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Abstract. The object of the present paper is to study locally ¢-symmetric
three-dimensional quasi-Sasakian manifolds and such manifolds with n-parallel
Ricci tensor and cyclic parallel Ricci tensor. An example of a locally ¢-
symmetric three-dimensional quasi-Sasakian manifold is also given.
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81. Introduction

On a three-dimensional quasi-Sasakian manifold the structure function 8 was
defined by Z. Olszak [8] and with the help of this function he has obtained nec-
essary and sufficient conditions for the manifold to be conformally flat [9]. Next
he has proved that if the manifold is additionally conformally flat with § =
constant, then (a) the manifold is locally a product of R and a two-dimensional
Kaehlerian space of constant Gauss curvature (the cosymplectic case), or, (b)
the manifold is of constant positive curvature (the non-cosymplectic case, here
the quasi-Sasakian structure is homothetic to a Sasakian structure).

The object of the present paper is to study three-dimensional quasi-Sasakian
manifolds. Section 2 of the paper is concerned with preliminaries. In section 3,
we recall the notion of three-dimensional quasi-Sasakian structures. In section
4, we study a three-dimensional locally ¢-symmetric quasi-Sasakian manifold
and prove that a three-dimensional non-cosymplectic quasi-Sasakian mani-
fold with constant structure function is locally ¢-symmetric if and only if the
scalar curvature of the manifold is constant. Section 5 of our paper deals with
a three-dimensional quasi-Sasakian manifold with n-parallel Ricci tensor. In
this section we also prove that in a non-cosymplectic quasi-Sasakian manifold
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of dimension three the Ricci tensor is -parallel if and only if the manifold is -
Einstein. Section 6 is devoted to study a three-dimensional non-cosymplectic
quasi-Sasakian manifold with cyclic parallel Ricci tensor. The last section
contains an illustrative example of a three-dimensional locally ¢-symmetric
quasi-Sasakian manifold with constant scalar curvature and constant struc-
ture function.

§2. Preliminaries

Let M be a (2n + 1)-dimensional connected differentiable manifold endowed
with an almost contact metric structure (¢, &, 7, g), where ¢ is a tensor field of
type (1,1), £ is a vector field, 7 is an 1-form and g is the Riemannian metric
on M such that [1], [2]

(2.1) ¢*X = -X +n(X)E, n() =1,

(2:2) 9(¢X,9Y) = g(X,Y) —n(X)n(Y), X,Y € TM.
Then also

(2.3) ¢ =0, n(¢X) =0, n(X)=g(X,§).

Let ® be the fundamental 2-form of M defined by ®(X,Y) = g(X, ¢Y), X,Y €
TM. Then ®(X,£) =0, X € TM. M is said to be quasi-Sasakian if the almost
contact structure (¢, &, 7, g) is normal and the fundamental 2-form ® is closed
(d® = 0), which was first introduced by Blair [3]. The normality condition
gives that the induced almost contact structure of M x R is integrable or
equivalently, the torsion tensor field N = [¢, ¢] + 2§ ® dn vanishes identically
on M. The rank of the quasi-Sasakian structure is always odd [3], it is equal
to 1 if the structure is cosymplectic and it is equal to 2n + 1 if the structure
is Sasakian.

83. Quasi-Sasakian structure of dimension three

An almost contact metric manifold of dimension three is quasi-Sasakian if and
only if [§]

(3.1) Vyé=—B¢X, X € TM,

for a function § defined on the manifold, V being the operator of the covariant
differentiation with respect to the Levi-Civita connection of the manifold. Also
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we note that if there is a function 5 on the manifold satisfying Vx& = — (¢ X,
then {3 = 0, because, from (3.1), we find

Vx(Vy€) = ~(XB)eY — {g(X,Y)E —n(Y)X} — B6VxY,
which implies that

R(X,Y)é = —(XB)gY + (Y B)oX + 82{n(Y)X —n(X)Y},
where R is the Riemannian curvature tensor of the manifold. Thus we get

R(X,Y,Z,§) = (XB)g(eY,Z) — (YB)g(¢X, Z)
-3 {n(Y)g(X, Z) —n(X)g(Y, Z)}.

Putting X = £, we obtain
R(£.Y.Z.€) = B{g(Y, Z) = n(Y)n(Z)} + g(¢Y, 2)§.

Therefore, taking the skew symmetric part, we can easily verify that £6 = 0.
Clearly, such a quasi-Sasakian manifold is cosymplectic if and only if § = 0.
As a consequence of (3.1), we have [§]

(3.2) (Vxo)Y = B(g(X,Y)§ —n(Y)X), X, Y € TM,
(3.3) (Vxn)Y =g(Vx¢&Y) = —B9(¢X,Y),
and

(3.4) (Vxn)é = —0n(¢X) = 0.

In three-dimensional Riemannian manifolds, the Weyl conformal curvature
tensor vanishes, that is,
(3.5) RX,Y)Z = g(Y,Z)QX —yg(X,Z)QY + S(Y,2)X

~S(X.2)Y = 5(9(V. D)X — g(X, Z)Y),

where @ is the Ricci operator, that is, g(QX,Y) = S(X,Y) and r is the scalar
curvature of the manifold.

Let M3 be a three-dimensional quasi-Sasakian manifold. The Ricci tensor
S of M3 is given by [9]

(3.6) S(Y.Z) = (5-8)9(Y.2) + (36 = (¥ )n(2)
—n(Y)dB(62) ~n(Z)dB(8Y ).
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where r is the scalar curvature of M3.
From the above equation we obtain

(3.7 (VxS)(Y,2) = (5Xr—28XB)g(Y, )

HEOX — S XrIn(V)n(2)

BB~ ) {n(V)g(6X.2)

+1(2)g9(pX,Y)}
+n{g(¢X,Y)dB(¢Z)
+9(¢X, Z)dB(¢Y )}
+1(Y)g(Vxgradf, ¢Z)
—n(Z)g(VxgradB, ¢Y),

where the gradient of a function f is related to the exterior derivative df by
the formula

(3.8) df (X) = glgradf, X).

From (3.5) and (3.6) we get
(3.9) RX.Y)Z = g(Y.2)|(5 - B)X

+(38% = $n(X)¢
+7(X)(dgradB) — d3(6X)¢]
~9(X,2)[(5 - )Y

+(36% = Hn(¥ )¢
+n(Y)(pgradB) — dB(¢Y)¢]
(5 = B)9(v. 2)

+(38° = SI(YIn(Z)
—n(Y)dB(6Z) = n(Z)dB(6Y )X
~[(5 — M)9(X. 2)

+(38% = 5n(XOm(2)
—n(X)dB3(92) —n(2)dB(¢X )Y
~5lo(V.2)X —g(X, 2)Y]
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84. Locally ¢-symmetric quasi-Sasakian manifolds

Definition 4.1. A quasi-Sasakian manifold is said to be locally ¢-symmetric
if

¢»*(VwR)(X,Y)Z =0,

for all vector fields W, X, Y, Z orthogonal to £&. This notion was introduced for
Sasakian manifolds by Takahashi [10].
Differentiating (3.9) with respect to W and using (3.1) we obtain

(11) (VwR)(X.Y)Z = gV, 2)[(5dr(W) —26(W5)X

HOBOVS) — Sdr(W)(X)e

+(36” = D(Twn)(X)E +n(X) (W)
+(Vwn)(X)(¢gradf)
+1(X)(Vw¢)gradp

+1(X)é(Viwgrads) — (Vivd3) (X )¢
~dB(Vwd)(X)E — dB(6X)(—FoW)]
~g(X, Z)[(5dr(W) ~ 26(W 5))Y

HOB(W ) — dr(W))n(Y )¢

+(35” = D (Vwn)(¥) +n(Y)(=BeW))
+(Vwn)(Y)(¢gradp)

+1(Y) (Vo) (grad 5)
+n(Y)o(Vweradp) — (VwdpB)(4Y )¢
~dB(Vwd)(Y)§ — dB(6Y)(~B6W)]

(G dr(W) — 20(W3)g(Y. Z) + G0V )
5 dr (W) )n(2)

+(38” = 5)(Vwm) (Y )n(2)

+n(Y)(Vwn)(2))

~(Vwn)(Y)dB(¢Z) — n(Y)(VwdB)(¢Z)
—n(Y)dB(VwoZ)

—(Vwn)(Z2)dB(oY) — n(Z)(VwdB)p(Y)
—n(Z)dB(Vw¢)(Y )] X
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~[(dr(W) — 28(W8))a(X, 2) + (65(W )
— S dr(W)n(X)n(2)

+(38% = 5)(Vwn)(X)n(Z2)

+n(X)(Vwn)(Z))
—(Vwn)(X)dB(¢Z) — n(X)(Vwdp)(¢Z)
-n(X)dB(Vw¢)(Z)

—(Vwn)(2)dB(¢X) —
—n(Z)dB(Vw¢)(X)]Y

5 dr(W)[g(Y, 2)X — g(X, Z)Y],

n(Z)(VwdB)o(X)

Taking W, X,Y, Z orthogonal to ¢ and using (2.1) and (2.3) we get from
(4.1)

(12) F(VwR)(X.Y)Z = oY, 2)[(260V5) — Jdr(W))X

+(Viwn) (X)(¢°gradp)
HOAB(6X) (W)

~9(X, 2)[(2BOVE) ~ Ldr (W)Y
+H(Vwn)(Y)(¢’grads)
HOAB(Y) (W)

HEBOVE) — Sdr(W))g(Y, 2)

= 220(WB) — gdr(W)][o(Y, Z)X — g(X, Z)Y]
(Y, 2)dF(6X)
~9(X. 2)A3(6Y )W
(V) (X)[g(Y, Z)¢ gradf
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~d3($2)Y]

~(Vwn)(Y)[g(X, Z)¢*grads
—dB(¢Z)X]
+(Vwn)(2)dB(¢Y) X
—dpB(¢X)Y]

+%dr(W)[g(Y, 2)X — g(X, 2)Y).

If we take (3 as a constant then from (4.2) we obtain
1
F(VwR)(X,Y)Z = Ldr(W)[g(X, 2)Y ~ g(¥, Z)X].

From above we can conclude the following :

Theorem 4.1. A three-dimensional non-cosymplectic quasi-Sasakian mani-
fold with constant structure function B is locally ¢-symmetric if and only if
the scalar curvature r is constant.

We know that [4], in a Ricci-semisymmetric three-dimensional non-cosymplectic
quasi-Sasakian manifold the structure function [ is constant. Hence from The-
orem 4.1 we can state the following;:

Corollary 4.1. A Ricci-semisymmetric three-dimensional non-cosymplectic
quasi-Sasakian manifold is locally ¢-symmetric if and only if the scalar cur-
vature s constant.

85. n-parallel Ricci tensor

Definition 5.1. The Ricci tensor S of a quasi-Sasakian manifold is called
n-parallel if it satisfies

(VxS) (oY, 9Z) =0,

for all vector fields X, Y, Z. The notion of n-parallel Ricci tensor for Sasakian
manifolds was introduced by Kon[7].

From (3.7) we get

(1) (VxS)@Y.07) = (5Xr—26XP)[o(Y,2) —n(¥)n(2)]
= Bg(X,Y) — n(X)n(Y)}d5(2)
~ 39X, 2) ~ n(X)n(Z)}d3(Y).
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If the Ricci tensor is n-parallel, then

(52) (5Xr —28X8)[g(Y, Z) ~ (¥ (7))

= Blg(X,Y) —n(X)n(Y)}dB(Z)
— He(X, Z) —n(X)n(Z)}dB(Y) = 0.

In the above equation putting Y = Z = ¢;, where {¢;} is an orthonormal
basis such that ez = £, and taking summation over ¢, 1 < ¢ < 3, we get

(5.3) Xr —63X8 =0.

Also, we have Yr — 108Y 3 = 0 from (5.2) and &r = 0. By virtue of these
equations, we find the scalar curvature is constant. Moreover, we get ( is
constant if 8 # 0. Thus a non cosymplectic quasi-Sasakian manifold M? with
n-parallel Ricci tensor is an n-Einstein manifold.

Conversely, if the quasi-Sasakian manifold M? is an 7-Einstein, then

(Vx5)(¢Y,9Z) = 0.

Thus we can state the following:
Theorem 5.1. In a non-cosymplectic quasi-Sasakian manifold M3, the Ricci
tensor is m-parallel if and only if M3 is n-Finstein.

From Theorems 4.1 and 5.1, we can state the following:
Corollary 5.1. In a non-cosymplectic quasi-Sasakian manifold M3, if the
Ricci tensor is n-parallel, then it is locally ¢-symmetric.

86. Cyclic parallel Ricci tensor

A Gray [5] introduced two classes of Riemannian manifolds determined by the
covariant derivative of the Ricci tensor. The first one is the class A consisting
of all Riemannian manifolds whose Ricci tensor S is a Codazzi tensor, that is,

(Vx9)(Y, 2) = (VyS)(X, Z).

The second one is the class B consisting of all Riemannian manifolds whose
Ricci tensor is cyclic parallel, that is,

(VxS (Y, Z)+ (VyS)(Z,X) 4+ (Vz9)(X,Y) = 0.
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Again it is known that the Ricci tensor of Cartan hypersurface [6] is cyclic
parallel. We find

(VxS Y, Z)+ (VyS)(Z,X) + (V29 (X,Y)

= (X7~ 2BXB)g(Y,2) + (8555 — L Xr)n(¥)n(2)

BB~ DY )g(0X. 2) +n(Z2)g(¢X.Y))
+5{9(0X,Y)d3(d2) + g(¢X, Z)dB(¢Y )}
—n(Y)g(Vxgradf, ¢Z) — n(Z)g(Vxgradf, ¢Y)
HGYr = 20YB)g(Z,X) + (86YS — S¥rn(Z)n(X)

—B(36% = ){n(2)g(8Y, X) +n(X)g(6Y. 2)}

+B8{g9(8Y, 2)dB(¢pX) + g(¢Y, X)dB(¢Z)}
—n(Z)g(VygradB, 9X) — n(X)g(Vygrad3, ¢2)

(1227~ 20Z0)g(X,Y) + (8625 — 3 Zr)n(X)n(Y)

~B(38” = D){n(X)g(0Z.Y) +n(Y)g(6Z, X))}
+6{9(62, X)dB(6Y) + 9(62.Y)dB(6X)}
—n(X)g(V zgradB, ¢¥) —n(Y)g(V zgradB, 6 X).

If the Ricci tensor is cyclic parallel, then we obtain

(61)  (5Xr—20X0)g(Y, 2) + ($6X5 — L Xr)n(¥ )n(Z)

= BB - D)g(6X, 2) + n(2)g(6X,Y)}

+ B{o(6X,Y)AB(9Z) + g(6X. Z)dB(6Y )}

— n(Y)g(VxgradB, ¢Z) — n(Z)g(V xgrad3, ¢Y')

£ GV 9BV 0)g(Z,X) + (85Y S~ J¥rin(Z)n(X)

— 8BS - DN(2)g(6Y. X) + n(X)g(8Y, 2)}
+ B{y(¢Y, 2)dB(¢X) + g(¢Y, X)dB(¢Z)}
— 1(2)g(Vygradf, ¢X) — n(X)g(Vygradf, $2)

+ (1228~ 20ZB)g(X.Y) + (8628 — 3 Zr)n(X)n(Y)
— BBF - DINXG(GZ.Y) +n(Y)g(6Z. X))

+ Be(¢Z, X)dB(¢Y) + g(¢Z,Y)dB(X)}
— n(X)g(VzgradB, ¢Y) — n(Y)g(Vzgrads, ¢.X) = 0.
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Putting Z = &, we get from above

(6.2) 68{(XB)n(Y) + (YB)n(X)} + %(ér){g(Xv Y) = n(X)n(Y)}
— g(VxgradB, ¢Y) — g(Vygrads, ¢.X)
— n(X)g(Vegradp, ¢Y) — n(Y)g(Vegradp, ¢ X) = 0.

In the above equation putting X =Y = ¢; and taking summation over 7, we
get

3
(6.3) &r —2 Zg(veigradﬁ, pe;) = 0.

=1

Also putting Y = £ in (6.2), we have

(6.4) 36X — g(Vegradf, pX) = 0.

In (6.1), putting Y = Z = ¢; and taking summation over i, we get from (6.3)
and (6.4)

Xr—n(X)ér —48X3 = 0.

When the scalar curvature r is constant, the structure function 8 so is, if
(B # 0. Conversely, if 3 is constant, then r is constant from (6.3). Thus we are
in a position to state the following:
Theorem 6.1. In a non-cosymplectic quasi-Sasakian manifold M3 with cyclic
parallel Ricci tensor, the scalar curvature r is constant if and only if the struc-
ture function B is constant.

§87. Example

In this section we like to construct an example of a three-dimensional locally
¢-symmetric quasi-Sasakian manifold.

Let us consider the three-dimensional manifold M = {(x,y, 2) € R3, (z,y, 2) #
(0,0,0)}, where (x,%, z) are the standard coordinates in R3. The vector fields

0 0 0 0

61:%—y$a 62:@, 63:£

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

gler,e3) = glez,e3) = gler,e2) =0, gler,e1) = glez, e2) = g(es,e3) = 1.
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Let n be the 1-form defined by 1n(Z) = g(Z,e3) for any Z belongs to x(M).
Let ¢ be the (1,1) tensor field defined by ¢e; = —ea, ey = €1, ez = 0.
Then using the linearity of ¢ and g we have

nles) =1, ¢*°Z=—Z+n(2)es, g(¢Z,¢W)=g(Z,W)—n(Z)n(W),

for any Z, W € x(M). Thus for e3 = &, M(¢,&,n, g) defines an almost contact
metric manifold.

Let V be the Levi-Civita connection with respect to the Riemannian metric
g and R be the curvature tensor of the manifold. Then we have

[61, 62] = €3, [61, 63] = 0, [62, 63] =0.
The Riemannian connection V of the metric g is given by

29(VxY,2) = Xg(Y,2)+Yg(Z,X) - Zg(X,Y)
—i—g([X, Y]7Z) - g([Y, Z]vX) —l—g([Z, X],Y),

which is known as Koszul’s formula. Taking e3 = ¢ and using the above
formula for Riemannian metric g, it can be easily calculated that

1 1
vele3 - _5627 V61€2 - 5637 velel - 07
1 1
v8263 = 5617 v6262 = ?7 vezel = _?637
Vese3 =0, Vese2 = 5e1, Vese1 = —35€a.

We see that the (¢, &, 7, g) structure satisfies the formula Vx¢& = —(¢X.
Hence M (¢,&,1m,g) is a three-dimensional quasi-Sasakian manifold with the
structure function 8 = —%. Using the above relations we obtain the compo-
nents of the curvature tensor as follows.

R(e1, e2)es =0, R(ez, e3)e3 = gea, R(e1,e3)es = te1,
R(61,62)€2 = —%61, R(€2,63)e2 = —%63, R(el,eg)eg — O,
R(e1,e2)er = 2es, R(ea,e3)er = 0, R(e1, es)er = —Les.
From 1
(VelR)(el’ 62)61 = (VBZR)(ela 62)62 = 5637
and

(VeQR)(el, 62)61 = (VelR)(el, 62)62 = 0,

it follows that M is locally ¢-symmetric.
Now we see that

1
8(61761) = g(R(61762)62761) +g(R(61763)63761) = _57
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1
S(ez,e2) = g(R(eg,e1)er, e2) + g(R(ez, e3)es, e2) = —5

1
S(es,e3) = g(R(es,er1)er,e3) + g(R(es, e2)ea, e3) = 2

and
S(ei e) =0, (i # j).

Therefore the scalar curvature r = —%.
Also, because of (V,S)(e1,e3) = —(Ve,S)(e2,e3) = —3 and otherwise is

zero, the Ricci tensor of M is n-parallel and cyclic parallel.

Acknowledgement. The authors are thankful to the referee for his valuable
suggestions in the improvement of the paper.
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