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Multinomial Coefficients and the Johnson Scheme
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Abstract. The Johnson scheme is one of the most famous association schemes.
The structure is based on binomial coefficients. On the other hand, the gener-
alized Johnson scheme (g-analog of the Johnson scheme) is based on g-binomial
coefficients. In this paper, we consider the association scheme which is based
on multinomial coefficients and compute intersection numbers (structure con-
stants) of it.
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8§1. Introduction

Let V be a set such that [V| = v and let k be a positive integer (k < %).
Let X be the set of all k-element subsets of V. Define the i-th relation R;
by (z,y) € R, (x,y € X) if and only if [x Ny| = k — i. We get a symmetric
association scheme of class k; X = (X, {R;i}o<i<k). X is called the Johnson
scheme J(v, k) [2]. This scheme comes from the symmetric group S, of degree
v and the subgroup S,_p x Sk of S,. The structure is based on binomial
coefficients; e.g., the number of vertices | X| = (Z), the intersection numbers
and the values of characters.

In this paper, we consider the association schemes whose structure is based
on multinomial coefficients. The schemes come from symmetric groups S,
and their subgroups of the form S,, x--- xSy, of S;,. Our association scheme
is a natural generalization of the Johnson scheme. This structure is studied
by some researchers. Dunkl and Scarabotti computed the character table of
this scheme for a special parameter [3, 8]. Krieg and Anderson showed this
association scheme was non-commutative whenever { > 2 [7, 1]. An algorithm
was presented for determining the number of relations of this scheme by Jones
[5]. We compute the intersection numbers of the association scheme. Our
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results should be helpful for investigation the structure of these association
schemes. In Section 2, the notation of association schemes is introduced. In
Section 3, we consider a generalization of the combinatorial structure of the
Johnson schemes. In Section 4, we compute the intersection numbers of the
association scheme.

§2. Association Schemes

Let X be a finite set, R a collection of binary relations on X. For x € X and
rCc X xX,weput ar :={y € X : (z,y) €er},re:={ye X : (y,z) € r}.
If the following conditions are satisfied, we say that (X, R) is an association
scheme [2, 4];

(i) R is a partition of X x X;

)
(i) 1:={(z,z):x € X} € R;
(iii) If r € R, then 7* := {(y,x) : (z,y) € 7} € R;
(iv) For f,g,h € R, there exists P}},g € Z>o such that pijﬁ’g = lzf N gy
whenever (z,y) € h.

Let G be a finite group and H a subgroup of G. Let Q = H\G = {Hg : g € G}
be the set of right cosets of H in G. We define the action of G on € x
by the diagonal action. Let R be the set of orbits of G on 2 x . Then
X = (H\G,R) is an association scheme. In particular, the correspondence
(Hg1,Hg2) to Hgggl_lﬂ gives a bijection between R and the set of double
cosets of H in G. So X = (H\G, {Ha;H }p<i<q) is an association scheme.

8§3. Combinatorial Structures

Let G be a symmetric group Sy 9, 3. For a partition of n ((n1,n2,...,n)
set whose members are arrays. Each array is a partition [Q1, @2, ..., Q] of a
permutation of a multiset {1,---,1,2,---,2,--- [ —1,--- I —1,1,--- I} (a
—_——— —— —_——— ——
ni ng ni—1 ny
multiset differs from a set in that each member has a multiplicity) such that
|Q;i| = n; for each i =1,2,... 1.

Example 3.1. Let A = (2,2,1) F 5. Then we have P =

{ [{113,{2,2}, {3},
[{1»2}7{2>3},{1}],[{3,1}7{172},{2}],[{272},{3,1}7{1}¥
]

{ |
[{2,3},{1,1},{2}],
[{1,3},{2,2},{1}],
[{1,2},{3, 2}, {1}],

[{1,2},{1,2},{3}], {2,3}, {2, 1}, {1}], [{2,1},{3,1},{2}],
(3,21, {1, 1}, 23], {2, 13, {2, 3} {1}, [{1,3},{1,2},{2}],
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[{3,13,{2,13,{2}], {2,2}, {1, 3}, {1}, [{1,2},{2, 1}, {3}], [{2,3},{1,2},{1}],
({2,153, {1, 3}, {23], {2, 13, {3, 2}, {1}], [{1,3},{2,1},{2}], [{1,1},{3, 2}, {2}],
[{1,23,{3,1},{2}], {3,2}, {2, 1}, {1}, [{2, 1}, {1, 2}, {3}], [{1,1},{2,3},{2}],
({12}, {1, 3}, (23], {3,235, {1, 21, {1}, [{2,1},{2, 1}, {3}], [{3,1}, {2, 2}, {1}],
[{2,2},{1,1},{3}] }-

Notation 1. Let A = (n1,n2,...,n;) = n. Then we have

n n
k=1 ng ny,no,...,ny
o n n—mni n—m;—ng—---—nNj—1
ni n2 ny

n!
n1! . nl'

Let P be the following array;

Po=[{1,- 1,42, 2}, =1, I —1}{l,-- 1} € P.

ni n2 ni—1 ny

For any T' € P, denote the i-th entry of T" as T'(¢). So P(1) = P(2) =
cee = P(nl) =1, P(’I’Ll—l—l) = P(n1—|—2) = ... = P(n1+n2) =2, ...,
P( 2;11 ni+1) = P( 2_:11 ng +2) =--- = P(n) = [. We define the action of
G to P. For any 7 € G,

P™ = [{P(x(V),- -, P(x(n)}, {P(x(ny +1)), - , Plr(ny +n2))},

ni n2

-1
o AP e+ 1)), P(r(n)}.
k=1

~~
ny

G is a transitive permutation group on P. H 1= S¢15 01} X S{ni41,....n1+ns} X
o X S gy 141, my 44y} 18 the stabilizer of P € P. Let H\G :={H =
Hgo,Hgi, ...} be the right cosets of G by H. For any T € P, define Ry :=
{meG:P" =T} and Ly :={m € G : T™ = P}, then the following consists.
Lemma 1. For any g € G, let T := P9 be an element of P. Then

Hg = RT.

Similarly, g-'H = L.
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By Lemma 1, there is a bijective correspondence between {Rp : T € P}
and right cosets H\G. For each T € P, there is a unique coset Hg € H\G
such that

(3.1) P" =T forall min Hg.

So there is a bijective correspondence between P and H\G. Identify H\G
with P by the correspondence (3.1).

For any T1,T> € P, we define the action of G on P x P by (T1,T5)™ :=
(TT,TF), m € G. Let Ag, Ay, ---,Aq be the orbits of G on P x P,

PxP=AUAU---UAy,
where Ag = {(T,T) : T € P}.

Lemma 2. Let AZ(P) = {T S P|(P,T) S Az} Then Ao(P) = {P}, Al(P),
-+, Ng(P) are H-orbits on P.

Let H = HagH,Ha1H,...,HaqH be the double cosets of G by H. For
each HaH € H\G/H, there is a unique orbit A; such that PH*H ¢ A;(P).
So there is a one-to-one correspondence between the double cosets of G by H
and the orbits of G on P x P. Identifying H\G/H with {A;} by the corre-
spondence. Since Ag(P) = {P}, ap = 1¢. Since X = (H\G, {Ha;H }o<i<q) is
an association scheme, (P, {A;}o<i<q) is an association scheme, too.

We think about the number of relations of this association scheme. By
Lemma 2, Ty, T, € A;(P) if and only if there exists h € H such that 17 = Tzh.
This means becoming the same array as 17 when the order in each component
is disregarded in T5. Let us reword this condition. Let T™ denote the array
obtained from 7' (€ P) by permuting the integers in each component of T
into weak increasing order. T™ is called a permissible array[5]. We note that
(T")* = T* for any h € H and T € P since h acts only in each component of
T. Let P* :={T* : T € P}. For each T* € P*, there is a unique orbit A such
that

(3.2) T* € A(P).

So there is a one-to-one correspondence between P* and {A; }o<;<q4. Identifying
{A;} with P* by correspondence (3.2). Then d 4+ 1 = |P*|.

Example 3.2. Let A = (2,2,1) - 5. Then we have P* = { [{2,3}, {1, 2}, {1}],
[{1,33,{2,2},{1}], [{2,2}, {1, 3}, {1}], [{1, 2}, {2, 3}, {1}, [{2, 3}, {1, 1}, {2}],
[{1,35,{1,2},{2}], {1, 2}, {1, 3}, {2}), {1, 1}, {2, 3}, {2}, [{2, 2}, {1, 1}, {3}],
({12}, {1, 2}, {3}], [{1,1},{2,2},{3}] }. So [P*| = 11.
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Actually, we want to compute the number of relations. The algorithm
has already been known in [5]. Let A = (A1, Ao,...,\;) F m and let p =
(pe1, 2, - - ., i) be a sequence of natural numbers the sum of which is equal
to m. Then define p(\, p,r) to be the number of arrays with shape A and
content p such that the symbols weakly increase along each row, under the
additional restriction that the last element in row ¢ is less than or equal to 7.
Then, using this notation, we have the number of permissible arrays is equal
to p(A, u,1). The number of permissible arrays is computed by recursively
reducing an array by one entry at a time until a trivial situation is achieved.

Algorithm 3 (Jones [5]). Let A = (A, A2,..., M) Fm < n and let p =
(pe1, p2, - - - itj) be a sequence of natural numbers, the sum of which is equal to
m.

(i) If A =1 then p(\p,r) = > p(\RD),

s<r,us>0

where \ = ()‘17)\25 .- '7)\1'*1)) H= (,Ul,,LLQ, oo fhs—1s fs — Ly et - 7”3)
and l is the length of u.

() If X > 1 then p(\p,r) = Y p(N T, 9),

B s<r,us>0
where A = (A1, Ao, ., Ni— 1), 1= (1, 12, - oy fs—1s s — Ly flot1, - - -5 [1g)-

The following results are convenient to compute p(A, , ).

o If u=1(0,...,0,m,0,...,0), then

1, s<m;
p()‘)luur) _{ 0’ s > 7]
o If g = pp = --- = p = 0, then p(\, p1,7) = 0;

o If A = (m), then p(A, p,7) = 1.
Let H := S{l,m,)\l} X X S{)\1+,,.+A7L71+17”.7A1+.,,+A7L} and K := S{Lm’m} X
XS ety 141+ 4y} DE Young subgroups of the symmetric group

S11,..ny- The above recurrence formulae equal to the number of (H, K')-double
cosets of S¢y 3. This means

d+1=[P"| = p(A 1),

where [ is the length of .
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Example 3.3. Let A = (2,2,1). Then we have

p(AA3) = p((2,2),(1,2,1),3) +p((2,2),(2,1,1),3) +p((2,2), (2,2,0), 3)

= p((2,1),(0,2,1),1) +p((2,1), (1, 1,1),2) + p((2, 1), (1,2,0), 3)
+p((2,1), (1, 1,1), 1) +p((2, 1), (2,0,1),2) + p((2, 1), (2,1,0), 3)
+p((2,1),(1,2,0),1) +p((2,1),(2,1,0),2)

= p((2),(0,1,1),3) +p((2), (1,0,1),3)
+r((2),(0,2,0),3) +p((2), (1,1,0),3)
+p((2),(0,1,1),3) +p((2), (1,0,1),3)
+p((2),(1,1,0),3) + p((2), (2),3)
+p((2),(0,2,0),3) + p((2), (1,1,0),3) + p((2), (2),3)

84. Intersection Numbers

For a partition A of n, P is defined as well as the last section as a set of
partition arrays. For any S,U € P, (S,U) is defined as follows.

(Sv U) = [Ql(Sv U)aQQ(Sa U)? : 7Ql(S7 U)] ePp.

where Q;(S,U) is a multiset such that {U(h) : S(h) =i (1 < h <n)}.

Let (S,U)* denote the array obtained from (S,U) by permuting the inte-
gers in each component of (S,U) into weak increasing order. We note that
P* = {(S,U)* : ¥S,U € P} and (P™,P™)* = (P™™ )* ¢ P*. For any
(P™, P™)* € P*, there exist a unique orbit A such that (P™, P™)* € A. So
there is a one-to-one correspondence between the orbits of G on P x P and
P*. Identifying {A;} with P* by the correspondence. By the last section, since
(P, {Ai}o<i<q) is an association scheme, the following consists.

Theorem 4. (P, P*) is an association scheme.

For any partition A - n, let J(A) be this association scheme. We want to
compute the intersection numbers so that we need to consider combinatorial
structures. In the remainder of this paper, for any permissible array 1" € P*,
we treat the set {(S,U): (S,U)* =T} as T. The following consist.

(i)
PxP= ] T,
TePpP*

where Ty NTy =0 (Tl,TQ e P, T # Tg);
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(i) {(T,T)*: T € P} € P
(iii) If T € P*, then T" € P*, where T' = {(U,S) : (S,U) € T};

(iv) For «, 3,y € P*, there exists a non-negative integer J2% ” such that P3 y =
HT € P:(S,T) e pB,(T,U) € v}| whenever (S,U) € a.

Notation 2. For any T € P,
Qi(T,T) = {T(h) : T(h) = i(1 < h < n)} = {i,....i}.
Hence,
(T,T) =P =[{1,...,1%,{2,...,2}, ... {I,...,1}] € P*.

Notation 3. The association scheme is non-commutative whenever [ > 2

[7, 1].
For any S,U € P, we define | x [ matrix ¢>V;

(V)= {h:S(h) =iand U) =j A <h<n)}| = |{z: 2 € QiS,U),z =}

Their row sums and their column sums of the matrix are n{,ns,...,n;.
On the other hand, let My, n,,..n, be the set of [ x [ matrices over N =
{0,1,2,...} with row sums (ni,ne,...,n;) and column sums (ny,ng,...,n;).

For any matrix A € My, pn,,..n,, We get a unique permissible array;

(L. L2 2L L 12,2 L,
—_—— ——— —— ——— —— ~——
A1 A1 Ay A A2 Ay
where A; ; is (4, j)-entry of A. There is a bijective correspondence between

P* and My, ny....n, [6]. Identify P* with My, », . n,. Hence each relation is

presented by a matrix of My, n,,.. n,-

Proposition 5. ¢3V = U5, In particular, (S,U)* = (U, S)* if and only if
eV is a symmetric matrix.

Notation 4. The valency v, of a € P* was computed in [5];

B ni n2 n
Yo = 1 NN o\l
k=1 Lk \ok=1 X2,k k=1 Mk

nyl...ny!

| | 1’
a11:0120 .. .0q ]

where 0! = 1.
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Now we calculate the intersection numbers of J(A). For S,U € P such that
¢5U = . This means that

a;j=1{h:Sh)=iand U(h) =7 (1 < h <n)}|.
Let us count the number of T' € P such that €57 = 3, eI’V = ~. That is

Bij = |{h: S(h) =i and T(h) = § (1< h < )}
Yij=|{h:T(h)=iand U(h) =j (1 < h<n)}|

And we define tz;j (1<id,j,k<l-1);
i=Hh:Sh)=iand U(h) =j and T(h) =k (1 < h <n)}|.

For fixed tfc’j (1 <i,j5,k <1-1), we compute tfg’j except 1 < 4,5,k <1—1
by conditions of e, 3,v. For any i,j (1 <4,j <1—1), t; is the number of h
(1 <h < n)suchthat S(h) =i, U(h) = jand T'(h) = [. Since o ; = Ek Lt

) =ai; -y 7, 1<ij<l-1
Similarly, the following equations consist.

=B =y ), 1<ik<i—1
-1 o -1 -1 o
ty = Bii - Zt;d = Big — Z(ai,j - Zﬁ;]), I<i<i-1
j=1 j=1 k=1
te) =g — Ztk = Yhj — Zt};ﬁ 1<jk<l-1;
-1
T=m; - Zt =5~ (@i~ Zt” 1<j<i-1;
=1
By =i — Ztk ZVkI—Zﬁm—Zt”, 1<k<l-1

-1

— -1 -1
' =~ Z ' ==Y (B — Y (i = Y t7).
i=1 j=1 k=1

i=1
For fixed t}’l, there are (?111) choices of h (1 < h < n) such that T'(h) =

on the condition S(h) = 1 and U(h) = 1. Repeating the same arguments, for
fixed {t;’ }(1 <4,j,k <1—1), there are

l

H( N )‘( )( ) ( N
. iwj ] — \. 1,1 )\ 12 )\ Ll

i,j=1 ’k:ltk 7k:1tk 7k:ltk ’kzltk
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choices of T'. We should decide the ranges of {tzj}(l <i,7,k <1—1). But to
avoid becoming complex, we think them in rough ranges; 0 < ¢7 < «a; ;. We
obtain the formula for the intersection numbers;

Theorem 6. For «, 3,7 € P*,

l ..
Pg,v = Z H ( l aziz,j)-

=\t
{0<tp? <aijhi<ijp<i—1 BI=1

Example 4.1. Let [ = 2 and let n; := a > ng := b. This is the Johnson
scheme J(a+b,b). Relations are the set of 2 x 2 matrices over N = {0,1,2,...}
with row sums (a, b) and column sums (a,b). Each of the matrices is decided
when (2, 2)-entry of the matrix is decided. The relations of the Johnson scheme
actually make these one parameters correspond to the indices of the relations.
For 0 <e, f,g <0,

[ a—e e [ a—f f [ a—g g
= () =) = (00 )

On the intersection numbers, the variable is only ¢ := ti’l and let T; ; :=
(t17,t57), then we have

Tva = (t,a—e—t);

Tig = (a—f-tie—(a—f—1);

Tpp = (a—g-—te—(a—g—1t));

Too = (f+g+t—ab—e—(f+g+t—a))

We compute the intersection numbers;

Phy = Z <t;a—e—t>(a—f—t;e—(a—f—t))

0<t<a—e

><<a—g—lt;ei(a—g—t)><f+g+t—a;bﬁei(f+g+t—a)>
o 31 S [ PR [ R P

Example 4.2. Let [ = 3 and let A = (n1,n2,n3) b n (ng > ne > ng > 0).
Relations are the set of 3 x 3 matrices over N = {0,1,2,...} with row sums
(n1,n9,n3) and column sums (ng, ng, ng). The number of relations is p(A, A, 3).

On the intersection numbers, the variables are ti’j , 1 < 4,5,k < 2 and let
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7 40,0 44,7 .
T ;= (t77,t57,t37) for 3 relations a, 3,v. Then we have
1,1
T = ( tz 70411_751 —t7);
1,2y,
Tio = (% t° 7o¢12 15l —ty%);
, 1,1 1,2 1,1 1,1 1,2 ,1,2\y.
Tz = (ﬂ1 1 —t 'y 7/312 —ty =ty Bz — (o — 7 =ty ) — (a2 — " —t37));
2,1
Tn = ( y Q2,1 _tl —t3);
2,2
Tre = (t ) (2,2 _tl —t3);
2,1 ,2,2 2,1 ,2,2 1 2,1
Tps = (ﬁz,lft -ty 7ﬂ22*t2 =157, P23 — (2 —t3") = (a2 — 17?2 = 137));
1,1 ,21 1,1 1 1y,
Tsn = (na1-— t1 - tl 7’72,1 —ty =t 31 — (oq 1= t1 —ty7) — (@21 — tl - t2 ))7
2.2 1,2 ,2,2 2 1,2 22 ,2,2\\.
Tso = (na2—t” 772,2 — 13" =157 50 — (12 — 87 — 13%) = (a2 — 177 — 13%));
1,2 21 ,2,2 1,1 ,1,2
Tss = (ns—Bia—ty —17%) = (Boq — 7 —17%), 723 — (B2 — t3' — t57)
1,22 1,1 ,1.1 1,2 ,1,2
—(B2,2 — t2 —t57),73,3 — 51 s—(a =t —t7) — (a2 —t777 —1577))
2,1 2,2 2,2
—(B2,3 — (21 — t] 31 = (a2 — 177 = 15))).
We compute the intersection numbers;
« a1 @1,2
pﬁw"{ = Z (11 1,1 1,1 11>(1.2 1,2 1,2 12)
ehlielliay bt bt b2 b2 0 5 b2 )
{0<t <ab]}1<LJk<2 1 2 1 2 1 2 1 2
( )
Bra—tyt =t s —tyt =ty Brs — (aan — it =ty — (a1 2 — 117 — 1377)
( )N )
252 an g — 2 — 21 422422 an o — 132 — 422
( > )
Baa — 3! =132 By 0 — 13! — 127 8o 5 — (any — 7! —151) — (ag2 — 77 — 137
( )
g =t 2 e — iyt =2 s — (e — it — ) — (a2 — e — 62
( )
v —t7? =3 ve0 — ty? — 13m0 — (a1 — t7% —t3%) — (ag2 — t77 —t3%)
1,2 2,1 2,2 3,3 1,1 1,2 2,1 2,2
71,3 — (B1,1 —t77 — 7)) = (B2,1 — 7 —t77);v2,3 — (Br,2 —ty — 7)) — (B2,2 —ty T —t3°7);

1,1 1,1 1,2 1,2 2,1 2,1
73,3 — (B1,3 — (1,1 — )" —t57) — (1,2 — 777 —t5°7)) — (B2,3 — (az;1 —t7" —t57)

t3%)) )

—(az2,2 — tf’Q

Some generalizations of the Johnson scheme are known. Especially this
scheme is important since we want to consider the following problem in the

representation theory [9, 10].

Problem 1. Consider an analogue of Nakayama’s conjecture for this scheme.

Nakayama’s conjecture is a theorem of representation theory for symmetric

groups.

The correspondence of a modular character and a p-core of Young

diagrams are stated. In [9], the correspondence of a modular character of
Bose-Mesner algebra of the Johnson scheme and a p-core of Young diagrams

were given. Our results should be helpful for solving this problem.
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