3f2).

Lemma 5.5. O(CG(e3f2))I � CG(e3f2).

Proof. By Lemma 5.1(6), J〈e5, f5, g5, x2〉� CR(e3f2). Since
e6, e7f6 ∈ CR(e3f2), this implies |CR(e3f2)| = 216. Since Z(R) = 〈e2〉, it
follows from Lemma 5.1(4) that CR(e3f2) ∈ Syl2(CG(e3f2)). Note also that
(e7f6)2 = e6, CJ〈e5,f5,g5,x2〉/J(e6) = J〈e5, f5〉/J and CI(e6) = 〈e2, f2, e3〉.

We show that I is strongly closed in CR(e3f2) with respect to CG(e3f2).
By way of contradiction, let x be an element of CR(e3f2) such that x 6∈ I
and xg ∈ I for some g ∈ CG(e3f2). Since CNG(J)(e3f2) = NCG(e3f2)(J)
controls the fusion of J in CG(e3f2), x 6∈ J (see Lemma 5.1(7)). Hence by
Lemma 2.3(2), we may assume CCR(e3f2)(x)g ⊆ CR(e3f2). First suppose that
x ∈ J〈e5, f5, g5, x2〉. By Lemma 2.14(5), I contains a subgroup I1 of order
16 all of whose involutions are conjugate to e2 in G. Let y be an involution
of I1. Suppose that yg ∈ J . Then since CNG(J)(e3f2) controls the fusion,
there exists an element g1 of CNG(J)(e3f2) such that (yg)g1 = y. But then
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by Lemma 5.1(7), xgg1 ∈ I, which contradicts Lemma 5.4. Thus yg 6∈ J .
Since y is arbitrary, Ig1 ∩ J = 1. Since I1 ⊆ CCR(e3f2)(x), Ig1 ⊆ CR(e3f2).
Since (e7f6)2 = e6 and CJ〈e5,f5,g5,x2〉/J(e6) = J〈e5, f5〉/J , J〈e5, f5, g5, x2〉/J
is the only elementary abelian subgroup of order 16 of CR(e3f2)/J . Con-
sequently JIg1 = J〈e5, f5, g5, x2〉, and hence CCR(e3f2)(I

g
1 ) = CJ(Ig1 ) · Ig1 =

CJ(〈g5, x2, f5, e5〉)·Ig1 = I ·Ig1 . Since CJ(x)g = CCR(e3f2)(x)g∩Jg ⊆ CR(e3f2)∩
CCG(e3f2)(I1)g = CCR(e3f2)(I

g
1 ), we get CJ(x)g ⊆ I · Ig1 . Since |CJ(x)| = 64 by

Lemma 2.14(3), it follows that there exists an element z of CJ(x)−I such that
zg ∈ I. But this contradicts the fact that CNG(J)(e3f2) controls the fusion of
J . Consequently no element of J〈e5, f5, g5, x2〉 − I is fused into I.

Recall that (e7f6)2 = e6 and CI(e6) = 〈e2, f2, e3〉, and J〈e5, f5, g5, x2〉 ⊆
CR(I) by Lemma 5.1(3). Thus I is weakly closed in CR(e3f2). Now if we define
γ′ as in Lemma 2.3, then γ′ = 2, which contradicts Lemma 2.3(2). Therefore
I is strongly closed.

Now let ‰�CG(e3f2) = CG(e3f2)/(O(G)〈e3f2〉). Suppose that Ĩ 6‰�CG(e3f2),

and set ‹X = 〈Ĩ‚�CG(e3f2)〉. By Lemma 4.8, N‚�CG(e3f2)
(J̃) controls the fusion of

J̃ , and hence it follows from the proof of Lemma 2.14(6) that the involutions
of Ĩ split into two classes of sizes 6 and 9. Therefore by the main theorem
of [9], ‹X ∼= PSL(2, q) × PSL(2, q) for some q with q ≡ 3, 5 (mod 8). Set
Q = J〈e5, f5, g5, x2〉. Then by Lemma 5.1(3), ‹Q ⊆ C‚�CG(e3f2)

(Ĩ). This implies

‹X‹Q = ‹X × C
Q̃

(‹X), and hence ‹Q = Ĩ × C
Q̃

(‹X). But then Ĩ ∩ ‹Q′ = 1, which

contradicts Notation 1. Consequently Ĩ �‰�CG(e3f2), as desired.

Lemma 5.6. CG(e3f2) is solvable.

Proof. Set B = NCG(e3f2)(I) and ‹B = B/I. In veiw of Lemma 5.5, the lemma
is equivalent to the assertion that ‹B is solvable. Note that J〈e5, f5, g5, x2〉 =
CR(I) ∈ Syl2(CB(I)) and CR(e3f2) = CR(I)〈e7f6〉 ∈ Syl2(B) (see the first
paragraph of the proof of Lemma 5.5). In particular, a Sylow 2-subgroup of
B/CB(I) is a cyclic group of order 4, and hence B/CB(I) is solvable. Thus it
suffices to show that ‡CB(I) is solvable. Set W = NNB(J)(CR(I)) and Z/J =

CW/J(CR(I)/J). By Lemma 2.14(7), |‡CR(I)/[J̃ ,‡CR(I)]| = 32. Since W/Z ∼=
E9 ·Z4, ‡CR(I)/[J̃ ,‡CR(I)] ∼= E32 or D8∗D8. Since 〈e5, f5, g5〉 ∼= E8, this implies
‡CR(I)/[J̃ ,‡CR(I)] ∼= E32. Hence if we write [‡CR(I)/[J̃ ,‡CR(I)], O(W/J)] =
‹E/[J̃ ,‡CR(I)], then |‹E/[J̃ ,‡CR(I)]| = 16, i.e., |‹E| = 256. Note that ‹E/(‹E∩J̃) ∼=
‡CR(I)/J̃ and ‹E ∩ J̃ = [J̃ ,‡CR(I)] = C

J̃
(‡CR(I)), and ‡CR(I)/J̃ and [J̃ ,‡CR(I)]

are isomorphic as a (W/Z)-module by Lemma 2.14(7). Consequently ‹E is
abelian by Lemma 2.5. By Lemma 2.3(2), ‹E is strongly closed in ‡CR(I) with
respect to ‡CB(I).
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Suppose that O(‡CB(I))‹E 6 ‡CB(I), and set X = 〈ECB(I)〉. In view of the
action of W/Z and J̃/(J̃∩ ‹E) on ‹E, J̃∩ ‹E is the only nontrivial proper N

B̃
(‹E)-

invariant subgroup of ‹E. Hence O2((O(‡CB(I))‹X)/O(‡CB(I))) = 1 by the main
theorem of [9]. Considering the action of O(W/Z) on ‹E, it also follows from
the main theorem of [9] that (O(‡CB(I))‹X)/O(‡CB(I)) is the direct product
of groups isomorphic to SL(2, 2n) (n = 2, 4, 8). By Lemma 2.12(4), E′ is a
subgroup of I with |E′| ≥ 16. Hence |X∞ ∩ I| ≥ 16. On the other hand,
I ⊆ Z(E) by Lemma 5.1(3), and hence X∞∩ I ⊆ Z(X∞). Note that Sylow 2-
subgroups of 2 SL(2, 4) ∼= SL(2, 5) are not abelian. Thus we get a contradiction
to the structure of the Schur multiplier of SL(2, 2n) (see the argument used in
the proof of Lemma 2.11). Consequently O(‡CB(I))‹E � ‡CB(I). Since |‡CR(I) :
‹E| = 2, this implies that ‡CB(I) is solvable, as desired.

Lemma 5.7. Let ·�CG(f2) = CG(f2)/〈f2〉. Then ·�CG(f2) has three classes of
involutions with representatives ‹e2, ‹e3 and fif4g3.

Proof. By Lemma 2.14(2), N‡CG(f2)
(J̃)/C‡CG(f2)

(J̃) ∼= PSL(4, 3) (see the proof

of (4) and (5) of Lemma 5.1). Hence by Lemma 2.14(8), the involutions of J̃
split into three classes under the action of N‡CG(f2)

(J̃). Let x̃ be an involution

of N‡CG(f2)
(J̃) − J̃ . We prove x̃ is fused into J̃ . By Lemma 2.12(5), we may

assume x̃J̃ = ‹e5J̃ . By Notation 1, [g3, e5] = 1. Since J ⊆ NG(C) and e5 ∈ C
and f2g3, g3 6∈ C, we have f2g3, g3 6∈ [J, e5]; that is, ‹g3 ∈ CJ̃(‹e5)−[J̃ , ‹e5]. Hence
by Lemma 2.12(6), x̃ is conjugate to ‹e5 or fie5g3. Recall that NG(A) = A · Y .
Thus there exists v ∈ Y such that fv2 = f2, ev5 = e4 and gv3 = g3. Hence e5

and e5g3 are conjugate to e4 and e4g3, respectively, in CNG(A)(f2). Therefore
every involution ofN‡CG(f2)

(J̃)−J̃ is fused into J̃ . SinceN‡CG(f2)
(J̃) controls the

fusion of J̃ , this means that ·�CG(f2) has precisely three classes of involutions.
We now show that f4g3 is conjugate to e3f2 in G. In Y , 28 of the involutions

of 〈f2, f3, f4, g3, g4, h〉 are conjugate to f4g3. For each such involution x, every
element of the coset x〈e2, e3, e4〉 is conjugate to x in NG(A) by Lemma 3.1(4).
Hence J contains 224 involutions conjugate to f4g3 in NG(A), and none of
them is contained in I. By Lemma 2.14(5), 15 of the involutions of I are
conjugate to e2. Since 224 + 15 > 231, it follows from Lemma 2.14(2) that
f4g3 cannot be conjugate to e2 or f2. Consequently f4g3 is conjugate to e3f2.
Note that f4g3 and f4g3f2 are conjugate in Y . Thus both elements of the
coset f4g3〈f2〉 are conjugate to e3f2 in G. On the other hand, one element of
the coset e3〈f2〉 is conjugate to e2 and the other is (conjugate to) e3f2 in G,
and one element of the coset e2〈f2〉 is e2 and the other is conjugate to f2 in
G. Therefore fif4g3 6∼ ‹e3 6∼ ‹e2 6∼ f4g3 in ·�CG(f2), and the lemma is proved.
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Lemma 5.8. CG(f2)/(〈f2〉O(CG(f2))) ∼= PSU(6, 2).

Proof. Let ·�CG(f2) = CG(f2)/(〈f2〉O(CG(f2))). By Lemma 5.7, ·�CG(f2) con-
tains three classes of involutions. Let x̃ be an involution which is conjugate to
either ‹e3 or fif4g3. We may assume x is conjugate to e3f2 in G (see the second
paragraph of the proof of Lemma 5.7). Thus CG(x) is solvable by Lemma

5.6, and hence CCG(x)(f2) is solvable. Since |C‡CG(f2)
(x̃) : Â�CCG(x)(f2)| ≤ 2,

this means that C‡CG(f2)
(x̃) is solvable. Now since e2 6∼ f2 ∼ e2f2 in G,

C‡CG(f2)
(‹e2) = Â�CCG(f2)(e2). By Lemma 4.11, Â�CCG(f2)(e2)/O(Â�CCG(f2)(e2)) is an

extension of D8∗D8∗D8∗D8 by SU(4, 2) (see the parenthetic remark about M
in the proof of Lemma 4.9). Consequently the centralizer of each involution of
‰�CE(G)(f2) is 2-constrained. Since ·�CG(f2) is connected in the sense of Goren-
stein and Walter [13], O(C‡CG(f2)

(‹e2)) = 1 by Theorem B of [13]. Therefore

‰�CE(G)(f2) ∼= PSU(6, 2) by a result of Parrot [17].

We are now in a position to complete the proof for the case where M/

O(M) ∼= Aut(SU(4, 2)). Note that PSU(6, 2) is 2-generated and 2-balanced.
Hence in view of Lemmas 5.1(4), 4.11, 5.6 and 5.8, it follows from Theorem
A of [13] that O(CG(x)) = 1 for every involution x of G. Therefore we obtain
E(G) ∼= M(22) by a result of Hunt [15] or Parrot [17].

§6. Contradiction

In this section, we assume that M/O(M) ∼= Σ8, and derive a contradiction.
Arguing as in Section 4, we obtain the following lemmas.

Lemma 6.1. M ∼= Σ8(∼= Aut(GL(4, 2))).

Lemma 6.2. Every involution of M is conjugate to some involution of 〈e7〉×F
in M .

Having Lemma 2.10 in mind, we fix the following notation.

Notation 3. Let x1 be an element of M ′ such that 〈g3, g4, h, x1〉 ∼= E16. Then
N
M

(〈g3, g4, h, x1〉)/〈g3, g4, h, x1〉 ∼= GL(2, 2) o Z2
∼= O+(4, 2),

and N
M

(〈g3, g4, h, x1〉)/〈g3, g4, h, x1〉 acts on (Z(C)〈e3, e4, f3, f4〉)/Z(C),

C/(Z(C)〈e3, e4, f3, f4〉) and 〈g3, g4, h, x1〉 in a standard way. Thus we can
choose x1 so that x1, g3x1 and hx1 are central involutions. Let x2 be an
element of M ′ such that

[e4f4, x2] ∈ e3f3Z(C), [〈e3, f3, f4〉, x2] ⊆ Z(C).
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We choose x1 and x2 as involutions. Moreover we choose them so that
〈g5, x2〉 ∼= E4 and 〈AS, x1, x2〉 is a Sylow 2-subgroup of M . Set R = 〈AS, x1,
x2〉.

We now argue as in Section 4, using Lemma 2.10 in place of Lemma 2.9.
Then we obtain the following lemma.

Lemma 6.3. R ∈ Syl2(G).

Lemma 6.4. There exists x′1 ∈ x1C such that 〈ei, fi, g3h, g4, x
′
1 | 2 ≤ i ≤ 4〉 ∼=

E512.

Proof. By Lemma 2.10(5), there exists y ∈ NM (〈ei, fi | 2 ≤ i ≤ 4〉) such that
g3h

y = g4, g4
y = g3h and h

y = x1. Set x′1 = hy. Then arguing as in the
first paragraph of the proof of 4.6, we obtain 〈ei, fi, g3h, g4, x

′
1 | 2 ≤ i ≤ 4〉 =

〈ei, fi, g3h, g4, h | 2 ≤ i ≤ 4〉y ∼= E512.

Let x′1 be as in Lemma 6.4, and set J = 〈ei, fi, g3, g4, h, x
′
1 | 2 ≤ i ≤ 4〉.

Lemma 6.5. J ∼= E1024.

Proof. In view of Lemma 6.4, it suffices to show that [g4h, g3hx
′
1] = 1. Note

that g4 and g3h are noncentral involutions and g3g4h is a central involution,
and that g4h and g3hx

′
1 are noncentral involutions and g3g4x

′
1 is a central

involution. Hence by Lemma 2.10(5), there exists z ∈ NM (〈ei, fi | 2 ≤ i ≤ 4〉)
such that g4

z = g4h and g3h
z = g3hx′1. Therefore arguing as in the second

paragraph of the proof of Lemma 4.6, we obtain [g4h, g3hx
′
1] = [gz4 , (g3h)z] =

1.

Arguing as in Section 4, we also obtain the following lemma.

Lemma 6.6. J = J(R) ∼= E1024.

We are now in a position to derive a contradiction. Let ·�NG(J) = NG(J)/
CG(J). Since NM (J) contains a Sylow 2-subgroup of G, NM (J) contains a

Sylow 2-subgroup of NG(J). Note that O2( ·�NM (J)) = Â�〈e5, e6, f5, f6〉, ·�NM (J)/
O2( ·�NM (J)) ∼= GL(2, 2) o Z2 and ·�NM (J)/O2( ·�NM (J)) acts on O2( ·�NM (J)) in
a standard way. Hence a Sylow 2-subgroup of ·�NM (J) is isomorphic to a
Sylow 2-subgroup of Σ8. Therefore we see from Gorenstein and Harada [12]
that the action of ·�NM (J) on J cannot be consistent with the fusion of J ,
which is a contradiction. This concludes the discussion for the case where
M/O(M) ∼= Σ8.
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§7. Normal Case

In this section, we assume that M/O(M) ∼= Z2 × Σ6, and show that A is
normal in G.

Arguing as in Section 4, we obtain the following two lemmas.

Lemma 7.1. AS ∈ Syl2(G)

Lemma 7.2. J(AS) = 〈e2, e3, e4〉CS(〈e2, e3, e4〉) = 〈ei, fi, g3, g4, h | 2 ≤ i ≤
4〉 ∼= E512.

Lemma 7.3. NG(J(AS)) = O(NG(J(AS))NNG(A)(J(AS))).

Proof. Set W = NG(J(AS)), W̃ = W/CW (J(AS)), B = 〈e5, e6, e7〉,
W1 = NY (〈fi, g3, g4, h | 2 ≤ i ≤ 4〉). Then Â�NA(J(AS)) = ‹B · W̃1

∼= E8 ·
SL(3, 2) and ÃS ∈ Syl2(flBW1). We prove that ‹B is strongly closed in ÃS with
respect to W̃ . Define Γ and γ as in Lemma 2.3 (note that we have not yet
proved that ‹B is weakly closed) and, by way of contradiction, suppose that
Γ 6= ∅. Let ‹E be a member of Γ. Then since [J(AS), ỹ] = 〈e2, e3, e4〉 for
every involution ỹ of ‹B, [J(AS), ỹ1] = [J(AS), ỹ2] for any involutions ỹ1, ỹ2

of ‹E. But |[J(AS)/〈e2, e3, e4〉, ỹ]| = 4 for each involution ỹ of ÃS − ‹B, and
[J(AS)/〈e2, e3, e4〉, ỹ1] 6= [J(AS)/〈e2, e3, e4〉, ỹ2] if ỹ1

‹B 6= ỹ2
‹B. Hence |‹E| = 2.

Since ‹E is arbitrary, this means γ = 2. In particular, ‹B is weakly closed.
These contradict Lemma 2.3(6). Thus ‹B is strongly closed. Consequently
W̃ = O(W̃ )(flBW1) by Goldschmidt [9]. We next prove O(W̃ ) = 1. Arguing as
in Lemma 2.11, we can easily show that O(W̃ ) centralizes flBW1. On the other
hand, 〈e2, e3, e4〉 is the unique minimal flBW1-invariant subgroup of J(AS), and
〈f3, f4, g4, e2, e3, e4〉/〈e2, e3, e4〉 is the unique minimal flBW1-invariant subgroup
of J(AS)/〈e2, e3, e4〉. Therefore O(W̃ ) centralizes J(AS), and hence O(W̃ ) =
1, as desired.

We can now easily show that A is strongly closed in AS. Note that each
involution of AS is conjugate to an involution of J (see the last few sentences
of the proof of Lemma 4.10). Since NG(J) controls the fusion of J by Lemma
7.2. it follow from Lemma 7.3 that no involution of J − A is conjugate to an
involution of J ∩ A. Consequently A is strongly closed. Therefore A � G by
Goldschmidt [9], as desired.
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