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Abstract. Let G be a finite group with O(G) = 1. We show that if G con-
tains a subgroup A isomorphic to Egs such that Cg(A) = O(Ng(A)) x A,
Ng(A)/Ca(A) = Sp(6,2), and Ng(A)/O(Na(A)) splits over (O(Na(A))A)/
O(Ng(A)), then either G = M (22) or G = Ng(A).
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8§1. Introduction

This paper is concerned with a 2-local characterization of M (22), Fischer’s
group of order 2'7.3%.52.7.11-13.

In the study of finite groups having a standard subgroup L isomorphic to a
group of Lie type with rank at least 4 over a field of characteristic 2, the case
where L 2 Q1(8,2) is exceptional. In fact, when Seitz [18] tried to classify all
such groups, the case where L & Q7 (8, 2) remained unsettled, and it was later
settled in [7]. In [7], a 2-local characterization of M (22), which is stated in
[4], plays a crucial role. However, the proof given in [4] is erroneous. In fact,
the 2-structure described in Sections 2 through 4 of [4] does not coincide with
the actual 2-structure of M (22). The purpose of this paper is to remedy the
argument in [4], and prove the following theorem.

Main Theorem. Let G be a finite group with O(G) = 1, and suppose that G
contains a subgroup A isomorphic to Egs such that Cq(A) = O(Ng(A)) x A
and Ng(A)/Cq(A) = Sp(6,2). Suppose further that Ng(A)/O(Ng(A)) splits
over (O(Ng(A))A)/O(Ng(A)). Then either G = M(22) or G = Ng(A).

In passing, we mention that in Section 5 of [4], it is proved that if Ng(A4)/
O(Ng(A)) does not split over (O(Ng(A))A)/O(Ng(A)), then G = Ng(A).
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Our notation is standard possibly except for the following:
E(X) :the product of the quasisimple subnormal subgroups of X,
X :the final term of the derived series of X,
XY :the wreath product of X by Y,
X xY :a central product of X and Y,

Zy  :the cyclic group of order n,

FE, :the elementary abelian grouyp of order n,
Dg  : the dihedral group of order 8,

(s : the quaternion group,

¥n  : the symmetric group of degree n,

Y! : the alternating group of degree n,

I'L(2,4) : Z3 x SL(2,4) together with an automotphism of order 2 in-
verting Z3 and inducing Aut(SL(2,4)) on SL(2,4),

I'U(4,2) : Z3 x SU(4,2) together with an automorphism of order 2
inverting Z3 and inducing Aut(SU(4,2)) on SU(4, 2),

GF(q) : the field with ¢ elements,

M, (q) : the set of n x n matrices with entries in GF(q).

If we write X =Y Z, it means that Y < X and X = (Y, Z). fYNZ =1
and if an emphasis is to be placed on that fact, then we write X =Y - Z.

If X is a 2-group, then by J(X), we denote the usual Thompson subgroup
generated by the abelian subgroups of maximum order.

Let G be a group isomorphic to X (resp. X5). Suppose that G acts on a
group V isomorphic to Fg. If the order of the centralizer in V' of an element
of order 3 of G is 4, then we refer to this action as a “standard action as
027 (4,2) (resp. O~ (4,2)).” If the action of an element of order 3 of G is fixed-
point-free, then we refer to this action as a “standard action as SL(2,4) (resp.
Aut(SL(2,4))).”

We use the “bar” convertion for homomorphic images. Thus if G is a group,
N is a normal subgroup and G denotes the factor group G/N, then, for any
subset X of G, X denotes the image of X under the natural projection G — G.
Similarly we use the “double bar” convention and the “tilde” convertion.

§2. Preliminary Results

In this section, we collect a number of preliminary lemmas to be used in later
sections.

The first two lemmas are easy to verify and their proofs are omitted.

Lemma 2.1. Let z be an involution actiong on a group Y, and let a be an
element of Y such that [a, z] is an involution. Then z centralizes |a, z].
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Lemma 2.2. Let x be an involution acting on an elementary abelian 2-group
C. Then the following hold.

(1) [Ce(@)f? = |C].
(2) If A is a subgroup of Cc(x), then |Ceya(x)| > |[C, x]|.
(3) If A is an z-invariant subgroup of C, then |Cc ()| > [Coya(z)|.

Lemma 2.3. Let R be a Sylow 2-subgroup of a group G, and let C be an
abelian subgroup of R which is weakly closed in R with respect to G. Let R =
R/C, T' = {E | E is a subgroup of R not contained in C such that E9 C C
for some g € G.}, ¥ = max{|E| | E € T'}.

(1) If E €T, then there exists g € G such that E9 C C and Ngr(E)? C R.

(2) Suppose that x is an involution of R such that (x) € T'. Then |[C, ]| < v
and, if C is elementary abelian, then |[C,z]| < 4.

Throughout the rest of the statement of this lemma, we assume that C is
elementary abelian, and set v = max{|F| | E € T'}.

(3) If E €T and |E| = ~, then |Coycnp) ()| < |E| for every involution & of
E.

(4) If E€T and |E| =, then |C/(CNE)| < |E|?.
(5) If E €T and |E| =, then |[C, Z]| < |E| for every involution T of E.

(6) If E €T and |E| =7, then |C/((C N E)[C,z])| < |E| for every involution
Z of E.

Proof. Statement(1) is (9.3) of Goldschmidt [9], and (2) is Corollary 4 (2) of
[9]. Statement(3) follows from (1), and an equivalent statement can be found
in the proof of Corollary 4 (1) of [9]. Now (4) follows from (3) and Lemma
2.2(1), and is essentially the same as Corollary 4 (1) of [9]. Similarly(5) follows
from (3) and Lemma 2.2(2), and (6) follows from (3) and Lemma 2.2(3). O

Lemma 2.4. Let F be a special 2-group of order 22"+ with a subgroup B
such Z(F) = ®(F) = Eo, Z(F) C B = Egnt1 and [B,F] = Z(F). Set
F = F/Z(F), and F = F/B. Suppose that an involution z acts on F and B
is z-invariant. Then Cp(z) = Cx(z).

Proof. From the assumption that [B,F] = Z(F), it follows that for each
element y of Z(F), there exists an element ¢(y) of F' such that [B,t(y)] = (y),
and such an element is uniquely determined modulo B. Note that the bijection

between Z(F) and F which associates t(y) with y is an z-isomorphism. Let
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z be an involution of B — Z(F'). Now suppose that the lemma is false. Then
there exists an element y of Cy)(z) such that [t(y),z] = Z. By Lemma
2.1, t(y) ¢ [F,z]. Hence y ¢ [Z(F),z]. By a suitable choice of z, we may

assume [t(y),z] = z. Then again by Lemma 2.1, [z,2] = 1. Calculating in
the semi-direct product F - (x), we get 1 = [(t(y)x)?, t(y)x] = [t(y)?2,t(y)z] €
y[Z(F),x]. Since y ¢ [Z(F'),x], this is a contradiction. O

Lemma 2.5. Let P be a group. Set C = O2(P), and suppose that the following
three conditions hold.

(e(C)) = 1.

(1)
(2) C/®(C) is isomorphic to ®(C) as a P-module.
(3)

)

3) FEither

(31) there eists a P-orbit {a”} of ®(C) such that Cecy(Cp(a)) = (a) and
®(C) = (x| both x and ax are in {a’}); or

(32) ©(C) = Ei6 and P/C = Ey, and P/C acts faithfully on C/®(C).
Then C' is homocyclic abelian of exponent 4.

Proof. If (31) is satisfied, then this is virtually the same as Proposition 1.4 of
[6]. Thus assume (32) holds, and let K be a complement of C'in P. Let C =
C/®(C). Write K = Lx M with [C, L] & [C, M] = E4. Since ®(C) C Z(C) by
(2) and since |[C, L]| = 4, |[C, L]'| < 2. Since [C, L]’ is K-invariant, this means
[C, L) = 1. Therefore [C, L] = Ci¢ (L) x [C, L, L]. Since [C, L, L] = [C, L],
this implies Cjc, (L) = 1, and hence [[C, L]| = 16. Similarly |[C, K]| = 16.
Consequently [C, L] N [C, K| = 1. Since [C, L] and [C, K] are both normal in
C, the desired conclusion immediately follows from this. O

Lemma 2.6. Let A be a vector space of even dimension over GF(2) with a
quadratic form.

(1) Assume either that the dimension is greater than or equal to 4 or that the
quadratic form is of minus type. Then A = (x | x is non-singular ).

(2) Assume either that the dimension is greater than or equal to 4 or that the
quadratic form is of plus type. Then A = (x| x is singular ).

Proof. This is easy to verify. O

Lemma 2.7. Let G = ZnX),, n > 5. Let P = (G/Z(G)) (thus P = Eyn—1-X,
or Egn—2-%! according as n is odd or even). Then there are one or two classes
of complements of O2(P) in P according as n is odd or even (note that in the
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case where n is even, this implies that if [ = Eon—, I O Iy = Fon—2, 3 acts
on I, Iy is X} -invariant, and the action of X!, on Iy is the same as that of
P/O2(P) on Oz(P), then there are two possibilities for the action of X, on I,
one of which is decomposable and the other one is indecomposable).

Proof. See Lemma 11.3 of Aschbacher [3]. O
The following lemmas is verified by straightforward calculations.

Lemma 2.8. Let C = FE15 and M = Sp(4,2), and let M act on C in a
standard way. Then the following hold for every elementary abelian subgroup
E of order 8 of M.

(1) |Co(E)| < 4.
(2) [Cyz] € Ce(E) for every involution x of E such that |[C, z]| = 2.
Arguing as in [1] and [2], we obtains the following two lemmas.

Lemma 2.9. Let M = Aut(SU(4,2)). Let a be an involution of M — M’ such
that CM/(G,) = Sp(4, 2). Set D = CM/(CL). Let C = <6i,fi | 3 < ) < 6> = E256.
Suppose that M act on C, [fi,a] = e; for each i, (e; | 3 < i < 6) and
(fi | 3 <14 <6) are D-invariant, and D acts on (e; | 3 < i < 6) as Sp(4,2)
so that it fizes the alternating form 6 defined by 0(e;, ;) = d;,9—j, where d; 9
is Kronecker’s delta. Set I = Cp({es,eq)). Let J be an elementary abelian
subgroup of order 16 of M' such that J 2 I, and set N = Ny(J). Then the
following hold.

(1) M has four classes of involutions, and |[C,z]| > 4 for every involution x

of M.

(2) For every noncentral involution = of M, |[C,x]| = 16; for every central
involution x of M, |[C,z]| = 4.

(3) If E is an elementary abelian subgroup of order 4 of M, then E contains
a noncentral involution, and hence |Co(E)| < 16 by (2).

(5) [C,O02(N)] = Cc(O2(N)) = (es, f3, €4, fa), and N/Oz(N) acts as
Aut(SL(2,4)) in a standard way on both (es, f3,e4, f1) and
C/les, f3. €4, f4).

(6) N/Oo(N) acts on O2(N) as O~ (4,2) in a standard way. Hence by Lemma
2.6, O2(N) = (x € Oz(N) | = is noncentral ) and O3(N) = (x € O2(N) | x

is central ).
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(7) O2(N) is the unique elementary abelian subgroup of order 16 of N'.

(8) If E is an elementary abelian subgroup of order 16 of M containing a,
then E C (a) x D and Cc(FE) C Ce(a) = (e; | 3 < i < 6), and hence
by Lemma 2.8, |Cc(E)| < 4, and |[(Cc(E),[C,z])| < 8 for every central

wvolution x contained in E.

(9) If E is an elementary abelian subgroup of order 16 of M not contained
in M', then E contains an involution conjugate to a, and hence by (8),
|ICc(E)| < 4, and |(Co(E),[C,z])| < 8 for every central involution x
contained in E.

(10) For each element v of C — (es, f3,e4, f1), |[v, O2(N)]| = 8.

(11) There exist elements ek, fi, e, fo of C with e{es, fs,ea, f1) = ei(es, f3,
eq, fa) and fl{es, f3,eq, fa) = files, fs,eq, fa) for each i = 5,6 such that
if we regard C' as a vector space of dimension 4 over GF(4) such that an
element a(# 0,1) of GF(4) acts so that €,* = f; for each i, and define
a hermitian form ¢ by @(e;, e;) = 0i9—; (here for i = 3,4, we let e = e;
and f! = f;), then M acts on C in a standard way.

Lemma 2.10. Let M = Aut(GL(4,2)). Leta be an involution of M — M’ such
that CM/(CL) = Sp(4, 2). Set D = CM/(CL). Let C = (ei,fi ’ 3 < 1 < 6) = E256.
Suppose that M act on C, [fi,a] = e; for each i, (e; | 3 < i < 6) and
(fi | 3 <i < 6) are D-invariant, and D acts on (e; | 3 < i < 6) as Sp(4,2)
so that it fizes the alternating form 6 defined by 6(e;, e;) = 6;9—;, where ;9
is Kronecker’s delta. Set I = Cp({es,eq)). Let J be an elementary abelian
subgroup of order 16 of M’ such that J 2 I, and set N = Ny(J). Then the
following hold.

(1) M has four classes of involutions, and |[C,z]| > 4 for every involution x
of M.

(2) For every noncentral involution x of M, |[C,x]| = 16; for every central
involution x of M, |[C,z]| = 4.

(3) If E is an elementary abelian subgroup of order 4 of M, then |Cco(E)| < 32;
if E is an elementary abelian subgroup of order 8 of M, then |Cc(E)| < 16.

(4) O9(N) = J, and N/Oo(N) = GL(2,2)1 Zo = 0T (4,2).

(5) [C,02(N)] = Cc(O2(N)) = {es, f3, €4, f1), and N/O2(N) acts on
(€3, €4, f3, f1), C/{es,ea, f3, fa) and O2(N) in a standard way (note that
the standard action of GL(2,2)1Z, is the same as that of O1(4,2)). Hence
by Lemma 2.6, O2(N) = (z € O2(N) | = is noncentral ) and Oz(N) =
(x € O2(N) | x is central ).
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(6) If E is an elementary abelian subgroup of order 16 of N with E # O2(N),
then |Co(E)| < 8.

Lemma 2.11. Let N be a group with N/O(N) = PSL(3,4). Suppose that
N acts faithfully and irreducibly on an elementary abelian 2-group J with
28 < |J| < 219, Let s,t be elements of N such that sO(N) has order 5 in
N/O(N) and tO(N) has order 3 in N/O(N), and suppose that |[J,s]| = 28
and |[J,t]| = 28. Then |J| = 512 and N = PSL(3,4).

Proof. Let
ON)=P 2P DOPD2---2DPFP =1

be a characteristic composition series of O(N) (namely, for each i, P;_; is
a minimal characteristic subgroup of O(N) properly containing P;). In gen-
eral, if p is an odd prime, then the 2-rank of GL(n,p) is n and every ele-
mentary abelian 2-subgroup of order 2" contains the involution of the center
of GL(n,p). On the other hand, since N is isomorphic to a subgroup of
GL(10,2), the rank of P;,_;/P; is less than or equal to 4 for each ¢, and hence
N acts on P;_;/P; trivially. By the three-subgroup lemma, [O(N), N*°] =
[O(N),N*®,...,N® N*] = 1. Thus N® =2 PSL(3,4) or SL(3,4). Now we
obtain the desired conclusion by arguing as in [1] and [2]. O

The following lemma also follows from [1] and [2].

Lemma 2.12. Let N,J be as in Lemma 2.11, and let R € Syly(N). Then the
following hold.

(1) R contains precisely two elementary abelian subgroups A, B of order 16.
(2) N acts on J irreducibly.

(3) The order of the centralizer in J of one of A or B is 16, while that of the
other is 2. We choose our notation so that |Cj(A)| = 16 and |C;(B)| =2

(4) |[J, A]| = 256, [J, A, A] = C;(A), |[J, B]| = 32, [J, B, B] = C;(B).

(5) N has only one class of involutions, and |[J,x]| = 16 for every involution

x of N.

Lemma 2.13. Let N be a group such that N/O(N) = Mag. Suppose N acts
faithfully on an elementary abelian group J of order 1024. Then N = Myo,
and the lengths of the N-orbits of involutions of J are either

(1) 22,231 and 770; or

(2) 77,330 and 616.
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Proof. Arguing as in Lemma 2.12, we obtain N = Mss or 3Mss. Hence the
desired conclusion follows from Hunt [15] and Smith [19]. O

Lemma 2.14. Let N = My, and let N act faithfully on an elementary abelian
group J of order 1024. Suppose the action is the same as the one described in
Lemma 2.13(1). Let R € Syly(N). Then

(1) R contains precisely two elementary abelian subgroups A, B of order 16.
We choose our notation so that Ny(A)/A =2 X and Ny(B)/B =2 %5. N
has only one class of involutions.

(2) Let a,b and c be elements of J such that |{a™V}| = 22, [{b"}| = 231 and
H{cV}| = 770, respectively. Then Cn(a) = PSL(3,4), Cn(b) = Ei6-X5 and
Cn(c) = Erg - (Eg - Zy). We choose our notation so that O2(Cn (b)) = B
and O2(Cn(c)) = A.

(3) |Cy(x)| =64 for every involution = of N.

(4) |Cy(A)| = 32, |[C5(A), NN(A)]| = 16, and Ny(A) acts on Cj(A) inde-
composably. |[Cj(A),z]| =4 for every involution = of Ny(A) — A.

(5) All involutions of [C;(A), Nn(A)] are conjugate to b under the action of
N. Siz of the involutions of Cj(A) — [Cs(A), Nn(A)] are conjugate to a.
The remaining ten involutions of Cj(A) — [C7(A), Nn(A)] are conjugate
to c.

(6) Let X be the set of pairs (z,y) of involutions of C;(A) such that x € {bN}
and y € {cN}. Then X splits into two Ny(A)-orbits.

(7) 117/ Cs(A), All = 16, [J/C5(A), A] = Cyc,a)(A), and [J/C5(A), A] and
A are isomorphic as an Ny (A)/A-module.

(8) Under the action of Cn(a), the involutions of J/{a) split into three orbits.

Proof. Statements(1) and (2) are well-known, and (3) follows from (2) by a
counting argument. By (3), |C;(A)| < 64. By (2), Cn(z) contains some
conjugate of A for every involution = of J (see Lemma 2.12(1)), and hence
Cy(A) contains some involution of each of the three orbits. In view of the
action of Ny (A)/A on Cj(A), this implies |C;(A)| > 32. If |C;(A)| = 64, then
by Lemma 2.7, at least one involution of Cy(A) is centralized by Ny (A), which
contradicts (2) (note that arguing as in [1], we see that if 3§ = Sp(4,2)" acts
faithfully and irreducibly on an elementary abelian 2-group Iy of order at most
64, then |Iy| = 16, and the action is the standard action of Sp(4,2)’, which
is the same as the action described in Lemma 2.7). Thus |C;(A)| = 32. The
other assertions in (4) also follow from the fact that no involution of Cy(A) is



A 2-LOCAL CHARACTERIZATION OF M (22) 235

centralized by Ny (A). Since all involutions of [C;(A), Ny(A)] are centralized
by a Sylow 2-subgroup of Ny (A), they belong to {b"}. Since C;(A) splits into
three orbits of involutions under the action of Ny (A), different orbits under
this action must correspond to different N-orbits. Let y be an involution of
Cj(A) — [Cy(A), Ny(A)] such that [{y"¥1| = 6. Then since 5/[Cny ) ()]
and since y does not belong to {b"}, y must belong to {a’¥}. This also shows
that an involution z of Cy(A) — [C7(A), Ny(A)] such that [{zVvA)}]| = 10
belongs to {cV}. Thus (5) is proved. Since [C;(A), Ny(A)] splits into two
orbits of involutions with lengths 6 and 9 under the action of Cy(a)(c) (=
Cn(c)), (6) follows. If we choose the element a so that C(a) contains both
A and B and consider the action of Cy(a) on J/(a), then by Lemma 2.12(3),
A and B of this lemma correspond to A and B of Lemma 2.12, respectively.
Hence |[J/(a), A]| = 256. Therefore |[J/C;(A), A]| = 16 and, if we let dC;(A)
denote a fixed element of J/Cj(A) — [J/Cs(A), A], then the bijection from A
to [J/Cs(A), A] which associates [dCj(A),z] € [J/C;(A), A] with x € A gives
an (Ny(A)/A)-isomorphism. Since the action of Ny (A) on A is irreducible,
this also implies [J/C;(A),A] = Cj/c,a)(A). Finally (8) follows from (2),
(3), (5) and Lemma 2.12. O

83. Notation and Initial Reduction

Throughout the rest of this paper, we let G, A be as in the Main Theorem.

Let Y be a complement of A in Ng(A), i.e., Ng(A) = A-Y. Then Cy(A) =
O(Y) = O(NG(A)) and Ng(4)/O(Na(A) = (O(Ng(A)) A/O(NG(A))) - (¥/
O()) = Egq - Sp(6,2). Write A = (e; | 2 < i < 7) (we here let i range
from 2 to 7 so that the notation will be consistent with that in [7]). By a
result of Dempwolff [5], the action of Y/O(Y') on A is uniquely determined.
In particular, we may assume that Y leaves invariant the alternating form 6
on A defined by 0(e;, e;) = d;9—j, where J; 9—; is Kronecker’s delta.

We fix the following notation.

Notation 1. Let fo be an involution of Y such that
e7, fo] = ea, [ex, fo] =1 for k #7.
For 3 <14 <6, let f; be an involution of Y such that

le, fil = e, [eo—i, fi] = ea,
[ek,fi] =1 for ]{575 7,9—i.

Let g3 be an involution of Y such that

le6, 93] = €3, [ex, g3] = 1 for k # 6.
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For 4 <4 <5, let g; be an involution of Y such that

[667 gl] = €4, [eg—iv g’L] = €3,
lek,gi] =1 for k # 6,9 — 1.
Let h be an involution of Y such that

les, h] = e4, lex, h]| =1 for k # 5.

We choose these involutions so that S = (fi,¢;,h |2 <1 <6,3<j<5)isa
Sylow 2-Subgroup of Y.

Lemma 3.1. (1) Each involution of the coset faA is conjugate to either f,
or faes in Ng(A).

(2) FEach involution of the coset f3A is conjugate to either fs or fseq in Ng(A).

(3) Each involution of the coset fagsA is conjugate to either fags or fagseq in
Ng(A).

(4) Fach involution of the coset fagshA is conjugate to fagsh in Ng(A).
Proof. This immediately follows from Notation 1. O

Let C7 = <6i,fj | 2<1<6,3<5< 6> and C = <Cl,f2>. Then Cy =
(e3, fo) * (eq, f5) * (€5, f1) * (€6, f3), C = (f2) x C1, and (e;, fo_;) = Dg for each
3 < i < 6. In the rest of this section, we determine possible structures for
N¢g(C)/C in the following sequence of lemmas.

Lemma 3.2. The group generated by all the involutions of (C,e7) — C is A.

Proof. Let ezz be an involution of (C,e7) — C. Since C/(e2) is elementary
abelian, z(e2) € Coy (e, (e7) = (€i, f2 | 2 <1 < 6)/(e2), and hence x € (e, f2 |
2 <4 <6). But (e, foa | 2 < i < 6) is also elementary abelian, and hence
x € C, plo<i<ey(e7) = (e; | 2 < i < 6). Therefore z € A. On the other hand,
A= {erx|x € (e; | 2<1i<6)). Thus the lemma is proved. O

Set F' = Cy({e2,e7)) N Ny ((fi | 2 <1i <6)). Then O(Y)F/O(Y)
= Cy(<€2,€7>)/O(Y) = Sp(4, 2) X~ 3. Set M = Ng(C) and D = ]W_ﬂNg(A)
Then O(D) = O(F), and [C,O(D)] = 1and D = C-({e7) xF'). Set M = M/C,
then D/O(D) = ZQ X 26-

Lemma 3.3. Cyz(e7) = D
Proof. This follows from Lemma 3.2. O

Let H = C+(C/Z(C)).
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Lemma 3.4. |H| is odd.
Proof. This is because |Cg(e7)| = |O(D)| is odd by Lemma 3.3. O

Let Aut(C) = Aut(C)/Cauyc)(C/Z(C)). Then Aut(C) = O0*(8,2). We
also let M = M /H, and regard M as a subgroup of Aut(C).

Lemma 3.5. M/O(M) = Z; x S, Ss or Aut(SU(4,2)).

Proof. Since Cﬁ(e:ﬂ = Cy(Er) = D = (&) x F by Lemmas 3.4 and 3.3,
C=(€7) = Z3 x X¢. By Harris and Solomon [14], E(M/O(M)) is isomorphic
to one of the following groups:

(1) X§ or X x X§;

(2) X%, SU(4,2), SL(5,2), SU(5,2) or Sp(4,4);

(3) PSU(4,3).

By considering the orders of these groups and O (8,2), we can eliminate
SL(5,2), SU(5,2), Sp(4,4) and PSU(4,3). In O™ (8,2), no element of order 5
is centralized by a subgroup isomorphic to 3§ (see Frame [8]). Hence we can
eliminate ¥§ x Xf. Thus the lemma follows. O

We examine the three cases of Lemma 3.5 separately in subsequent sections.

84. Conjugacy Classes of Involutions

In this section and the next section, we assume that 3 /O(M) = Aut(SU(4, 2))
and prove that G = M (22). The principal aim of this section is to show that
G has three classes of involutions.

Lemma 4.1. M is isomorphic to Aut(SU(4,2)) or TU(4,2) (& (Z5x
SU(4,2)) - Za).

Proof. Since 5 divides | SU(4, 2)| and |O(M)| divides 3-5-7, (O(M)C=(0(M)))/

)
O(M) 2 E(M/O(M)). Now the lemma follows from the class list of O (8, 2)
([8]).- O

Lemma 4.2. Every involution ofﬁ is conjugate to some involution of (e7) xF
in M.

Proof. M has 4 classes of involutions, and their representatives are g3(inner
central), gz(inner non-central), e7(field) and e7gz((field) x (inner)), which are
all contained in (€7) x F. O
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Having Lemma 2.9 in mind, we fix the following notation.

Notation 2. Let z7 be an element of M’ such that (g3, ga, ﬁ,a::ﬁ ~ Fi.
Then N—=((75, 71, b, 71))/ (G5, 91, b, T1) is isomorphic to either Aut(SL(2,4)) or
I'L(2,4) (= (Z3 x SL(2,4)) - Z2). This factor group acts both on

(Z(C){es, f3,€4, f4))/Z(C) and on C/(Z(C){es, f3, €4, fa)) in a standard way
as Aut(SL(2,4)) or I'L(2,4), whereas the action on (g3, g1, I, T7) is the same
as that of O~ (4,2) on a standard module. Thus we can choose z; so that zp,
g371 and h:m are noncentral involutions. Then Z7 is conjugate to gz. Since gy

is an involution, we can choose x1 as an involution. Let x9 be an element of
M’ such that

lea, z2] € f3Z(C),  [fa, 2] € e3f3Z(C),
[(e3, f3), z2] € Z(C)

We choose x5 so that (g5, 72) = E; and x9 is an involution. Moreover, we
choose x1 and x9 so that (AS,z1,z2) is a Sylow 2-subgroup of M. Set R =
<AS,{E1,{B2>.

We prove R € Syly(G) in the following sequence of lemmas.

Lemma 4.3. If x is an element of M such that 2?2 € (e9) and T is a non-

central involution of E(M), then Cc(x) contains an abelian subgroup of order
64.

Proof. By taking a suitable conjugate of x, we may assume T = gy. Since
22 € (e3), * = guy, where y(es) € Coe)(94) = (eis fi | 2 < i < 4)/(e2).

Consequently Ce(z) contains (e;, f; | 2 < i < 4), as desired. O
Lemma 4.4. C is weakly closed in R with respect to C(e2).

Proof. By way of contradiction, let Cy be a subgroup of R such that Cy #
C, Cy 2 C and Cé = <€2>. Then CQ/<€2> ~ Frp. If ‘@‘ = 2, then, by
Lemma 2.9(1), [Cc/(e,y(C2)| < 2-64. This means that [Cy/(ea)] < [Co -
1Cc/(es) (C2)| < 256, which is a contradiction. If 4 < [Cy| < 8, then by
Lemma 2.9(3), |C¢/(e,)(C2)] < 2 - 16, which leads to a similar contradiction.
Thus |Cy| = 16. If Cy # (g3, 94, h,x1), then by (7) and (9) of Lemma 2.9,
1Cc/(e2y(Ca)| < 2 -4, which again leads to the same kind of contradiction.
Consequently Cy = (g3, g4, h,71). We also have |Cy N C| = 1024/16 = 64.
Since |Ccyiey)(9a)| < 2+ 16 = 32, this means that Ca > g4 and Cy/(e2) 2
C¢/(e)(94). On the other hand, by Lemma 4.3, the group generated by g4
and the inverse image of Cg/(.,)(g4) contains an abelian subgroup of order
128. Since Cy = C = Zy x (Dg % Dg * Dg x Dg), this is a contradiction. O
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Lemma 4.5. R € Syl,(G).

Proof. Since Z(R) = (e2), this immediately follows from Lemma 4.4. O

We next determine J(R) and Ng(J(R)). Set J = {e;, fi, 93,94, h,x1 | 2 <
i <4). We prove J = J(R).

Lemma 4.6. J = E1024

Proof. Let M = M/Z(C). Alsoset Jo = (e;, f; | 2 <i < 4), Ji = (Jo, g3, ga, h)
and Jo = (Jo, g3, h,x1). Calculating in Ng(A), we see that J; = Fs15. We
show that Jo = Es510. By Lemma 2.9(6), there exists § € N7;(Jo) such that
73V = g3, b’ = h and g3¥ = T1. Note that [C,gsh] = [C,z1] = Jo. Since
both g;¥ and 77 are involutions, we get g € x1Jy. Similarly (g3h)¥ € gshJp.
Since [§37Ly,§§,y] = [égvfzy,ﬁa] = 1, we also obtain ¢g§ € g3Jo and hY € hJp.
Consequently J{ = Jo, and hence Jy & J; = Es19. Note that this implies
[Jo, 94] = [Jo, 21] = 1.

Now in order to prove J = Ejga4, it suffices to show that [g4,z1] = 1. Note
that g3ga, gsh and g4h are noncentral involutions of M, and gz, 71 and gzz1
are also noncentral involutions of M. Hence by Lemma 2.9(6), there exists Z €
N57(Jo) such that gsg2* = gz and g3h” = T1. As before, we have (g3g4)* € gaJo
and (gsh)* € z1Jo. On the other hand, [(g3g4)%, (931)°] = [g394,93h]* =
Since [Jo, g4] = [Jo, 1] = 1, we now obtain [g4, z1] = [(g394)%, (g3h)?] = 1, as
desired. O

Lemma 4.7. Let M = M/Z(C). Then I C J for every abelian subgroup I of
R such that T = J.

Proof. Let I be an abelian subgroup of R such that T = J. First note that
InCcCC= ((gg,g4, h,x1)) = C N .J. With each element x of (93,94, hy 1), W

associate an element ¢(x) of C such that :U(,O(:E) € I. Then for any elements z,
of <g3ag4a h, $‘1>, we have [30(1’.)727] = [s@(y),f] because [.ZUSD(QS‘), y@(y)] =1 l\IioW
let a be an element of (g3, g4, h, 1) such that @ is a central involution of E(M).
Suppose that go( ) & CNJ. Then, by Lemma 2.9(10), |[¢(a), (g3, g4, h, 1)]| =

8. Since [gp(y),?i] = [p(a),y] must hold for every y € (g3, 94, h,x1), [5 al 2

[p(a), (g3, g4, b, ©1)]. But since @ is central, |[C,d]| = 4 by Lemma 2.9(2), a

contradiction. Thus go( ) € J. Since a is arbitrary, the desired conclusion
follows from Lemma 2.9(6). O

Lemma 4.8. J = J(R)
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Proof. Let I be an abelian subgroup of order at least 1024 of R. We have only
to show that I C .J. Arguing as in Lemma 4.4, we can easily show that I = J.
Therefore I C J by Lemma 4.7. O

Lemma 4.9. Ng(J)/Cq(J) = Maa, and the action is the same as the one
studied in Lemma 2.14.

Proof. Let Ng(J) = Ng(J)/Ca(J). Since Nps(J) contains a Sylow 2-subgroup

of G, Ny(J) contains a Sylow 2-subgroup of Ng(J). Note that O2(Nps(J))

—

= (es, €6, f5, f6), and Nps(J)/O2(Npr(J)) is isomorphic to either Aut(SL(2,4))

or I'L(2,4), where the action on Oz2(Nys(J)) is the same as that on a standard

module. Hence a Sylow 2-subgroup of N¢g(J) is isomorphic to a Sylow 2-
subgroup of M. Note also that es ~ ez in G. Thus in view of Lemmas 4.8,

—

2.11 and 2.13, it follows from Gorenstein and Harada [11] that Ng(J) = Mas.
By Lemma 2.14(1), this implies Njs(J)/O2(Np(J)) = Aut(SL(2,4)) = 35
(so M = Aut(SU(4,2))). Suppose that the action of Ng(J) on J is the same

as the one described in Lemma 2.13(2). Then since C’m)(eg) 2 Ny (J)
G

and |Ng(J) : Ny(J)| = |Maa|/24Aut(SL(2,4))| = 231, we have |Ng(J) :
— /
CN\/ (e2)| = 77, ie., |CN (e2) : Np(J)| = 3. This implies Ny (J) <

() m(J) ,
C —— (e2). Consequently (es, eg, f5, fo) = O2(Np(J) ) < C (e2), which
Ne(J) Ng(J)
contradicts the structure of Mas described in Lemma 2.14(1). Thus the desired
conclusion follows from Lemma 2.13. O

Lemma 4.10. G has precisely three classes of involutions.

Proof. In view of Lemmas 4.8 and 4.9, it suffices to show that each involution
of G is conjugate to an involution of C'. Let x be an involution. Since R is
a Sylow 2-subgroup of G, we may assume x € R. Then z € M. By Lemma
4.2, we may assume = € Ng(A). If z € A, x is conjugate to ez. Thus we may
assume = ¢ A. Note that Ng(A)/A has four classes of involution and their
representatives are foA, f3A, fogsA and fogshA. The desired conclusion now
follows from Lemma 3.1. O

We proceed to determine the structures of the centralizers of involutions.
We include the proof of the following lemma in this section.

Lemma 4.11. Cg(e2) = O(Cg(e2))Na(C).

Proof. Let Cm = Cg(e2)/(e2). We show C is strongly closed in R with
respect to Cg(e2). By Lemma 4.4, C'is weakly closed. Let I', v be as in Lemma
2.3. Let E be an element of " such that |E| = v. First suppose that |E| = 2,
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and let Z be the involution of E. Then by Lemma 2.9(1), |[C,Z]| > 4, which
contradicts Lemma 2.3(5). Next suppose that 8 > |E| > 4. Then by Lemma
2.9(3), there exists an involution Z of E such that |[C,Z]| = 16. This again
contradicts Lemma 2.3(5). Thus |E| = 16. Suppose that E ¢ M’. Then by
Lemma 2.9(9), there exists an involution Z of E such that |{ Cs(E E),[C,7])| <
2 -8 = 16, which contradicts Lemma 2.3(6). Thus E C M’. By Lemma 2.9(7)
and Notation 2, E = (gs, ga, h,21). 1f |C N E| < 2, then by Lemma 2.9(2),
I((C N E),[C,7])| < 16 for every central involution T contained in E, which
contradicts Lemma 2.3(6). Thus |C' N E| > 4, which implies |E| > 128, where
E denotes the full inverse image of E. But by Lemma 4.7, £ C J, and hence
E is elementary abelian, which is a contradiction because C' does not contain
an elementary abelian subgroup of order 128. Consequently C is strongly
closed in R with respect to Cg(ez). Since N 5(5) controls the fusion of C,
we obtain (O(Ca(e2)) (e2)) (f2)/(O(Car(ea)) (e2)) 9 Calea) /(O(Calea))ea)) by

Glauberman’s Z*-Theorem.

Now let Cg(eg) Cg(eg)/(O(Cg(ez))<62, f2)). Considering the action of
F on C’ we see that each involution of C is conjugate to es, f3, es3 fg, es f4 or
esfs. In view of the action of N—= ( ) / J, it follows that each involution of C'

is conjugate to e3 or eg f6. Therefore by the main theorem of Goldschmidt [9],
C <1 Ca(ey), as desired. O

85. Centralizers of Involutions

We continue with the notation of the preceding section, and complete the
proof for the case where M/O( ) = Aut(SU(4, 2)).

Our aim is to show that O(Cg(e2)) = 1. For this purpose, we need to
determine the structure of Cg(esf2) and Cg(f2). Before this is done, we make
some more preparations. Let I = (ea, fa, €3, f3, g3).

Lemma 5.1. Let Ng(J) = Ng(J)/Cq(J). Then the following hold:

(1) R contains exactly two elementary abelian subgroups (em@,

<€5/7fT95,;2> of order 16.

(2) N@;)(@m(a)) >~ Fig - Aut(SL(2,4)), Nm)(<em2>)

I

Ei6 - Sp(4,2), where the actions are standard.

(3) Cy({es, fs, g5, w2)) = I.

(4) ea,f2 and esfy are the representatives of the three conjugacy classes of
involutions of G.
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(5) If 2,y are elements of I such that v € {e§} and y € {(e3f2)®}, then

es, f5,95,T2)) such that 375:62 and
((es f5, 95, 72))

th st l tge N
~ere exists an elemen g~ foaves
y9 = e3zfo or such that 9 = ey and y9 = eag3.

(6) O2(Cr=5 (eaf2)) = {es, f5.95.22)-

(7) I <Cnga)(esf2)-

Proof. Statement(1) follows from Lemma 2.14(1) and Notation 2. As noted

—

in the proof of Lemma 4.9, N (J)/(emw =~ ¥5. Hence (2) follows

from Lemma 2.14(1). We now prove (3). By Lemma 2.9(5), [C/Z(C),J] =
Coizey(J) = (e, fi | 2 < i < 4)/Z(C). Hence it follows from Lemma
2.9(2) that if Z is an involution of J which centralizes Z(C)(es, f5)/Z(C),
then 7 is central. In view of Lemma 2.9(6), it follows form the choice of
x1 that every involution in (gy,h,x1) — (h) is noncentral. Since h does not
centralize Z(C)(es, f5)/Z(C) and g3 centralizes Z(C){es, f5)/Z(C), we get

CHZ(C){es, f5)/Z(C)) = (g3). Consequently, calculating in M, we obtain
Ci({es, f5)) = (ea, fo, €3, f3,93). On the other hand, by Lemma 2.14(4),

|C({es, f5,95,22,))| = 32. Therefore (3) holds. We proceed to the proof
of (4). In view of Lemmas 4.8 and 4.10, it suffices to show that es % fo

esfa ot ez in Ng(J). Set X = Nm)«em,/xg)). We first prove [I, X] =
G

(e2, f3, f2f3, fags). Clearly ea = [f2,e7] € [[,R] C [I,X]. Since ez ~ e3
in Ng(A), e2 ~ e3 in Ng(J) by Lemma 4.8. Hence ez € [I, X] by Lemma
2.14(5). Suppose that fofs ¢ [I,X]. Then since faofs ~ fags in Y (re-
call that Y is a complement of A in Ng(4)), it follows from Lemmas 4.8
and 2.14(5) that fogs & [I,X]. Since |I :[I,X]] = 2 by Lemma 2.14(4),
this implies f3g3 = (f2f3)(feg3) € [, X]. But since f3gz ~ fafs, this is
a contradiction. Thus fafs € [I,X], and hence fogs € [I,X]. Therefore
[I,X] = (ea,e3, fafs, fogs). By Lemma 2.14(5), this implies ey ¢ fo and
e2 # e3fa in Ng(J). We have fo ~ eafa ~ g3 ~ e3g3 ~ faf3gs ~ e2esfafsgs,
ez fa ~ egesfa ~ eags ~ ese3gs ~ eafafsgo ~ e3fafzgs and f3 ~ eafs ~ e3fs ~
ezesfs in Ng(A). In view of Lemma 2.14(5), this implies fo ¢ e3fs. Note

4
that C'- (J)(fg) contains Nys(J) . By (2) and (5) of Lemma 2.14, this means
G

that fo corresponds to the element a in Lemma 2.14 and es fs corresponds to
¢ (so fo % f3 and esfy ~ f3). Recall that egfo ~ e2g3. On the other hand,
it follows from Lemma 4.11 that esfo and esgs are not conjugate in Cg(e2).
Consequently (5) follows from Lemma 2.14(6). Now (6) follows from Lemma
2.14(2), and (7) follows from (3) and (6). O

Lemma 5.2. O(Cg({e2,e3f2)))I < Ca({ea, e3f2)
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Proof. Let Cales) = Cales)/(O(Calea)Z(C)). Clearly Co((ea,esfs)) C

CC ( )(53). In the sense of Lemma 2.9(11), (es, f3) is the “l-dimensional

ez

subspace of C' over GF(4) spanned by é3. ” Hence (e3, f3) < C’C ( )(é;?,).
ez

Since g3 is the “transvection with respect to (es, f3),” C{(g3) < C’C ( )(eNg,).
ez

By way of contradiction, suppose that I < Ca({e2,e3f2)). Then there ex-
ists an element z of Cg((e2,e3f2)) such that g§ = gsa where a € C, and
a € Cx(g3)—[C, gs]. Since the full inverse image of C5(g3) = (e;, fi | 2 <i <'5)
in Cg(e2)/O(CEg(e2)) is centralized by g3O(Cgey(e2)) and since g3 and
gza are both involutions, aO(Cg(e2)) is an involution. Hence there exists
an element g of Cy((e2,es, f2,93)) (C Cy({e2,e3f2)) N Cy(g3)) such that
a? € (ei, fi | 2 < i < 4). Thus this fusion must occur in Ney,((eg,e5f2)) (/)-
But this contradicts Lemma 5.1(7). O

The proof of Lemma 5.3 is similar to and easier than that of Lemma 5.2,
and so it is omitted.

Lemma 5.3. O(Cg({e2,e293)))I < Ci({e2,e2g3)).

Lemma 5.4. If 2,y are elements of I such that x € {5} and y € {(e3f2)C},
then

O(Ca({z,y))I < Ca({z,y))-

Proof. This follows from (3) and (5) of Lemma 5.1 and Lemmas 5.2 and 5.3.
O

We now determine the structure of Cg(esf2).
Lemma 5.5. O(Cg(egfg))f < Cg(egfg).

Proof. By Lemma 5.1(6), J{es, f5, g5, x2) < Cr(esfz). Since

e6,e7fe € Cr(esfo), this implies |Cr(esf2)] = 26, Since Z(R) = (e3), it
follows from Lemma 5.1(4) that Cr(esf2) € Syly(Ca(esfz2)). Note also that
(e7f6)* = €6 C.res. fs.gs.00)/7(€6) = J{es5, f5)/J and Cr(eq) = (e2, f2, €3)-

We show that I is strongly closed in Cr(esf2) with respect to Cg(esfa).
By way of contradiction, let z be an element of Cr(esf2) such that x ¢ I
and 29 € I for some g € Cg(esfz). Since Cng(y)(esf2) = Neg(esss) ()
controls the fusion of J in Cg(esf2), * € J (see Lemma 5.1(7)). Hence by
Lemma 2.3(2), we may assume Cgy (e, 1,)(2)? € Cr(esf2). First suppose that
x € J(es, f5,95,72). By Lemma 2.14(5), I contains a subgroup I; of order
16 all of whose involutions are conjugate to es in G. Let y be an involution
of I1. Suppose that y¢ € J. Then since Cy, s (esf2) controls the fusion,
there exists an element g1 of Cy,(s)(esf2) such that (y7)9* = y. But then
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by Lemma 5.1(7), x99 € I, which contradicts Lemma 5.4. Thus y9 ¢ J.
Since y is arbitrary, I/ N'J = 1. Since It € Cep(essy) (), I} € Cr(esfa).
Since (e7f6)? = es and Clies f5.g5,20)/0(€6) = Jles, [5)/J, J{es, f5,95,22)/J
is the only elementary abelian subgroup of order 16 of Cr(esf2)/J. Con-
sequently JI{ = J{es, f5, 95, z2), and hence Cey(eyp)(I7) = Cy(I7) - I} =
Ci({(gs, x2, f5, €5>)-Ilg = I~I{7. Since Cy(z)9 = CCR(egfz)(.T)gﬂJg C Cgr(esf2)N
Cog(esfs)I1)9 = Cpesfa)I7), we get Cy(x)9 €I -1{. Since |Cy(x)| = 64 by
Lemma 2.14(3), it follows that there exists an element z of C;(x)— I such that
z9 € I. But this contradicts the fact that Cy,, s (e3f2) controls the fusion of
J. Consequently no element of J(es, f5, g5, z2) — I is fused into I.

Recall that (67f6)2 = €6 and 01(66) = <€2,f2,63>, and J<65,f5,g5,l’2> -
Cr(I) by Lemma 5.1(3). Thus I is weakly closed in Cr(e3f2). Now if we define
v as in Lemma 2.3, then 7' = 2, which contradicts Lemma 2.3(2). Therefore
1 is strongly closed.

Now let Eg@f Calesfs)/(O(G){esf2)). Suppose that I # m,

and set X = (I9¢(e2)). By Lemma 4.8, N
_ Cal(esf2)
J, and hence it follows from the proof of Lemma 2.14(6) that the involutions
of T split into two classes of sizes 6 and 9. Therefore by the main theorem
of [9], X = PSL(2,q) x PSL(2,q) for some ¢ with ¢ = 3,5 (mod 8). Set

Q = J{es, f5,95,22). Then by Lemma 5.1(3), Q@ C C (I). This implies
Calesf2)

XQ = X x C@(j(v), and hence Q = I x Cé(j(v) But then I N Q' = 1, which

(J) controls the fusion of

contradicts Notation 1. Consequently I< 5@_(;3:]‘2/), as desired. ]

Lemma 5.6. Cg(esf2) is solvable.

Proof. Set B = N (e, f,)(1) and B = B/I. In veiw of Lemma 5.5, the lemma

is equivalent to the assertion that B is solvable. Note that .J (€5, f5, 95, x2) =

Cr(I) € Syly(Cp(I)) and Cr(esf2) = Cr(I){erfs) € Syly(B) (see the first
paragraph of the proof of Lemma 5.5). In particular, a Sylow 2-subgroup of
B/Cpg(I) is a cyclic group of order 4, and hence B/Cp(I) is solvable. Thus it

suffices to show that Cp([/) is solvable. Set W = NNB(J)(CR( )) and Z/J =
Cwys(Cr(I)/J). By Lemma 2.14(7), |CR( )/, C’R( )]| = 32. Since W/Z =
Ey- Z4, C’R(I)/[J CR(I)] E35 or Dgx Dg. Since <e5,f5,g5) Eg, this implies
C’R( )/[J Cr(I )] Esy. Hence if we write [CR( )/[J,Cr(I)], (W/J)]
E/[J CR( )], then |E/[J, Cr(1)]] = 16, i.e. \E| = 256. Note that E/(EOJ) =
Cr(I)/J and ENJ = [J,Cr(I)] = CHCr(I)), and Cr(I)/.J and [J, CR( )
are isomorphic as a (W/Z)-module by Lemma 2.14(7). Consequently E is

abelian by Lemma 2.5. By Lemma 2.3(2), E is strongly closed in Cr(I) with

respect to Cg(I).
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Suppose that O(NBF\(NT));EV A CE@, and set X = (ECBMD)Y, In view of the
action of W/Z and J/(JNE) on E, JNE is the only nontrivial proper Nz (E)-

invariant subgroup of E. Hence Oﬂ(O(CT;(T))X)/O(é;(Y))) = 1 by the main

theorem of [9]. Considering the action of O(W/Z) on E, it also follows from

the main theorem of [9] that (O(C(I))X)/O(Cp(I)) is the direct product
of groups isomorphic to SL(2,2") (n = 2,4,8). By Lemma 2.12(4), E’ is a
subgroup of I with |E’'| > 16. Hence |X° N I| > 16. On the other hand,
I C Z(E) by Lemma 5.1(3), and hence X*°NI C Z(X°). Note that Sylow 2-
subgroups of 2 SL(2,4) = SL(2,5) are not abelian. Thus we get a contradiction
to the structure of the Schur multiplier of SL(2,2") (see the argument used in
the proof of Lemma 2.11). Consequently O(C(I))E < Cp(I). Since |Cg(I) :
E| = 2, this implies that Cg(I) is solvable, as desired. O

— —

Lemma 5.7. Let Ca(f2) = Ca(f2)/{f2). Then Cg(f2) has three classes of
involutions with representatives ey, €3 and f193.

Proof. By Lemma 2.14(2), m(j)/CCG(fZ)(j) = PSL(4,3) (see the proof

of (4) and (5) of Lemma 5.1). Hence by Lemma 2.14(8), the involutions of J

split into three classes under the action of (j ). Let T be an involution
of N
Ca(f2)

Ca(f2)
(J) — J. We prove Z is fused into J. By Lemma 2.12(5), we may
assume 7.J = é5.J. By Notation 1, [g3,e5] = 1. Since J C Ng(C) and e5 € C
and f2.g37 g3 € CJ we have f2.g37 g3 g [‘]7 65]; that iS, .55) € Cj(é%)-[j, ég] Hence
by Lemma 2.12(6), T is conjugate to e5 or esgs. Recall that Ng(A) = A-Y.
Thus there exists v € Y such that fj = fo, ef = es and g5 = g3. Hence e5
and esgs are conjugate to e and e4gs, respectively, in Ci,(a)(f2). Therefore

(J)—J is fused into .J. Since N
Cal(f:

2

)(J ) controls the

every involution of IV
Ca(f2)

fusion of .J, this means that C(f2) has precisely three classes of involutions.

We now show that f1gs is conjugate to egfo in G. In Y, 28 of the involutions
of (fa, f3, fa, 93, g4, h) are conjugate to fygs. For each such involution z, every
element of the coset x(e2, e3, e4) is conjugate to x in Ng(A) by Lemma 3.1(4).
Hence J contains 224 involutions conjugate to fig3 in Ng(A), and none of
them is contained in /. By Lemma 2.14(5), 15 of the involutions of I are
conjugate to ey. Since 224 + 15 > 231, it follows from Lemma 2.14(2) that
fag3 cannot be conjugate to es or fa. Consequently figs is conjugate to esfa.
Note that fig93 and figsfa are conjugate in Y. Thus both elements of the
coset f1g3(f2) are conjugate to esfy in G. On the other hand, one element of
the coset e3(f2) is conjugate to e and the other is (conjugate to) esfs in G,
and one element of the coset ex(f2) is ez and the other is conjugate to f2 in

G. Therefore ]?Zg/g ez b ey & fags in Cm, and the lemma is proved. [
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Lemma 5.8. Cg(f2)/({£2)0(Ca(f2))) = PSU(6,2).

Proof. Let Cg(f2) = Ca(f2)/({f2)O(Cq(f2))). By Lemma 5.7, C(f2) con-
tains three classes of involutions. Let Z be an involution which is conjugate to

either e3 or jjgig. We may assume z is conjugate to esfo in G (see the second
paragraph of the proof of Lemma 5.7). Thus Cg(x) is solvable by Lemma

5.6, and hence Cg,(,)(f2) is solvable. Since |C (7) : Cmf/gﬂ < 2,

Ca(f2)
this means that CC G )(:E) is solvable. Now since es % fo ~ eafs in G,
G\J2

(eNQ) = CCG(fg)(@2)- By Lemma 4.11, CCG(fQ)(62)/O(Ccc(f2)(e2)) is an

C
Ca(f2) _

extension of Dg* Dg* Dg* Dg by SU(4,2) (see the parenthetic remark about M

in the proof of Lemma 4.9). Consequently the centralizer of each involution of

Cm is 2-constrained. Since Cg(f2) is connected in the sense of Goren-
stein and Walter [13], O(C (e2)) = 1 by Theorem B of [13]. Therefore

S Ca(f2)

Cr()(f2) = PSU(6,2) by a result of Parrot [17]. O

We are now in a position to complete the proof for the case where M/
O(M) = Aut(SU(4,2)). Note that PSU(6,2) is 2-generated and 2-balanced.
Hence in view of Lemmas 5.1(4), 4.11, 5.6 and 5.8, it follows from Theorem
A of [13] that O(Cg(x)) = 1 for every involution x of G. Therefore we obtain
E(G) = M(22) by a result of Hunt [15] or Parrot [17].

§6. Contradiction

In this section, we assume that M /O(M) = X, and derive a contradiction.
Arguing as in Section 4, we obtain the following lemmas.

Lemma 6.1. M = Sg(=2 Aut(GL(4,2))).
Lemma 6.2. Every involution ofﬁ is conjugate to some involution of (e7) <F
m M.

Having Lemma 2.10 in mind, we fix the following notation.
Notation 3. Let x; be an element of M’ such that (g3, 7z, ﬁ, T1) = E16. Then
N=((35, 72, h, 71))/ (G5, 1, h, T1) = GL(2,2)1 25 = 0 (4,2),
and N—=((33, 91, b, 71)) /(3 Ga» h, T1) acts on (Z(C){es, ea, f3, f1))/2(C),
C/(Z(C){es,eu, f3, f1)) and (g3,91, h,ZT1) in a standard way. Thus we can

choose w1 so that T7, gsz1 and hxy are central involutions. Let zo be an
element of M’ such that

leafs, w2] € e3f3Z(C), [(es, f3, fa), x2] € Z(C).
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We choose z7 and zo as involutions. Moreover we choose them so that
(95, 72) = E4 and (AS, x1,x2) is a Sylow 2-subgroup of M. Set R = (AS, x1,
.%'2).

We now argue as in Section 4, using Lemma 2.10 in place of Lemma 2.9.
Then we obtain the following lemma.

Lemma 6.3. R € Syl,(G).

Lemma 6.4. There exists 2} € x1C such that {(e;, fi, gsh, ga, 2} | 2 < i < 4) =
Es12.

Proof. By Lemma 2.10(5), there exists 5 € Ny;({e;, fi | 2 < i < 4)) such that
g3sh’ = g1, g1i¥ = g3h and hY = 7. Set 2y = h¥. Then arguing as in the
first paragraph of the proof of 4.6, we obtain (e;, fi, gsh,gs, 2} |2 < i < 4) =
<eiafiag3h7g47h| 2§i§4>ygE512- O

Let x) be as in Lemma 6.4, and set J = (e;, fi, g3, 94, h, 2} | 2 < i < 4).
Lemma 6.5. J = E1024.

Proof. In view of Lemma 6.4, it suffices to show that [g4h, gshz}] = 1. Note
that g4 and gsh are noncentral involutions and gsg4h is a central involution,
and that gqh and gsha| are noncentral involutions and gsgsx) is a central
involution. Hence by Lemma 2.10(5), there exists Z € Nyz((e;, fi | 2 <@ < 4))

such that gz = g4h and nghE = gzha. Therefore arguing as in the second
paragraph of the proof of Lemma 4.6, we obtain [gsh, gsha)] = [97, (93h)?] =
1. O

Arguing as in Section 4, we also obtain the following lemma.

Lemma 6.6. J = J(R) = E1024.

We are now in a position to derive a contradiction. Let J/\fo(J/) = Ng(J)/
Ca(J). Since Nps(J) contains a Sylow 2-subgroup of G, Nj/(J) contains a

— —

Sylow 2-subgroup of Ng(J). Note that Oz(Nas(J)) = (em@, Ny (J)/

O2(Nai(J)) 2 GL(2,2) 1 Z and Nay(J)/O2(Nas(J)) acts on Oa(Nag(J)) in
a standard way. Hence a Sylow 2-subgroup of Nj/(J) is isomorphic to a
Sylow 2-subgroup of 3g. Therefore we see from Gorenstein and Harada [12]

—

that the action of Njs(J) on J cannot be consistent with the fusion of J,

W:hich i a contradiction. This concludes the discussion for the case where
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87. Normal Case

In this section, we assume that M/O(M) = Z; x S, and show that A is
normal in G.
Arguing as in Section 4, we obtain the following two lemmas.

Lemma 7.1. AS € Syl,(G)

Lemma 7.2. J(AS) = <62763764>CS(<62763764>) = <6iafi7g3ag4vh ‘ 2<4 <
4) = Es19.

Lemma 7.3. Ng(J(AS)) = O(Ng(J(AS)) Ny (a)(J(AS))).

Proof. Set W = Ng(J(AS)), W = W/Cw (J(AS)), B = (e5, e, €7),

Wi = Ny ((fi,g3,94,h | 2 < i < 4)). Then Na(J(AS)) = B- W, = Fg -
SL(3,2) and AS € SyIQ(E\I/I—//l). We prove that B is strongly closed in AS with
respect to W. Define I' and v as in Lemma 2.3 (note that we have not yet
proved that B is weakly closed) and, by way of contradiction, suppose that
I' # (. Let E be a member of I. Then since [J(AS),J] = (es,es3,e4) for
every involution 7 of B, [J(AS),y1] = [J(AS),yz] for any involutions y1, Y2
of E. But |[J(AS)/{e2,es,e4),7]| = 4 for each involution y of AS — E, and
[J(AS)/(e2,e3,e4),y1] # [J(AS)/{ea, e3,e4),y2] if y1B # y2B. Hence |E| = 2.
Since E is arbitrary, this means v = 2. In particular, B is weakly closed.
These contradict Lemma 2.3(6). Thus B is strongly closed. Consequently
W = O(T/AI})(E\WZ) by Goldschmidt [9]. We next prove O(W) = 1. Arguing as
in Lemma 2.11, we can easily show that O(W) centralizes BW. On the other
hand, (es, e3, e4) is the unique minimal BW,-invariant subgroup of J(AS), and
(f3, f4, 94, €2,€3,€4)/{€2, €3, €4) is the unique minimal E\/I/Vl—invariant subgroup
of J(AS)/(e2, es, e4). Therefore O(W) centralizes J(AS), and hence O(W) =
1, as desired. ]

We can now easily show that A is strongly closed in AS. Note that each
involution of AS is conjugate to an involution of J (see the last few sentences
of the proof of Lemma 4.10). Since N¢(J) controls the fusion of J by Lemma
7.2. it follow from Lemma 7.3 that no involution of J — A is conjugate to an
involution of J N A. Consequently A is strongly closed. Therefore A << G by
Goldschmidt [9], as desired.
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